Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

Identifieur interne : 002F25 ( Pmc/Curation ); précédent : 002F24; suivant : 002F26

Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

Auteurs : So-Min Im [Corée du Sud] ; Yoon-Hyuk Huh [Corée du Sud] ; Lee-Ra Cho [Corée du Sud] ; Chan-Jin Park [Corée du Sud]

Source :

RBID : PMC:5321585

Abstract

PURPOSE

The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading.

MATERIALS AND METHODS

Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy.

RESULTS

After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces.

CONCLUSION

The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.


Url:
DOI: 10.4047/jap.2017.9.1.22
PubMed: 28243388
PubMed Central: 5321585

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:5321585

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading</title>
<author>
<name sortKey="Im, So Min" sort="Im, So Min" uniqKey="Im S" first="So-Min" last="Im">So-Min Im</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Huh, Yoon Hyuk" sort="Huh, Yoon Hyuk" uniqKey="Huh Y" first="Yoon-Hyuk" last="Huh">Yoon-Hyuk Huh</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cho, Lee Ra" sort="Cho, Lee Ra" uniqKey="Cho L" first="Lee-Ra" last="Cho">Lee-Ra Cho</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Park, Chan Jin" sort="Park, Chan Jin" uniqKey="Park C" first="Chan-Jin" last="Park">Chan-Jin Park</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28243388</idno>
<idno type="pmc">5321585</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321585</idno>
<idno type="RBID">PMC:5321585</idno>
<idno type="doi">10.4047/jap.2017.9.1.22</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">002F25</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002F25</idno>
<idno type="wicri:Area/Pmc/Curation">002F25</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">002F25</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading</title>
<author>
<name sortKey="Im, So Min" sort="Im, So Min" uniqKey="Im S" first="So-Min" last="Im">So-Min Im</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Huh, Yoon Hyuk" sort="Huh, Yoon Hyuk" uniqKey="Huh Y" first="Yoon-Hyuk" last="Huh">Yoon-Hyuk Huh</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cho, Lee Ra" sort="Cho, Lee Ra" uniqKey="Cho L" first="Lee-Ra" last="Cho">Lee-Ra Cho</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Park, Chan Jin" sort="Park, Chan Jin" uniqKey="Park C" first="Chan-Jin" last="Park">Chan-Jin Park</name>
<affiliation wicri:level="1">
<nlm:aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</nlm:aff>
<country xml:lang="fr" wicri:curation="lc">Corée du Sud</country>
<wicri:regionArea>Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Advanced Prosthodontics</title>
<idno type="ISSN">2005-7806</idno>
<idno type="eISSN">2005-7814</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>PURPOSE</title>
<p>The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading.</p>
</sec>
<sec>
<title>MATERIALS AND METHODS</title>
<p>Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy.</p>
</sec>
<sec>
<title>RESULTS</title>
<p>After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (
<italic>P</italic>
<.05) and the control group (
<italic>P</italic>
<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces.</p>
</sec>
<sec>
<title>CONCLUSION</title>
<p>The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Jagger, Dc" uniqKey="Jagger D">DC Jagger</name>
</author>
<author>
<name sortKey="Harrison, A" uniqKey="Harrison A">A Harrison</name>
</author>
<author>
<name sortKey="Jandt, Kd" uniqKey="Jandt K">KD Jandt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="El Ghazali, S" uniqKey="El Ghazali S">S el Ghazali</name>
</author>
<author>
<name sortKey="Glantz, Po" uniqKey="Glantz P">PO Glantz</name>
</author>
<author>
<name sortKey="Strandman, E" uniqKey="Strandman E">E Strandman</name>
</author>
<author>
<name sortKey="Randow, K" uniqKey="Randow K">K Randow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geurtsen, W" uniqKey="Geurtsen W">W Geurtsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Sh" uniqKey="Kim S">SH Kim</name>
</author>
<author>
<name sortKey="Watts, Dc" uniqKey="Watts D">DC Watts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hedzelek, W" uniqKey="Hedzelek W">W Hedzelek</name>
</author>
<author>
