Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.

Identifieur interne : 003336 ( PubMed/Checkpoint ); précédent : 003335; suivant : 003337

Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.

Auteurs : W C Stentz [États-Unis] ; B L Mealey ; J C Gunsolley ; T C Waldrop

Source :

RBID : pubmed:9358360

Descripteurs français

English descriptors

Abstract

The purpose of this study was to determine which treatment of a large osseous defect adjacent to an endosseous dental implant would produce the greatest regeneration of bone and degree of osseointegration: barrier membrane therapy plus demineralized freeze-dried bone allograft (DFDBA), membrane therapy alone, or no treatment. The current study histologically assessed changes in bone within the healed peri-implant osseous defect. In a split-mouth design, 6 implants were placed in edentulous mandibular ridges of 10 mongrel dogs after preparation of 6 cylindrical mid-crestal defects, 5 mm in depth, and 9.525 mm in diameter. An implant site was then prepared in the center of each defect to a depth of 5 mm beyond the apical extent of the defect. One mandibular quadrant received three commercially pure titanium (Ti) screw implants (3.75 x 10 mm), while the contralateral side received three hydroxyapatite (HA) coated root-form implants (3.3 x 10 mm). Consequently, the coronal 5 mm of each implant was surrounded by a circumferential defect approximately 3 mm wide and 5 mm deep. The three dental implants in each quadrant received either DFDBA (canine source) and an expanded polytetrafluoroethylene membrane (ePTFE), ePTFE membrane alone, or no treatment which served as the control. Clinically, the greatest increase in ridge height and width was seen with DFDBA/ePTFE. Histologically, statistically significant differences in defect osseointegration were seen between treatment groups (P < 0.0001: DFDBA/ePTFE > ePTFE alone > control). HA-coated implants had significantly greater osseointegration within the defect than Ti implants (P < 0.0001). Average trabeculation of newly formed bone in the defect after healing was significantly greater for HA-coated implants than for titanium (P < 0.0001), while the effect on trabeculation between treatments was not significantly different (P = 0.14). Finally, there were significantly less residual allograft particles in defect areas adjacent to HA-coated implants than Ti implants (P = 0.0355). The use of HA-coated implants in large size defects with DFDBA and ePTFE membranes produced significantly more osseointegration histologically than other treatment options and more than Ti implants with the same treatment combinations. The results of this study indicate that, although the implants appeared osseointegrated clinically after 4 months of healing, histologic data suggest that selection of both the implant type and the treatment modality is important in obtaining optimum osseointegration in large size defects.

