Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing.

Identifieur interne : 001734 ( PubMed/Corpus ); précédent : 001733; suivant : 001735

Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing.

Auteurs : Kimberly D. Cephas ; Juhee Kim ; Rose Ann Mathai ; Kathleen A. Barry ; Scot E. Dowd ; Brandon S. Meline ; Kelly S. Swanson

Source :

RBID : pubmed:21853142

English descriptors

Abstract

Bacterial contribution to oral disease has been studied in young children, but there is a lack of data addressing the developmental perspective in edentulous infants. Our primary objectives were to use pyrosequencing to phylogenetically characterize the salivary bacterial microbiome of edentulous infants and to make comparisons against their mothers. Saliva samples were collected from 5 edentulous infants (mean age = 4.6±1.2 mo old) and their mothers or primary care givers (mean age = 30.8±9.5 y old). Salivary DNA was extracted, used to generate DNA amplicons of the V4-V6 hypervariable region of the bacterial 16S rDNA gene, and subjected to 454-pyrosequencing. On average, over 80,000 sequences per sample were generated. High bacterial diversity was noted in the saliva of adults [1012 operational taxonomical units (OTU) at 3% divergence] and infants (578 OTU at 3% divergence). Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria were predominant bacterial phyla present in all samples. A total of 397 bacterial genera were present in our dataset. Of the 28 genera different (P<0.05) between infants and adults, 27 had a greater prevalence in adults. The exception was Streptococcus, which was the predominant genera in infant saliva (62.2% in infants vs. 20.4% in adults; P<0.05). Veillonella, Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Leptotrichia, and Fusobacterium were also predominant genera in infant samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium, Oribacterium, Rothia, Treponema, and Actinomyces were predominant in adults. Our data demonstrate that although the adult saliva bacterial microbiome had a greater OTU count than infants, a rich bacterial community exists in the infant oral cavity prior to tooth eruption. Streptococcus, Veillonella, and Neisseria are the predominant bacterial genera present in infants. Further research is required to characterize the development of oral microbiota early in life and identify environmental factors that impact colonization and oral and gastrointestinal disease risk.