<name sortKey="Gajdus, P" uniqKey="Gajdus P">P Gajdus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, Sh" uniqKey="Yu S">SH Yu</name>
</author>
<author>
<name sortKey="Cho, Hw" uniqKey="Cho H">HW Cho</name>
</author>
<author>
<name sortKey="Oh, S" uniqKey="Oh S">S Oh</name>
</author>
<author>
<name sortKey="Bae, Jm" uniqKey="Bae J">JM Bae</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Yoshida, K" uniqKey="Yoshida K">K Yoshida</name>
</author>
<author>
<name sortKey="Shimizu, H" uniqKey="Shimizu H">H Shimizu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vallittu, Pk" uniqKey="Vallittu P">PK Vallittu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vallittu, Pk" uniqKey="Vallittu P">PK Vallittu</name>
</author>
<author>
<name sortKey="Lassila, Vp" uniqKey="Lassila V">VP Lassila</name>
</author>
<author>
<name sortKey="Lappalainen, R" uniqKey="Lappalainen R">R Lappalainen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vallittu, Pk" uniqKey="Vallittu P">PK Vallittu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontijn Tekamp, Fa" uniqKey="Fontijn Tekamp F">FA Fontijn-Tekamp</name>
</author>
<author>
<name sortKey="Slagter, Ap" uniqKey="Slagter A">AP Slagter</name>
</author>
<author>
<name sortKey="Van Der Bilt, A" uniqKey="Van Der Bilt A">A Van Der Bilt</name>
</author>
<author>
<name sortKey="Van Hof, Ma" uniqKey="Van Hof M">MA Van ‘T Hof</name>
</author>
<author>
<name sortKey="Witter, Dj" uniqKey="Witter D">DJ Witter</name>
</author>
<author>
<name sortKey="Kalk, W" uniqKey="Kalk W">W Kalk</name>
</author>
<author>
<name sortKey="Jansen, Ja" uniqKey="Jansen J">JA Jansen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Michael, Cg" uniqKey="Michael C">CG Michael</name>
</author>
<author>
<name sortKey="Javid, Ns" uniqKey="Javid N">NS Javid</name>
</author>
<author>
<name sortKey="Colaizzi, Fa" uniqKey="Colaizzi F">FA Colaizzi</name>
</author>
<author>
<name sortKey="Gibbs, Ch" uniqKey="Gibbs C">CH Gibbs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bates, Jf" uniqKey="Bates J">JF Bates</name>
</author>
<author>
<name sortKey="Stafford, Gd" uniqKey="Stafford G">GD Stafford</name>
</author>
<author>
<name sortKey="Harrison, A" uniqKey="Harrison A">A Harrison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiskott, Hw" uniqKey="Wiskott H">HW Wiskott</name>
</author>
<author>
<name sortKey="Nicholls, Ji" uniqKey="Nicholls J">JI Nicholls</name>
</author>
<author>
<name sortKey="Belser, Uc" uniqKey="Belser U">UC Belser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Praveen, B" uniqKey="Praveen B">B Praveen</name>
</author>
<author>
<name sortKey="Babaji, Hv" uniqKey="Babaji H">HV Babaji</name>
</author>
<author>
<name sortKey="Prasanna, Bg" uniqKey="Prasanna B">BG Prasanna</name>
</author>
<author>
<name sortKey="Rajalbandi, Sk" uniqKey="Rajalbandi S">SK Rajalbandi</name>
</author>
<author>
<name sortKey="Shreeharsha, Tv" uniqKey="Shreeharsha T">TV Shreeharsha</name>
</author>
<author>
<name sortKey="Prashant, Gm" uniqKey="Prashant G">GM Prashant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Purslow, D" uniqKey="Purslow D">D Purslow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dharmar, S" uniqKey="Dharmar S">S Dharmar</name>
</author>
<author>
<name sortKey="Rathnasamy, Rj" uniqKey="Rathnasamy R">RJ Rathnasamy</name>
</author>
<author>
<name sortKey="Swaminathan, Tn" uniqKey="Swaminathan T">TN Swaminathan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuroda, S" uniqKey="Kuroda S">S Kuroda</name>
</author>
<author>
<name sortKey="Yokoyama, D" uniqKey="Yokoyama D">D Yokoyama</name>
</author>
<author>
<name sortKey="Shinya, A" uniqKey="Shinya A">A Shinya</name>
</author>
<author>
<name sortKey="Gomi, H" uniqKey="Gomi H">H Gomi</name>
</author>
<author>
<name sortKey="Shinya, A" uniqKey="Shinya A">A Shinya</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Adv Prosthodont</journal-id>
<journal-id journal-id-type="iso-abbrev">J Adv Prosthodont</journal-id>
<journal-id journal-id-type="publisher-id">JAP</journal-id>
<journal-title-group>
<journal-title>The Journal of Advanced Prosthodontics</journal-title>
</journal-title-group>
<issn pub-type="ppub">2005-7806</issn>
<issn pub-type="epub">2005-7814</issn>
<publisher>
<publisher-name>The Korean Academy of Prosthodontics</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28243388</article-id>
