Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Implant biomechanics in grafted sinus: a finite element analysis.

Identifieur interne : 002427 ( PubMed/Checkpoint ); précédent : 002426; suivant : 002428

Implant biomechanics in grafted sinus: a finite element analysis.

Auteurs : Mete I. Fanuscu [États-Unis] ; Hung V. Vu ; Bernard Poncelet

Source :

RBID : pubmed:15119454

Descripteurs français

English descriptors

Abstract

This in vitro study investigated the stress distribution in the bone surrounding an implant that is placed in a posterior edentulous maxilla with a sinus graft. The standard threaded implant and anatomy of the crestal cortical bone, cancellous bone, sinus floor cortical bone, and grafted bone were represented in the 3-dimensional finite element models. The thickness of the crestal cortical bone and stiffness of the graft were varied in the models to simulate different clinical scenarios, representing variation in the anatomy and graft quality. Axial and lateral loads were considered and the stresses developed in the supporting structures were analyzed. The finite element models showed different stress patterns associated with helical threads. The von Mises stress distribution indicated that stress was maximal around the top of the implant with varying intensities in both loading cases. The stress was highest in the cortical bone, lower in the grafted bone, and lowest in the cancellous bone. When the stiffness of the grafted bone approximated the cortical bone, axial loading resulted in stress reduction in all the native bone layers; however, lateral loading produced stress reduction in only the cancellous bone. When the stiffness of the graft was less than that of the cancellous bone, the graft assumed a lesser proportion of axial loads. Thus, it caused a concomitant stress increase in all the native bones, whereas this phenomenon was observed in only the cancellous bone with lateral loading. The crestal cortical bone, though receiving the highest intensity stresses, affected the overall stress distribution less than the grafted bone. The stress from the lateral load was up to 11 times higher than that of the axial load around the implant. These findings suggest that the type of loading affects the load distribution more than the variations in bone, and native bone is the primary supporting structure.

