Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 003099 ( Pmc/Corpus ); précédent : 0030989; suivant : 0030A00 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative stress analysis of delayed and immediate loading of a single implant in an edentulous maxilla model</title>
<author>
<name sortKey="Gao, Jie" sort="Gao, Jie" uniqKey="Gao J" first="Jie" last="Gao">Jie Gao</name>
</author>
<author>
<name sortKey="Matsushita, Yasuyuki" sort="Matsushita, Yasuyuki" uniqKey="Matsushita Y" first="Yasuyuki" last="Matsushita">Yasuyuki Matsushita</name>
</author>
<author>
<name sortKey="Esaki, Daisuke" sort="Esaki, Daisuke" uniqKey="Esaki D" first="Daisuke" last="Esaki">Daisuke Esaki</name>
</author>
<author>
<name sortKey="Matsuzaki, Tatsuya" sort="Matsuzaki, Tatsuya" uniqKey="Matsuzaki T" first="Tatsuya" last="Matsuzaki">Tatsuya Matsuzaki</name>
</author>
<author>
<name sortKey="Koyano, Kiyoshi" sort="Koyano, Kiyoshi" uniqKey="Koyano K" first="Kiyoshi" last="Koyano">Kiyoshi Koyano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25342982</idno>
<idno type="pmc">4206692</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206692</idno>
<idno type="RBID">PMC:4206692</idno>
<idno type="doi">10.1177/1758736014533982</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">003099</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">003099</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparative stress analysis of delayed and immediate loading of a single implant in an edentulous maxilla model</title>
<author>
<name sortKey="Gao, Jie" sort="Gao, Jie" uniqKey="Gao J" first="Jie" last="Gao">Jie Gao</name>
</author>
<author>
<name sortKey="Matsushita, Yasuyuki" sort="Matsushita, Yasuyuki" uniqKey="Matsushita Y" first="Yasuyuki" last="Matsushita">Yasuyuki Matsushita</name>
</author>
<author>
<name sortKey="Esaki, Daisuke" sort="Esaki, Daisuke" uniqKey="Esaki D" first="Daisuke" last="Esaki">Daisuke Esaki</name>
</author>
<author>
<name sortKey="Matsuzaki, Tatsuya" sort="Matsuzaki, Tatsuya" uniqKey="Matsuzaki T" first="Tatsuya" last="Matsuzaki">Tatsuya Matsuzaki</name>
</author>
<author>
<name sortKey="Koyano, Kiyoshi" sort="Koyano, Kiyoshi" uniqKey="Koyano K" first="Kiyoshi" last="Koyano">Kiyoshi Koyano</name>
</author>
</analytic>
<series>
<title level="j">Journal of Dental Biomechanics</title>
<idno type="eISSN">1758-7360</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Stress distribution in peri-implant bone in an edentulous maxilla following delayed and immediate loading implant and the effect of implant length on the maximum stress were evaluated by using two kinds of finite element analyses. A threaded implant was loaded with a 100 N vertical force, either immediately or delayed, and examined by finite element analysis with a simple contact relation or a bonding interaction between the implant and the bone, respectively. Higher stresses were observed in cortical bone around the implant neck following delayed loading and in the trabecular bone around the implant threading in the immediate loading model. The maximum stress in the immediate loading model was dramatically higher than in delayed loading. Increased implant length caused decrease in bone stresses in both loading models. Though the stress level was higher, the decrease in the maximum trabecular bone stress in immediate loading was profound.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Testori, T" uniqKey="Testori T">T Testori</name>
</author>
<author>
<name sortKey="Meltzer, A" uniqKey="Meltzer A">A Meltzer</name>
</author>
<author>
<name sortKey="Del Fabbro, M" uniqKey="Del Fabbro M">M Del Fabbro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alfadda, Sa" uniqKey="Alfadda S">SA Alfadda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Bruyn, H" uniqKey="De Bruyn H">H De Bruyn</name>
</author>
<author>
<name sortKey="Van De Velde, T" uniqKey="Van De Velde T">T Van de Velde</name>
</author>
<author>
<name sortKey="Collaert, B" uniqKey="Collaert B">B Collaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strub, Jr" uniqKey="Strub J">JR Strub</name>
</author>
<author>
<name sortKey="Jurdzik, Ba" uniqKey="Jurdzik B">BA Jurdzik</name>
</author>
<author>
<name sortKey="Tuna, T" uniqKey="Tuna T">T Tuna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cochran, Dl" uniqKey="Cochran D">DL Cochran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mellal, A" uniqKey="Mellal A">A Mellal</name>
</author>
<author>
<name sortKey="Wiskott, Hw" uniqKey="Wiskott H">HW Wiskott</name>
</author>