DOI: 10.1902/jop.1997.68.10.933
PubMed: 9358360


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:9358360

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.</title>
<author>
<name sortKey="Stentz, W C" sort="Stentz, W C" uniqKey="Stentz W" first="W C" last="Stentz">W C Stentz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Periodontics, Andrews AFB, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Periodontics, Andrews AFB, MD</wicri:regionArea>
<wicri:noRegion>MD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mealey, B L" sort="Mealey, B L" uniqKey="Mealey B" first="B L" last="Mealey">B L Mealey</name>
</author>
<author>
<name sortKey="Gunsolley, J C" sort="Gunsolley, J C" uniqKey="Gunsolley J" first="J C" last="Gunsolley">J C Gunsolley</name>
</author>
<author>
<name sortKey="Waldrop, T C" sort="Waldrop, T C" uniqKey="Waldrop T" first="T C" last="Waldrop">T C Waldrop</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9358360</idno>
<idno type="pmid">9358360</idno>
<idno type="doi">10.1902/jop.1997.68.10.933</idno>
<idno type="wicri:Area/PubMed/Corpus">003D32</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">003D32</idno>
<idno type="wicri:Area/PubMed/Curation">003D32</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">003D32</idno>
<idno type="wicri:Area/PubMed/Checkpoint">003D32</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">003D32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.</title>
<author>
<name sortKey="Stentz, W C" sort="Stentz, W C" uniqKey="Stentz W" first="W C" last="Stentz">W C Stentz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Periodontics, Andrews AFB, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Periodontics, Andrews AFB, MD</wicri:regionArea>
<wicri:noRegion>MD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mealey, B L" sort="Mealey, B L" uniqKey="Mealey B" first="B L" last="Mealey">B L Mealey</name>
</author>
<author>
<name sortKey="Gunsolley, J C" sort="Gunsolley, J C" uniqKey="Gunsolley J" first="J C" last="Gunsolley">J C Gunsolley</name>
</author>
<author>
<name sortKey="Waldrop, T C" sort="Waldrop, T C" uniqKey="Waldrop T" first="T C" last="Waldrop">T C Waldrop</name>
</author>
</analytic>
<series>
<title level="j">Journal of periodontology</title>
<idno type="ISSN">0022-3492</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alveolar Bone Loss (surgery)</term>
<term>Alveolar Process (pathology)</term>
<term>Animals</term>
<term>Biocompatible Materials</term>
<term>Bone Regeneration</term>
<term>Bone Transplantation</term>
<term>Decalcification Technique</term>
<term>Dental Implantation, Endosseous</term>
<term>Dental Implants</term>
<term>Dental Prosthesis Design</term>
<term>Dogs</term>
<term>Durapatite</term>
<term>Fluorescent Dyes</term>
<term>Freeze Drying</term>
<term>Guided Tissue Regeneration, Periodontal</term>
<term>Jaw, Edentulous (surgery)</term>
<term>Mandible (surgery)</term>
<term>Membranes, Artificial</term>
<term>Osseointegration</term>
<term>Osteogenesis</term>
<term>Polytetrafluoroethylene</term>
<term>Surface Properties</term>
<term>Tetracycline</term>
<term>Titanium</term>
<term>Transplantation, Homologous</term>
<term>Wound Healing</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Chiens</term>
<term>Cicatrisation de plaie</term>
<term>Colorants fluorescents</term>
<term>Conception de prothèse dentaire</term>
<term>Durapatite</term>
<term>Implants dentaires</term>
<term>Lyophilisation</term>
<term>Mandibule ()</term>
<term>Matériaux biocompatibles</term>
<term>Membrane artificielle</term>
<term>Mâchoire édentée ()</term>
<term>Ostéo-intégration</term>
<term>Ostéogenèse</term>
<term>Polytétrafluoroéthylène</term>
<term>Pose d'implant dentaire endo-osseux</term>
<term>Processus alvéolaire (anatomopathologie)</term>
<term>Propriétés de surface</term>
<term>Régénération osseuse</term>
<term>Régénération tissulaire guidée parodontale</term>
<term>Résorption alvéolaire ()</term>
<term>Technique de décalcification</term>
<term>Titane</term>
<term>Transplantation homologue</term>
<term>Transplantation osseuse</term>
<term>Tétracycline</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biocompatible Materials</term>
<term>Dental Implants</term>
<term>Durapatite</term>
<term>Fluorescent Dyes</term>
<term>Membranes, Artificial</term>
<term>Polytetrafluoroethylene</term>
<term>Tetracycline</term>
<term>Titanium</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Processus alvéolaire</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Alveolar Process</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Alveolar Bone Loss</term>
<term>Jaw, Edentulous</term>
<term>Mandible</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bone Regeneration</term>
<term>Bone Transplantation</term>
<term>Decalcification Technique</term>
<term>Dental Implantation, Endosseous</term>
<term>Dental Prosthesis Design</term>
<term>Dogs</term>
<term>Freeze Drying</term>
<term>Guided Tissue Regeneration, Periodontal</term>
<term>Osseointegration</term>
<term>Osteogenesis</term>
<term>Surface Properties</term>
<term>Transplantation, Homologous</term>
<term>Wound Healing</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chiens</term>
<term>Cicatrisation de plaie</term>
<term>Colorants fluorescents</term>
<term>Conception de prothèse dentaire</term>
<term>Durapatite</term>
<term>Implants dentaires</term>
<term>Lyophilisation</term>
<term>Mandibule</term>
<term>Matériaux biocompatibles</term>
<term>Membrane artificielle</term>
<term>Mâchoire édentée</term>
<term>Ostéo-intégration</term>