<article-id pub-id-type="pmc">5321585</article-id>
<article-id pub-id-type="doi">10.4047/jap.2017.9.1.22</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">http://orcid.org/0000-0002-3803-3057</contrib-id>
<name>
<surname>Im</surname>
<given-names>So-Min</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">http://orcid.org/0000-0003-4072-5199</contrib-id>
<name>
<surname>Huh</surname>
<given-names>Yoon-Hyuk</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="true">http://orcid.org/0000-0003-3989-2870</contrib-id>
<name>
<surname>Cho</surname>
<given-names>Lee-Ra</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid" authenticated="true">http://orcid.org/0000-0003-4734-214X</contrib-id>
<name>
<surname>Park</surname>
<given-names>Chan-Jin</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
</contrib>
</contrib-group>
<aff id="A1">Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea.</aff>
<author-notes>
<corresp>Corresponding author: Chan-Jin Park. Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Jibyun-dong 123 Gangneung 25457, Republic of Korea. Tel. +82336403153:
<email>doctorcj@gwnu.ac.kr</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>2</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>07</day>
<month>2</month>
<year>2017</year>
</pub-date>
<volume>9</volume>
<issue>1</issue>
<fpage>22</fpage>
<lpage>30</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>3</month>
<year>2016</year>
</date>
<date date-type="rev-recd">
<day>01</day>
<month>11</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>11</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>© 2017 The Korean Academy of Prosthodontics</copyright-statement>
<copyright-year>2017</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0">http://creativecommons.org/licenses/by-nc/3.0</ext-link>
) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>PURPOSE</title>
<p>The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading.</p>
</sec>
<sec>
<title>MATERIALS AND METHODS</title>
<p>Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy.</p>
</sec>
<sec>
<title>RESULTS</title>
<p>After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (
<italic>P</italic>
<.05) and the control group (
<italic>P</italic>
<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces.</p>
</sec>
<sec>
<title>CONCLUSION</title>
<p>The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Complete denture</kwd>
<kwd>Glass fiber mesh</kwd>
<kwd>Fatigue loading</kwd>
<kwd>Fractography</kwd>
<kwd>Fracture resistance</kwd>
</kwd-group>
</article-meta>
</front>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Fig. 1</label>
<caption>
<title>(A) Maxillary edentulous master cast, (B) 0.5 mm relief on cast.</title>
</caption>
<graphic xlink:href="jap-9-22-g001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Fig. 2</label>
<caption>
<title>(A) Metal mesh framework, (B) Glass fiber mesh framework on cast.</title>
</caption>
<graphic xlink:href="jap-9-22-g002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Fig. 3</label>
<caption>
<title>(A) Schematic representation of loading for experimental design. The arrow indicates the direction of the cyclic force, (B) Chewing simulator.</title>
</caption>
<graphic xlink:href="jap-9-22-g003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Fig. 4</label>
<caption>
<title>Representative fracture patterns of complete dentures. Upper: resin complete dentures, Middle: metal meshreinforced complete dentures, Lower: fiber mesh-reinforced complete dentures.</title>
</caption>
<graphic xlink:href="jap-9-22-g004"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>Fig. 5</label>
<caption>
<title>Fractured surface of the unreinforced resin complete denture; palate area of acrylic resin base. (A) White circle indicates pink fibers (× 100), (B), (C) River line pattern in higher magnification (× 400 and × 1,000). White arrow indicates direction of the river line propagation. Black points indicate scarps.</title>
</caption>
<graphic xlink:href="jap-9-22-g005"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>Fig. 6</label>
<caption>
<title>Fractured surface of the metal mesh-reinforced complete denture; palate area of acrylic resin base. (A) Horizontal crack line (× 100). Trapezoidal material of the center is a part of metal mesh. (B) Gap between metal and acrylic resin. And river line pattern of acrylic resin (× 400). (C) Dimple and interdendritic fracture. White circle represents shrinkage cavity formation in casting (× 1,000).</title>