DOI: 10.1371/journal.pone.0023503
PubMed: 21853142

Links to Exploration step

pubmed:21853142

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing.</title>
<author>
<name sortKey="Cephas, Kimberly D" sort="Cephas, Kimberly D" uniqKey="Cephas K" first="Kimberly D" last="Cephas">Kimberly D. Cephas</name>
<affiliation>
<nlm:affiliation>Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Juhee" sort="Kim, Juhee" uniqKey="Kim J" first="Juhee" last="Kim">Juhee Kim</name>
</author>
<author>
<name sortKey="Mathai, Rose Ann" sort="Mathai, Rose Ann" uniqKey="Mathai R" first="Rose Ann" last="Mathai">Rose Ann Mathai</name>
</author>
<author>
<name sortKey="Barry, Kathleen A" sort="Barry, Kathleen A" uniqKey="Barry K" first="Kathleen A" last="Barry">Kathleen A. Barry</name>
</author>
<author>
<name sortKey="Dowd, Scot E" sort="Dowd, Scot E" uniqKey="Dowd S" first="Scot E" last="Dowd">Scot E. Dowd</name>
</author>
<author>
<name sortKey="Meline, Brandon S" sort="Meline, Brandon S" uniqKey="Meline B" first="Brandon S" last="Meline">Brandon S. Meline</name>
</author>
<author>
<name sortKey="Swanson, Kelly S" sort="Swanson, Kelly S" uniqKey="Swanson K" first="Kelly S" last="Swanson">Kelly S. Swanson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21853142</idno>
<idno type="pmid">21853142</idno>
<idno type="doi">10.1371/journal.pone.0023503</idno>
<idno type="wicri:Area/PubMed/Corpus">001734</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001734</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing.</title>
<author>
<name sortKey="Cephas, Kimberly D" sort="Cephas, Kimberly D" uniqKey="Cephas K" first="Kimberly D" last="Cephas">Kimberly D. Cephas</name>
<affiliation>
<nlm:affiliation>Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kim, Juhee" sort="Kim, Juhee" uniqKey="Kim J" first="Juhee" last="Kim">Juhee Kim</name>
</author>
<author>
<name sortKey="Mathai, Rose Ann" sort="Mathai, Rose Ann" uniqKey="Mathai R" first="Rose Ann" last="Mathai">Rose Ann Mathai</name>
</author>
<author>
<name sortKey="Barry, Kathleen A" sort="Barry, Kathleen A" uniqKey="Barry K" first="Kathleen A" last="Barry">Kathleen A. Barry</name>
</author>
<author>
<name sortKey="Dowd, Scot E" sort="Dowd, Scot E" uniqKey="Dowd S" first="Scot E" last="Dowd">Scot E. Dowd</name>
</author>
<author>
<name sortKey="Meline, Brandon S" sort="Meline, Brandon S" uniqKey="Meline B" first="Brandon S" last="Meline">Brandon S. Meline</name>
</author>
<author>
<name sortKey="Swanson, Kelly S" sort="Swanson, Kelly S" uniqKey="Swanson K" first="Kelly S" last="Swanson">Kelly S. Swanson</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Bacteria (genetics)</term>
<term>Base Sequence</term>
<term>Caregivers</term>
<term>Cluster Analysis</term>
<term>Female</term>
<term>Genetic Variation</term>
<term>Humans</term>
<term>Infant</term>
<term>Male</term>
<term>Metagenome (genetics)</term>
<term>Mothers</term>
<term>Mouth (microbiology)</term>
<term>Mouth, Edentulous (microbiology)</term>
<term>Principal Component Analysis</term>
<term>Saliva (microbiology)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>Metagenome</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Mouth</term>
<term>Mouth, Edentulous</term>
<term>Saliva</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Base Sequence</term>
<term>Caregivers</term>
<term>Cluster Analysis</term>
<term>Female</term>
<term>Genetic Variation</term>
<term>Humans</term>
<term>Infant</term>
<term>Male</term>
<term>Mothers</term>
<term>Principal Component Analysis</term>
<term>Temperature</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial contribution to oral disease has been studied in young children, but there is a lack of data addressing the developmental perspective in edentulous infants. Our primary objectives were to use pyrosequencing to phylogenetically characterize the salivary bacterial microbiome of edentulous infants and to make comparisons against their mothers. Saliva samples were collected from 5 edentulous infants (mean age = 4.6±1.2 mo old) and their mothers or primary care givers (mean age = 30.8±9.5 y old). Salivary DNA was extracted, used to generate DNA amplicons of the V4-V6 hypervariable region of the bacterial 16S rDNA gene, and subjected to 454-pyrosequencing. On average, over 80,000 sequences per sample were generated. High bacterial diversity was noted in the saliva of adults [1012 operational taxonomical units (OTU) at 3% divergence] and infants (578 OTU at 3% divergence). Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria were predominant bacterial phyla present in all samples. A total of 397 bacterial genera were present in our dataset. Of the 28 genera different (P<0.05) between infants and adults, 27 had a greater prevalence in adults. The exception was Streptococcus, which was the predominant genera in infant saliva (62.2% in infants vs. 20.4% in adults; P<0.05). Veillonella, Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Leptotrichia, and Fusobacterium were also predominant genera in infant samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium, Oribacterium, Rothia, Treponema, and Actinomyces were predominant in adults. Our data demonstrate that although the adult saliva bacterial microbiome had a greater OTU count than infants, a rich bacterial community exists in the infant oral cavity prior to tooth eruption. Streptococcus, Veillonella, and Neisseria are the predominant bacterial genera present in infants. Further research is required to characterize the development of oral microbiota early in life and identify environmental factors that impact colonization and oral and gastrointestinal disease risk.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21853142</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>12</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>02</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing.</ArticleTitle>
<Pagination>
<MedlinePgn>e23503</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0023503</ELocationID>
<Abstract>
<AbstractText>Bacterial contribution to oral disease has been studied in young children, but there is a lack of data addressing the developmental perspective in edentulous infants. Our primary objectives were to use pyrosequencing to phylogenetically characterize the salivary bacterial microbiome of edentulous infants and to make comparisons against their mothers. Saliva samples were collected from 5 edentulous infants (mean age = 4.6±1.2 mo old) and their mothers or primary care givers (mean age = 30.8±9.5 y old). Salivary DNA was extracted, used to generate DNA amplicons of the V4-V6 hypervariable region of the bacterial 16S rDNA gene, and subjected to 454-pyrosequencing. On average, over 80,000 sequences per sample were generated. High bacterial diversity was noted in the saliva of adults [1012 operational taxonomical units (OTU) at 3% divergence] and infants (578 OTU at 3% divergence). Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria were predominant bacterial phyla present in all samples. A total of 397 bacterial genera were present in our dataset. Of the 28 genera different (P<0.05) between infants and adults, 27 had a greater prevalence in adults. The exception was Streptococcus, which was the predominant genera in infant saliva (62.2% in infants vs. 20.4% in adults; P<0.05). Veillonella, Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Leptotrichia, and Fusobacterium were also predominant genera in infant samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium, Oribacterium, Rothia, Treponema, and Actinomyces were predominant in adults. Our data demonstrate that although the adult saliva bacterial microbiome had a greater OTU count than infants, a rich bacterial community exists in the infant oral cavity prior to tooth eruption. Streptococcus, Veillonella, and Neisseria are the predominant bacterial genera present in infants. Further research is required to characterize the development of oral microbiota early in life and identify environmental factors that impact colonization and oral and gastrointestinal disease risk.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cephas</LastName>