<term>Ostéogenèse</term>
<term>Polytétrafluoroéthylène</term>
<term>Pose d'implant dentaire endo-osseux</term>
<term>Propriétés de surface</term>
<term>Régénération osseuse</term>
<term>Régénération tissulaire guidée parodontale</term>
<term>Résorption alvéolaire</term>
<term>Technique de décalcification</term>
<term>Titane</term>
<term>Transplantation homologue</term>
<term>Transplantation osseuse</term>
<term>Tétracycline</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The purpose of this study was to determine which treatment of a large osseous defect adjacent to an endosseous dental implant would produce the greatest regeneration of bone and degree of osseointegration: barrier membrane therapy plus demineralized freeze-dried bone allograft (DFDBA), membrane therapy alone, or no treatment. The current study histologically assessed changes in bone within the healed peri-implant osseous defect. In a split-mouth design, 6 implants were placed in edentulous mandibular ridges of 10 mongrel dogs after preparation of 6 cylindrical mid-crestal defects, 5 mm in depth, and 9.525 mm in diameter. An implant site was then prepared in the center of each defect to a depth of 5 mm beyond the apical extent of the defect. One mandibular quadrant received three commercially pure titanium (Ti) screw implants (3.75 x 10 mm), while the contralateral side received three hydroxyapatite (HA) coated root-form implants (3.3 x 10 mm). Consequently, the coronal 5 mm of each implant was surrounded by a circumferential defect approximately 3 mm wide and 5 mm deep. The three dental implants in each quadrant received either DFDBA (canine source) and an expanded polytetrafluoroethylene membrane (ePTFE), ePTFE membrane alone, or no treatment which served as the control. Clinically, the greatest increase in ridge height and width was seen with DFDBA/ePTFE. Histologically, statistically significant differences in defect osseointegration were seen between treatment groups (P < 0.0001: DFDBA/ePTFE > ePTFE alone > control). HA-coated implants had significantly greater osseointegration within the defect than Ti implants (P < 0.0001). Average trabeculation of newly formed bone in the defect after healing was significantly greater for HA-coated implants than for titanium (P < 0.0001), while the effect on trabeculation between treatments was not significantly different (P = 0.14). Finally, there were significantly less residual allograft particles in defect areas adjacent to HA-coated implants than Ti implants (P = 0.0355). The use of HA-coated implants in large size defects with DFDBA and ePTFE membranes produced significantly more osseointegration histologically than other treatment options and more than Ti implants with the same treatment combinations. The results of this study indicate that, although the implants appeared osseointegrated clinically after 4 months of healing, histologic data suggest that selection of both the implant type and the treatment modality is important in obtaining optimum osseointegration in large size defects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9358360</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>12</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-3492</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>68</Volume>
<Issue>10</Issue>
<PubDate>
<Year>1997</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of periodontology</Title>
<ISOAbbreviation>J. Periodontol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>933-49</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The purpose of this study was to determine which treatment of a large osseous defect adjacent to an endosseous dental implant would produce the greatest regeneration of bone and degree of osseointegration: barrier membrane therapy plus demineralized freeze-dried bone allograft (DFDBA), membrane therapy alone, or no treatment. The current study histologically assessed changes in bone within the healed peri-implant osseous defect. In a split-mouth design, 6 implants were placed in edentulous mandibular ridges of 10 mongrel dogs after preparation of 6 cylindrical mid-crestal defects, 5 mm in depth, and 9.525 mm in diameter. An implant site was then prepared in the center of each defect to a depth of 5 mm beyond the apical extent of the defect. One mandibular quadrant received three commercially pure titanium (Ti) screw implants (3.75 x 10 mm), while the contralateral side received three hydroxyapatite (HA) coated root-form implants (3.3 x 10 mm). Consequently, the coronal 5 mm of each implant was surrounded by a circumferential defect approximately 3 mm wide and 5 mm deep. The three dental implants in each quadrant received either DFDBA (canine source) and an expanded polytetrafluoroethylene membrane (ePTFE), ePTFE membrane alone, or no treatment which served as the control. Clinically, the greatest increase in ridge height and width was seen with DFDBA/ePTFE. Histologically, statistically significant differences in defect osseointegration were seen between treatment groups (P < 0.0001: DFDBA/ePTFE > ePTFE alone > control). HA-coated implants had significantly greater osseointegration within the defect than Ti implants (P < 0.0001). Average trabeculation of newly formed bone in the defect after healing was significantly greater for HA-coated implants than for titanium (P < 0.0001), while the effect on trabeculation between treatments was not significantly different (P = 0.14). Finally, there were significantly less residual allograft particles in defect areas adjacent to HA-coated implants than Ti implants (P = 0.0355). The use of HA-coated implants in large size defects with DFDBA and ePTFE membranes produced significantly more osseointegration histologically than other treatment options and more than Ti implants with the same treatment combinations. The results of this study indicate that, although the implants appeared osseointegrated clinically after 4 months of healing, histologic data suggest that selection of both the implant type and the treatment modality is important in obtaining optimum osseointegration in large size defects.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stentz</LastName>