<author>
<name sortKey="Botsis, J" uniqKey="Botsis J">J Botsis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Pk" uniqKey="Chang P">PK Chang</name>
</author>
<author>
<name sortKey="Chen, Yc" uniqKey="Chen Y">YC Chen</name>
</author>
<author>
<name sortKey="Huang, Cc" uniqKey="Huang C">CC Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Jc" uniqKey="Wu J">JC Wu</name>
</author>
<author>
<name sortKey="Chen, Cs" uniqKey="Chen C">CS Chen</name>
</author>
<author>
<name sortKey="Yip, Sw" uniqKey="Yip S">SW Yip</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abreu, Rt" uniqKey="Abreu R">RT Abreu</name>
</author>
<author>
<name sortKey="Spazzin, Ao" uniqKey="Spazzin A">AO Spazzin</name>
</author>
<author>
<name sortKey="Noritomi, Py" uniqKey="Noritomi P">PY Noritomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tada, S" uniqKey="Tada S">S Tada</name>
</author>
<author>
<name sortKey="Stegaroiu, R" uniqKey="Stegaroiu R">R Stegaroiu</name>
</author>
<author>
<name sortKey="Kitamura, E" uniqKey="Kitamura E">E Kitamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berglundh, T" uniqKey="Berglundh T">T Berglundh</name>
</author>
<author>
<name sortKey="Abrahamsson, I" uniqKey="Abrahamsson I">I Abrahamsson</name>
</author>
<author>
<name sortKey="Lang, Np" uniqKey="Lang N">NP Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baggi, L" uniqKey="Baggi L">L Baggi</name>
</author>
<author>
<name sortKey="Cappelloni, I" uniqKey="Cappelloni I">I Cappelloni</name>
</author>
<author>
<name sortKey="Di Girolamo, M" uniqKey="Di Girolamo M">M Di Girolamo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Himmlova, L" uniqKey="Himmlova L">L Himmlová</name>
</author>
<author>
<name sortKey="Dostalova, T" uniqKey="Dostalova T">T Dostálová</name>
</author>
<author>
<name sortKey="Kacovsk, A" uniqKey="Kacovsk A">A Kácovský</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coelho Goiato, M" uniqKey="Coelho Goiato M">M Coelho Goiato</name>
</author>
<author>
<name sortKey="Pesqueira, Aa" uniqKey="Pesqueira A">AA Pesqueira</name>
</author>
<author>
<name sortKey="Falc N Antenucci, Rm" uniqKey="Falc N Antenucci R">RM Falcón-Antenucci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stegaroiu, R" uniqKey="Stegaroiu R">R Stegaroiu</name>
</author>
<author>
<name sortKey="Kusakari, H" uniqKey="Kusakari H">H Kusakari</name>
</author>
<author>
<name sortKey="Nishiyama, S" uniqKey="Nishiyama S">S Nishiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kopp, Cd" uniqKey="Kopp C">CD Kopp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anglin, C" uniqKey="Anglin C">C Anglin</name>
</author>
<author>
<name sortKey="Tolhurst, P" uniqKey="Tolhurst P">P Tolhurst</name>
</author>
<author>
<name sortKey="Wyss, Up" uniqKey="Wyss U">UP Wyss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szmukler Moncler, S" uniqKey="Szmukler Moncler S">S Szmukler-Moncler</name>
</author>
<author>
<name sortKey="Salama, H" uniqKey="Salama H">H Salama</name>
</author>
<author>
<name sortKey="Reingewirtz, Y" uniqKey="Reingewirtz Y">Y Reingewirtz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, U" uniqKey="Meyer U">U Meyer</name>
</author>
<author>
<name sortKey="Joos, U" uniqKey="Joos U">U Joos</name>
</author>
<author>
<name sortKey="Mythili, J" uniqKey="Mythili J">J Mythili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubin, Pj" uniqKey="Rubin P">PJ Rubin</name>
</author>
<author>
<name sortKey="Rakotomanana, Rl" uniqKey="Rakotomanana R">RL Rakotomanana</name>
</author>
<author>
<name sortKey="Leyvraz, Pf" uniqKey="Leyvraz P">PF Leyvraz</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Dent Biomech</journal-id>
<journal-id journal-id-type="iso-abbrev">J Dent Biomech</journal-id>
<journal-id journal-id-type="publisher-id">DBM</journal-id>
<journal-id journal-id-type="hwp">spdbm</journal-id>
<journal-title-group>
<journal-title>Journal of Dental Biomechanics</journal-title>
</journal-title-group>
<issn pub-type="epub">1758-7360</issn>
<publisher>
<publisher-name>SAGE Publications</publisher-name>
<publisher-loc>Sage UK: London, England</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25342982</article-id>
<article-id pub-id-type="pmc">4206692</article-id>
<article-id pub-id-type="doi">10.1177/1758736014533982</article-id>
<article-id pub-id-type="publisher-id">10.1177_1758736014533982</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparative stress analysis of delayed and immediate loading of a single implant in an edentulous maxilla model</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gao</surname>