</caption>
<graphic xlink:href="jap-9-22-g006"></graphic>
</fig>
<fig id="F7" orientation="portrait" position="float">
<label>Fig. 7</label>
<caption>
<title>Fractured surface of the glass fiber mesh-reinforced complete denture; palate area of acrylic resin base. (A) Crisscross fibers are broken (× 100), (B) Broken acrylic resin and broom-like fiber ends (× 400), (C) Broken glass fibers (× 1,000), (D) Cracked fiber ends in resin matrix. White arrow represents clean separation of the fiber from the matrix (× 8,000), (E) The fiber ends exhibit radial features and acrylic resin shows the microflow. From this, white arrow represents direction of fractures (× 8,000).</title>
</caption>
<graphic xlink:href="jap-9-22-g007"></graphic>
</fig>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<title>Materials used in this study</title>
</caption>
<alternatives>
<graphic xlink:href="jap-9-22-i001"></graphic>
<table frame="hsides" rules="rows">
<col width="30%" span="1"></col>
<col width="20%" span="1"></col>
<col width="30%" span="1"></col>
<col width="20%" span="1"></col>
<thead>
<tr>
<th valign="top" align="center" rowspan="1" colspan="1">Material</th>
<th valign="top" align="center" rowspan="1" colspan="1">Trade name</th>
<th valign="top" align="center" rowspan="1" colspan="1">Manufacturer</th>
<th valign="top" align="center" rowspan="1" colspan="1">Batch number</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">Duplicating silicone</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Elite double 22</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Zhermack SpA, Badia Polesine, Italy</td>
<td valign="middle" align="left" rowspan="1" colspan="1">189176</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">High-strength plaster stone</td>
<td valign="middle" align="left" rowspan="1" colspan="1">GC FUJIROCK
<sup>®</sup>
EP</td>
<td valign="middle" align="left" rowspan="1" colspan="1">GC Europe N.V., Leuven, Belgium</td>
<td valign="middle" align="left" rowspan="1" colspan="1">1205084</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">Chromium-cobalt alloy</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Ticonium 1000</td>
<td valign="middle" align="left" rowspan="1" colspan="1">CMP Industries LLC, New York, USA</td>
<td valign="middle" align="left" rowspan="1" colspan="1">HR0232</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">E-glass fiber mesh</td>
<td valign="middle" align="left" rowspan="1" colspan="1">SES Mesh</td>
<td valign="middle" align="left" rowspan="1" colspan="1">INNO Dental Co., Seoul, Korea</td>
<td valign="middle" align="left" rowspan="1" colspan="1">LSP120314-01</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="2" colspan="1">Heat-curing acrylic denture base resin</td>
<td valign="middle" align="left" rowspan="2" colspan="1">Vertex Regular</td>
<td valign="middle" align="left" rowspan="2" colspan="1">Vertex-Dental B.V., Zeist, Netherlands</td>
<td valign="middle" align="left" rowspan="1" colspan="1">YH502P07(powder)</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">YH282L01(liquid)</td>
</tr>
<tr>
<td valign="middle" align="left" rowspan="1" colspan="1">Polyurethane epoxy resin material</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Polyurock</td>
<td valign="middle" align="left" rowspan="1" colspan="1">Cendres+Metaux SA, Bern, Swiss</td>
<td valign="middle" align="left" rowspan="1" colspan="1">QC:CSK-002-0091-009</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="T2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<title>Mean (± SD) weight of framework and complete dentures</title>
</caption>
<alternatives>
<graphic xlink:href="jap-9-22-i002"></graphic>
<table frame="hsides" rules="rows">
<col width="20%" span="1"></col>
<col width="16%" span="1"></col>
<col width="16%" span="1"></col>
<col width="16%" span="1"></col>
<col width="16%" span="1"></col>
<col width="16%" span="1"></col>
<thead>
<tr>
<th valign="top" align="center" rowspan="1" colspan="2">Unreinforced resin denture</th>
<th valign="top" align="center" rowspan="1" colspan="2">Metal mesh-reinforced denture</th>
<th valign="top" align="center" rowspan="1" colspan="2">Fiber mesh-reinforced denture</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="middle" align="center" rowspan="1" colspan="1">Framework</td>