<ForeName>Kimberly D</ForeName>
<Initials>KD</Initials>
<AffiliationInfo>
<Affiliation>Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Juhee</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mathai</LastName>
<ForeName>Rose Ann</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barry</LastName>
<ForeName>Kathleen A</ForeName>
<Initials>KA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dowd</LastName>
<ForeName>Scot E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meline</LastName>
<ForeName>Brandon S</ForeName>
<Initials>BS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Swanson</LastName>
<ForeName>Kelly S</ForeName>
<Initials>KS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>08</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Microbiol. 2009;9:259</RefSource>
<PMID Version="1">20003481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971-5</RefSource>
<PMID Version="1">20566857</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Behav Immun. 2011 Mar;25(3):397-407</RefSource>
<PMID Version="1">21040780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Periodontol. 2002 Dec;7(1):8-16</RefSource>
<PMID Version="1">16013212</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biotechniques. 2004 May;36(5):808-12</RefSource>
<PMID Version="1">15152600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Pathog. 2010 Jan;6(1):e1000713</RefSource>
<PMID Version="1">20072605</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dent Res. 2008 Nov;87(11):1016-20</RefSource>
<PMID Version="1">18946007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Periodontal Res. 2004 Aug;39(4):213-20</RefSource>
<PMID Version="1">15206913</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Periodontol. 2009 Sep;80(9):1421-32</RefSource>
<PMID Version="1">19722792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2005 Mar;71(3):1501-6</RefSource>
<PMID Version="1">15746353</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microbiol Rev. 1986 Dec;50(4):353-80</RefSource>
<PMID Version="1">3540569</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Open Microbiol J. 2010 Aug 11;4:47-52</RefSource>
<PMID Version="1">21339894</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Microbiol. 2010 Jul;8(7):471-80</RefSource>
<PMID Version="1">20514044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oral Microbiol Immunol. 1992 Feb;7(1):28-31</RefSource>
<PMID Version="1">1528621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Caries Res. 2009;43(4):308-13</RefSource>
<PMID Version="1">19494490</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>MMWR Surveill Summ. 2005 Aug 26;54(3):1-43</RefSource>
<PMID Version="1">16121123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</RefSource>
<PMID Version="1">9396791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Microbiol Methods. 2009 Dec;79(3):266-71</RefSource>
<PMID Version="1">19796657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Caries Res. 2010;44(5):485-97</RefSource>
<PMID Version="1">20861633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Paediatr Dent. 2009 May;19(3):186-92</RefSource>
<PMID Version="1">19399983</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Methods. 2010 May;7(5):335-6</RefSource>
<PMID Version="1">20383131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Microbiol. 2008 Apr;46(4):1407-17</RefSource>
<PMID Version="1">18216213</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Oral Microbiol Immunol. 1994 Jun;9(3):136-41</RefSource>
<PMID Version="1">7936718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Oral Biol. 2003 May;48(5):329-36</RefSource>
<PMID Version="1">12711376</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 2004;32(5):1792-7</RefSource>
<PMID Version="1">15034147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Microbiol. 2011 Apr;49(4):1464-74</RefSource>
<PMID Version="1">21289150</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Periodontol. 1998 Feb;25(2):134-44</RefSource>
<PMID Version="1">9495612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Paediatr Dent. 2009 May;19(3):193-200</RefSource>
<PMID Version="1">19207737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Dent Res. 1993 Jan;72(1):37-45</RefSource>
<PMID Version="1">8418105</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anal Biochem. 2009 Aug 1;391(1):64-8</RefSource>
<PMID Version="1">19406095</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Foodborne Pathog Dis. 2008 Aug;5(4):459-72</RefSource>
<PMID Version="1">18713063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Environ Microbiol. 2009 Dec;75(23):7537-41</RefSource>
<PMID Version="1">19801464</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Microb Ecol. 2010 Oct;60(3):677-90</RefSource>
<PMID Version="1">20614117</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Med Genomics. 2010;3:41</RefSource>
<PMID Version="1">20854691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Microbiol. 2009;9:210</RefSource>
<PMID Version="1">19799792</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genome Res. 2009 Apr;19(4):636-43</RefSource>
<PMID Version="1">19251737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Open Microbiol J. 2010 Mar 17;4:8-19</RefSource>
<PMID Version="1">20461221</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017028" MajorTopicYN="N">Caregivers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007223" MajorTopicYN="N">Infant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054892" MajorTopicYN="N">Metagenome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009035" MajorTopicYN="Y">Mothers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009055" MajorTopicYN="N">Mouth</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009066" MajorTopicYN="N">Mouth, Edentulous</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025341" MajorTopicYN="N">Principal Component Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012463" MajorTopicYN="N">Saliva</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC3154475</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>12</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21853142</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0023503</ArticleId>
<ArticleId IdType="pii">PONE-D-11-04647</ArticleId>
<ArticleId IdType="pmc">PMC3154475</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001734 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001734 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21853142
   |texte=   Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21853142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022