<given-names>Jie</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Matsushita</surname>
<given-names>Yasuyuki</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Esaki</surname>
<given-names>Daisuke</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matsuzaki</surname>
<given-names>Tatsuya</given-names>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Koyano</surname>
<given-names>Kiyoshi</given-names>
</name>
</contrib>
<aff id="aff1-1758736014533982">Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan</aff>
</contrib-group>
<author-notes>
<corresp id="corresp1-1758736014533982">Yasuyuki Matsushita, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Email:
<email>matsushi@dent.kyushu-u.ac.jp</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>14</day>
<month>5</month>
<year>2014</year>
</pub-date>
<volume>5</volume>
<elocation-id>1758736014533982</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>12</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>5</day>
<month>4</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2014</copyright-statement>
<copyright-year>2014</copyright-year>
<copyright-holder content-type="sage">SAGE Publications</copyright-holder>
</permissions>
<abstract>
<p>Stress distribution in peri-implant bone in an edentulous maxilla following delayed and immediate loading implant and the effect of implant length on the maximum stress were evaluated by using two kinds of finite element analyses. A threaded implant was loaded with a 100 N vertical force, either immediately or delayed, and examined by finite element analysis with a simple contact relation or a bonding interaction between the implant and the bone, respectively. Higher stresses were observed in cortical bone around the implant neck following delayed loading and in the trabecular bone around the implant threading in the immediate loading model. The maximum stress in the immediate loading model was dramatically higher than in delayed loading. Increased implant length caused decrease in bone stresses in both loading models. Though the stress level was higher, the decrease in the maximum trabecular bone stress in immediate loading was profound.</p>
</abstract>
<kwd-group>
<kwd>Immediate loading implant</kwd>
<kwd>finite element analysis</kwd>
<kwd>edentulous maxilla</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="section1-1758736014533982">
<title>Introduction</title>
<p>Immediate loading (IL) implant has come into wide use in oral implant treatments because of the increasing demands of a shortened treatment time. IL implant for the edentulous mandible shows good predictable results in many randomized controlled trials and prospective studies.
<sup>
<xref rid="bibr1-1758736014533982" ref-type="bibr">1</xref>
<xref rid="bibr2-1758736014533982" ref-type="bibr"></xref>
<xref rid="bibr3-1758736014533982" ref-type="bibr">3</xref>
</sup>
However, since clinical evidences regarding IL implant for the edentulous maxilla are not consistent,
<sup>
<xref rid="bibr4-1758736014533982" ref-type="bibr">4</xref>
,
<xref rid="bibr5-1758736014533982" ref-type="bibr">5</xref>
</sup>
it is thought that IL implant for the edentulous maxilla is still not a predictable treatment.</p>
<p>Since the maxillary bone is softer than the mandibular bone, it is difficult to achieve good primary stability at implant placement in maxilla. Furthermore, it is not easy to control occlusal force to IL implant properly, and the occlusal force may cause micromotion of the implant more easily in maxilla than in mandible. These may be the reasons for the inconsistency of clinical evidences for IL implant in the edentulous maxilla. Therefore, it is useful to examine the biomechanics of IL implant to control primary stability and micromotion.</p>
<p>Biomechanics of implant have been analyzed by using finite element analysis (FEA). FEA is a numerical analysis technique which is based on the equation of motion and performs matrix calculations. In conventional FEA, the interface between bone and implant is defined to be perfect bond. Therefore, conventional FEA is not thought to simulate IL condition but delayed loading (DL) condition because the osseointegration is not established in IL condition, whereas osseointegration is established in DL condition. On the other hand, FEA with contact analysis allows transferring compressive force, but no tensile force. Therefore, this contact analysis is thought to be suitable to simulate IL condition. Mellal et al.