DOI: 10.1563/0.674.1
PubMed: 15119454


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15119454

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Implant biomechanics in grafted sinus: a finite element analysis.</title>
<author>
<name sortKey="Fanuscu, Mete I" sort="Fanuscu, Mete I" uniqKey="Fanuscu M" first="Mete I" last="Fanuscu">Mete I. Fanuscu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CHS, 20-114, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA. mfanuscu@ucla.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CHS, 20-114, 10833 Le Conte Avenue, Los Angeles, CA 90095</wicri:regionArea>
<wicri:noRegion>CA 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vu, Hung V" sort="Vu, Hung V" uniqKey="Vu H" first="Hung V" last="Vu">Hung V. Vu</name>
</author>
<author>
<name sortKey="Poncelet, Bernard" sort="Poncelet, Bernard" uniqKey="Poncelet B" first="Bernard" last="Poncelet">Bernard Poncelet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15119454</idno>
<idno type="pmid">15119454</idno>
<idno type="doi">10.1563/0.674.1</idno>
<idno type="wicri:Area/PubMed/Corpus">002D51</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002D51</idno>
<idno type="wicri:Area/PubMed/Curation">002D51</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002D51</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002D51</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002D51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Implant biomechanics in grafted sinus: a finite element analysis.</title>
<author>
<name sortKey="Fanuscu, Mete I" sort="Fanuscu, Mete I" uniqKey="Fanuscu M" first="Mete I" last="Fanuscu">Mete I. Fanuscu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CHS, 20-114, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA. mfanuscu@ucla.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CHS, 20-114, 10833 Le Conte Avenue, Los Angeles, CA 90095</wicri:regionArea>
<wicri:noRegion>CA 90095</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vu, Hung V" sort="Vu, Hung V" uniqKey="Vu H" first="Hung V" last="Vu">Hung V. Vu</name>
</author>
<author>
<name sortKey="Poncelet, Bernard" sort="Poncelet, Bernard" uniqKey="Poncelet B" first="Bernard" last="Poncelet">Bernard Poncelet</name>
</author>
</analytic>
<series>
<title level="j">The Journal of oral implantology</title>
<idno type="ISSN">0160-6972</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Bone Transplantation (pathology)</term>
<term>Bone Transplantation (physiology)</term>
<term>Computer Simulation</term>
<term>Dental Implants</term>
<term>Dental Prosthesis Design</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional</term>
<term>Jaw, Edentulous (pathology)</term>
<term>Jaw, Edentulous (physiopathology)</term>
<term>Maxilla (anatomy & histology)</term>
<term>Maxilla (physiology)</term>
<term>Maxillary Sinus (anatomy & histology)</term>
<term>Maxillary Sinus (physiology)</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse des éléments finis</term>
<term>Conception de prothèse dentaire</term>
<term>Contrainte mécanique</term>
<term>Humains</term>
<term>Imagerie tridimensionnelle</term>
<term>Implants dentaires</term>
<term>Maxillaire (anatomie et histologie)</term>
<term>Maxillaire (physiologie)</term>
<term>Modèles biologiques</term>
<term>Mâchoire édentée (anatomopathologie)</term>
<term>Mâchoire édentée (physiopathologie)</term>
<term>Phénomènes biomécaniques</term>
<term>Propriétés de surface</term>
<term>Simulation numérique</term>
<term>Sinus maxillaire (anatomie et histologie)</term>
<term>Sinus maxillaire (physiologie)</term>
<term>Transplantation osseuse (anatomopathologie)</term>
<term>Transplantation osseuse (physiologie)</term>
<term>Élasticité</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Dental Implants</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Maxillaire</term>
<term>Sinus maxillaire</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Mâchoire édentée</term>
<term>Transplantation osseuse</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Maxilla</term>
<term>Maxillary Sinus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Bone Transplantation</term>
<term>Jaw, Edentulous</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Maxillaire</term>
<term>Sinus maxillaire</term>
<term>Transplantation osseuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bone Transplantation</term>
<term>Maxilla</term>
<term>Maxillary Sinus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Mâchoire édentée</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Jaw, Edentulous</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Dental Prosthesis Design</term>
<term>Elasticity</term>
<term>Finite Element Analysis</term>
<term>Humans</term>
<term>Imaging, Three-Dimensional</term>
<term>Models, Biological</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse des éléments finis</term>
<term>Conception de prothèse dentaire</term>
<term>Contrainte mécanique</term>
<term>Humains</term>
<term>Imagerie tridimensionnelle</term>
<term>Implants dentaires</term>
<term>Modèles biologiques</term>
<term>Phénomènes biomécaniques</term>
<term>Propriétés de surface</term>
<term>Simulation numérique</term>
<term>Élasticité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This in vitro study investigated the stress distribution in the bone surrounding an implant that is placed in a posterior edentulous maxilla with a sinus graft. The standard threaded implant and anatomy of the crestal cortical bone, cancellous bone, sinus floor cortical bone, and grafted bone were represented in the 3-dimensional finite element models. The thickness of the crestal cortical bone and stiffness of the graft were varied in the models to simulate different clinical scenarios, representing variation in the anatomy and graft quality. Axial and lateral loads were considered and the stresses developed in the supporting structures were analyzed. The finite element models showed different stress patterns associated with helical threads. The von Mises stress distribution indicated that stress was maximal around the top of the implant with varying intensities in both loading cases. The stress was highest in