<td valign="middle" align="center" rowspan="1" colspan="1">Denture</td>
<td valign="middle" align="center" rowspan="1" colspan="1">Framework</td>
<td valign="middle" align="center" rowspan="1" colspan="1">Denture</td>
<td valign="middle" align="center" rowspan="1" colspan="1">Framework</td>
<td valign="middle" align="center" rowspan="1" colspan="1">Denture</td>
</tr>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">17.96 ± 0.22</td>
<td valign="top" align="center" rowspan="1" colspan="1">8.03 ± 0.17</td>
<td valign="top" align="center" rowspan="1" colspan="1">25.74 ± 0.26</td>
<td valign="top" align="center" rowspan="1" colspan="1">1.15 ± 0.05</td>
<td valign="top" align="center" rowspan="1" colspan="1">18.82 ± 0.28</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
<table-wrap id="T3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<title>Mean (± SD) fracture resistance according to complete denture reinforcement</title>
</caption>
<alternatives>
<graphic xlink:href="jap-9-22-i003"></graphic>
<table frame="hsides" rules="rows">
<col width="50%" span="1"></col>
<col width="50%" span="1"></col>
<thead>
<tr>
<th valign="top" align="center" rowspan="1" colspan="1">Maxillary complete denture</th>
<th valign="top" align="center" rowspan="1" colspan="1">Fracture resistance (in kgf)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1">Unreinforced resin denture</td>
<td valign="top" align="center" rowspan="1" colspan="1">2063.7 ± 296.0
<sup>a</sup>
</td>
</tr>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1">Metal mesh-reinforced denture</td>
<td valign="top" align="center" rowspan="1" colspan="1">4647.4 ± 534.4
<sup>b</sup>
</td>
</tr>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1">Fiber mesh-reinforced denture</td>
<td valign="top" align="center" rowspan="1" colspan="1">2266.3 ± 315.0
<sup>c</sup>
</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn>
<p>
<sup>*</sup>
A one-way analysis of variance (ANOVA) was used to access the differences between denture reinforcement. Scheffé method was used as post hoc comparisons. The different superscript letters indicate values that are significantly different (
<italic>P</italic>
< .05).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<title>Failure modes of maxillary complete dentures (n = 15)</title>
</caption>
<alternatives>
<graphic xlink:href="jap-9-22-i004"></graphic>
<table frame="hsides" rules="rows">
<col width="18%" span="1"></col>
<col width="34%" span="1"></col>
<col width="16%" span="1"></col>
<col width="16%" span="1"></col>
<col width="16%" span="1"></col>
<thead>
<tr>
<th valign="top" align="center" rowspan="1" colspan="1">Failure Mode</th>
<th valign="top" align="center" rowspan="1" colspan="1"></th>
<th valign="top" align="center" rowspan="1" colspan="1">Unreinforced resin denture</th>
<th valign="top" align="center" rowspan="1" colspan="1">Metal mesh-reinforced denture</th>
<th valign="top" align="center" rowspan="1" colspan="1">Fiber mesh-reinforced denture</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="2">Complete fracture</td>
<td valign="top" align="center" rowspan="1" colspan="1">15</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="3" colspan="1">Incomplete fracture</td>
<td valign="top" align="left" rowspan="1" colspan="1">Anterior & posterior framework fracture</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Anterior framework fracture</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
<td valign="top" align="center" rowspan="1" colspan="1">2</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">Posterior framework fracture</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
<td valign="top" align="center" rowspan="1" colspan="1">9</td>
<td valign="top" align="center" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="2">Only central framework deformation</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
<td valign="top" align="center" rowspan="1" colspan="1">3</td>
<td valign="top" align="center" rowspan="1" colspan="1">-</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 002F25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:5321585
   |texte=   Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:28243388" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022