<sup>
<xref rid="bibr6-1758736014533982" ref-type="bibr">6</xref>
</sup>
were the first to use contact elements to simulate IL implants in the mandible. Chang et al.
<sup>
<xref rid="bibr7-1758736014533982" ref-type="bibr">7</xref>
</sup>
evaluated micromotion of IL implants in the mandible. Wu et al.
<sup>
<xref rid="bibr8-1758736014533982" ref-type="bibr">8</xref>
</sup>
analyzed stress distribution of IL implant in the mandible with different elastic trabecular bones. However, no contact analysis was done on maxilla. Furthermore, no comparative stress analysis between IL and DL conditions was done. It is important to understand the biomechanical difference between DL and IL by comparing the results of two different FEAs for same clinical conditions such as implant length, number, and location.</p>
<p>The aim of this study was to compare the biomechanical effect of DL and IL for the edentulous maxilla. Hence, the biomechanical effect of implant length on the peri-implant bone was analyzed using conventional and contact FEA.</p>
</sec>
<sec sec-type="materials|methods" id="section2-1758736014533982">
<title>Materials and methods</title>
<sec id="section3-1758736014533982">
<title>Modeling</title>
<p>A three-dimensional maxillary model was constructed from a computed tomography (CT) image of a subject with adequate bone mass (
<xref ref-type="fig" rid="fig1-1758736014533982">Figure 1</xref>
). The commercially available finite element package, Mechanical Finder 6.2 (Research Center of Computational Mechanics Inc., Tokyo), was used to construct the corresponding numeric situations. Maxillary bone consists of cortical and trabecular bones (
<xref ref-type="fig" rid="fig1-1758736014533982">Figure 1(d)</xref>
); the thicknesses of the crestal cortical bone, the lateral wall, and sinus floor wall are shown in
<xref ref-type="fig" rid="fig1-1758736014533982">Figure 1(e)</xref>
. Our original thread-type implant models (diameter, 4.0 mm; thread pitch, 1.2 mm; intrabony depth, 10, 13, 15, and 17 mm) were made using SOLIDWORKS 2011 computer-assisted design (CAD) software (Dessault Systems, France). A superstructure was also made using the same CAD software.</p>
<fig id="fig1-1758736014533982" position="float">
<label>Figure 1.</label>
<caption>
<p>Meshed edentulous maxilla FEA model: (a) occlusal view, (b) frontal view, (c) sagittal view, (d) transparent view, and (e) bucco-lingual section.</p>
<p>FEA: finite element analysis.</p>
</caption>
<graphic xlink:href="10.1177_1758736014533982-fig1"></graphic>
</fig>
</sec>
<sec id="section4-1758736014533982">
<title>FEA</title>
<p>All solid models were meshed with tetrahedron elements using ANSYS Academic Meshing Tools (Swanson Analysis Systems (ANSYS), USA). Two “implant–bone” interfaces were used. In the DL implant, the interface of all components was defined as a continuous relation to simulate osseointegration. In contrast, in the IL model, the interface between bone and implant was defined by a contact relation with a friction coefficient of 0.3, which can transmit compressive, but not tensile forces. Furthermore, in the contact condition, frictional forces can be transmitted in proportion to the contact pressure.</p>
<p>Four FEA models assembled with the same maxilla, superstructure, and an implant bearing this superstructure inserted in the second pre-molar region were for the evaluation of DL condition; the implant body at same position was with length of 10, 13, 15, and 17 mm, respectively, and the relation of implant–bone interface was defined to be perfect bond. The countersink around the implant neck was not attached. Only in the 17-mm implant model, the tip of the implant reached the cortical bone in the sinus floor. As the counterparts—four FEA models having same assembling conditions were for the evaluation of IL condition—only the contact relation of the implant–bone interface was different from the DL group.</p>
<p>All materials were homogeneous, isotropic, and linearly elastic. Their Poisson ratios and Young’s moduli are listed in
<xref ref-type="table" rid="table1-1758736014533982">Table 1</xref>
.