<ForeName>W C</ForeName>
<Initials>WC</Initials>
<AffiliationInfo>
<Affiliation>Department of Periodontics, Andrews AFB, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mealey</LastName>
<ForeName>B L</ForeName>
<Initials>BL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gunsolley</LastName>
<ForeName>J C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waldrop</LastName>
<ForeName>T C</ForeName>
<Initials>TC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Periodontol</MedlineTA>
<NlmUniqueID>8000345</NlmUniqueID>
<ISSNLinking>0022-3492</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001672">Biocompatible Materials</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015921">Dental Implants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005456">Fluorescent Dyes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008567">Membranes, Artificial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9002-84-0</RegistryNumber>
<NameOfSubstance UI="D011138">Polytetrafluoroethylene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91D9GV0Z28</RegistryNumber>
<NameOfSubstance UI="D017886">Durapatite</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D1JT611TNE</RegistryNumber>
<NameOfSubstance UI="D014025">Titanium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>F8VB5M810T</RegistryNumber>
<NameOfSubstance UI="D013752">Tetracycline</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>D</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016301" MajorTopicYN="N">Alveolar Bone Loss</DescriptorName>
<QualifierName UI="Q000601" MajorTopicYN="Y">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000539" MajorTopicYN="N">Alveolar Process</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001672" MajorTopicYN="N">Biocompatible Materials</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001861" MajorTopicYN="Y">Bone Regeneration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016025" MajorTopicYN="N">Bone Transplantation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003648" MajorTopicYN="N">Decalcification Technique</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003758" MajorTopicYN="Y">Dental Implantation, Endosseous</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015921" MajorTopicYN="Y">Dental Implants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017267" MajorTopicYN="N">Dental Prosthesis Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017886" MajorTopicYN="Y">Durapatite</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005456" MajorTopicYN="N">Fluorescent Dyes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005612" MajorTopicYN="N">Freeze Drying</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016557" MajorTopicYN="Y">Guided Tissue Regeneration, Periodontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007575" MajorTopicYN="N">Jaw, Edentulous</DescriptorName>
<QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008334" MajorTopicYN="N">Mandible</DescriptorName>
<QualifierName UI="Q000601" MajorTopicYN="N">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008567" MajorTopicYN="N">Membranes, Artificial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016348" MajorTopicYN="N">Osseointegration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010012" MajorTopicYN="N">Osteogenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011138" MajorTopicYN="N">Polytetrafluoroethylene</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013752" MajorTopicYN="N">Tetracycline</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014025" MajorTopicYN="Y">Titanium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014184" MajorTopicYN="N">Transplantation, Homologous</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014945" MajorTopicYN="N">Wound Healing</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>11</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9358360</ArticleId>
<ArticleId IdType="doi">10.1902/jop.1997.68.10.933</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gunsolley, J C" sort="Gunsolley, J C" uniqKey="Gunsolley J" first="J C" last="Gunsolley">J C Gunsolley</name>
<name sortKey="Mealey, B L" sort="Mealey, B L" uniqKey="Mealey B" first="B L" last="Mealey">B L Mealey</name>
<name sortKey="Waldrop, T C" sort="Waldrop, T C" uniqKey="Waldrop T" first="T C" last="Waldrop">T C Waldrop</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Stentz, W C" sort="Stentz, W C" uniqKey="Stentz W" first="W C" last="Stentz">W C Stentz</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003336 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 003336 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:9358360
   |texte=   Effects of guided bone regeneration around commercially pure titanium and hydroxyapatite-coated dental implants. II. Histologic analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:9358360" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022