the cortical bone, lower in the grafted bone, and lowest in the cancellous bone. When the stiffness of the grafted bone approximated the cortical bone, axial loading resulted in stress reduction in all the native bone layers; however, lateral loading produced stress reduction in only the cancellous bone. When the stiffness of the graft was less than that of the cancellous bone, the graft assumed a lesser proportion of axial loads. Thus, it caused a concomitant stress increase in all the native bones, whereas this phenomenon was observed in only the cancellous bone with lateral loading. The crestal cortical bone, though receiving the highest intensity stresses, affected the overall stress distribution less than the grafted bone. The stress from the lateral load was up to 11 times higher than that of the axial load around the implant. These findings suggest that the type of loading affects the load distribution more than the variations in bone, and native bone is the primary supporting structure.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15119454</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0160-6972</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>30</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>The Journal of oral implantology</Title>
<ISOAbbreviation>J Oral Implantol</ISOAbbreviation>
</Journal>
<ArticleTitle>Implant biomechanics in grafted sinus: a finite element analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>59-68</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>This in vitro study investigated the stress distribution in the bone surrounding an implant that is placed in a posterior edentulous maxilla with a sinus graft. The standard threaded implant and anatomy of the crestal cortical bone, cancellous bone, sinus floor cortical bone, and grafted bone were represented in the 3-dimensional finite element models. The thickness of the crestal cortical bone and stiffness of the graft were varied in the models to simulate different clinical scenarios, representing variation in the anatomy and graft quality. Axial and lateral loads were considered and the stresses developed in the supporting structures were analyzed. The finite element models showed different stress patterns associated with helical threads. The von Mises stress distribution indicated that stress was maximal around the top of the implant with varying intensities in both loading cases. The stress was highest in the cortical bone, lower in the grafted bone, and lowest in the cancellous bone. When the stiffness of the grafted bone approximated the cortical bone, axial loading resulted in stress reduction in all the native bone layers; however, lateral loading produced stress reduction in only the cancellous bone. When the stiffness of the graft was less than that of the cancellous bone, the graft assumed a lesser proportion of axial loads. Thus, it caused a concomitant stress increase in all the native bones, whereas this phenomenon was observed in only the cancellous bone with lateral loading. The crestal cortical bone, though receiving the highest intensity stresses, affected the overall stress distribution less than the grafted bone. The stress from the lateral load was up to 11 times higher than that of the axial load around the implant. These findings suggest that the type of loading affects the load distribution more than the variations in bone, and native bone is the primary supporting structure.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fanuscu</LastName>
<ForeName>Mete I</ForeName>
<Initials>MI</Initials>
<AffiliationInfo>
<Affiliation>Division of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, CHS, 20-114, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA. mfanuscu@ucla.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vu</LastName>
<ForeName>Hung V</ForeName>
<Initials>HV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Poncelet</LastName>
<ForeName>Bernard</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Oral Implantol</MedlineTA>
<NlmUniqueID>7801086</NlmUniqueID>
<ISSNLinking>0160-6972</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015921">Dental Implants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>D</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016025" MajorTopicYN="N">Bone Transplantation</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015921" MajorTopicYN="Y">Dental Implants</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017267" MajorTopicYN="N">Dental Prosthesis Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004548" MajorTopicYN="N">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020342" MajorTopicYN="Y">Finite Element Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021621" MajorTopicYN="N">Imaging, Three-Dimensional</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007575" MajorTopicYN="N">Jaw, Edentulous</DescriptorName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008437" MajorTopicYN="N">Maxilla</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008443" MajorTopicYN="N">Maxillary Sinus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="N">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013499" MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>5</Month>
<Day>4</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15119454</ArticleId>
<ArticleId IdType="doi">10.1563/0.674.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Poncelet, Bernard" sort="Poncelet, Bernard" uniqKey="Poncelet B" first="Bernard" last="Poncelet">Bernard Poncelet</name>
<name sortKey="Vu, Hung V" sort="Vu, Hung V" uniqKey="Vu H" first="Hung V" last="Vu">Hung V. Vu</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Fanuscu, Mete I" sort="Fanuscu, Mete I" uniqKey="Fanuscu M" first="Mete I" last="Fanuscu">Mete I. Fanuscu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002427 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 002427 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15119454
   |texte=   Implant biomechanics in grafted sinus: a finite element analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:15119454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022