<sup>
<xref rid="bibr9-1758736014533982" ref-type="bibr">9</xref>
,
<xref rid="bibr10-1758736014533982" ref-type="bibr">10</xref>
</sup>
</p>
<table-wrap id="table1-1758736014533982" position="float">
<label>Table 1.</label>
<caption>
<p>Properties of the various materials featured in finite element analysis model.</p>
</caption>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col align="left" span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
<col align="char" char="." span="1"></col>
</colgroup>
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Materials</th>
<th align="left" rowspan="1" colspan="1">Young’s modulus(GPa)</th>
<th align="left" rowspan="1" colspan="1">Poisson’s ratio</th>
<th align="left" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">Cortical bone</td>
<td rowspan="1" colspan="1">13.7</td>
<td rowspan="1" colspan="1">0.3</td>
<td rowspan="1" colspan="1">Abreu et al.
<sup>
<xref rid="bibr9-1758736014533982" ref-type="bibr">9</xref>
</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Trabecular bone</td>
<td rowspan="1" colspan="1">1.6</td>
<td rowspan="1" colspan="1">0.3</td>
<td rowspan="1" colspan="1">Tada et al.
<sup>
<xref rid="bibr10-1758736014533982" ref-type="bibr">10</xref>
</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Implant</td>
<td rowspan="1" colspan="1">106.0</td>
<td rowspan="1" colspan="1">0.3</td>
<td rowspan="1" colspan="1">Abreu et al.
<sup>
<xref rid="bibr9-1758736014533982" ref-type="bibr">9</xref>
</sup>
</td>
</tr>
<tr>
<td rowspan="1" colspan="1">Framework (Co-Cr alloy)</td>
<td rowspan="1" colspan="1">218.0</td>
<td rowspan="1" colspan="1">0.33</td>
<td rowspan="1" colspan="1">Abreu et al.
<sup>
<xref rid="bibr9-1758736014533982" ref-type="bibr">9</xref>
</sup>
</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>The superior border of maxilla model was completely constrained. A vertical force of 100 N was loaded at a central point on the occlusal surface (
<xref ref-type="fig" rid="fig1-1758736014533982">Figure 1</xref>
).</p>
</sec>
</sec>
<sec sec-type="results" id="section5-1758736014533982">
<title>Results</title>
<sec id="section6-1758736014533982">
<title>Stress distribution in bone</title>
<p>Equivalent stress distributions in the DL model are shown in
<xref ref-type="fig" rid="fig2-1758736014533982">Figure 2</xref>
(upper panels). Markedly higher stresses were observed in the cortical bone around the implant neck, with lower stresses in the trabecular bone around the implant thread. In contrast, high stresses were observed in both cortical and trabecular bones in the IL model (
<xref ref-type="fig" rid="fig2-1758736014533982">Figure 2</xref>
, lower panels). Notably, in the bicortical placement of longer implants, high stresses were also observed in the cortical bone of the sinus floor contacting the implant tip.</p>
<fig id="fig2-1758736014533982" position="float">
<label>Figure 2.</label>
<caption>
<p>Comparison of stress distribution in loaded implants of various lengths. Upper panels show implants given time to fully osseointegrate (delayed loading). Lower panels show implants loaded immediately after placement (immediate loading).</p>
</caption>
<graphic xlink:href="10.1177_1758736014533982-fig2"></graphic>
</fig>
<p>
<xref ref-type="fig" rid="fig3-1758736014533982">Figure 3</xref>
shows a comparison of the maximum von Mises equivalent stress (MES) value in cortical (left panel) and trabecular (right panel) bones around DL and IL implants. The maximum MES in cortical bone tended to be greater in the DL model than in the IL model, except for the 17-mm implants. As implant length increased, the maximum MES value in the cortical bone around the implant decreased slightly in both models. The stresses in cortical bone were highest when the 17-mm implants were used.</p>
<fig id="fig3-1758736014533982" position="float">
<label>Figure 3.</label>
<caption>
<p>Maximum equivalent stress values around implants of various lengths placed in cortical bone (left panel) or trabecular bone (right panel). Blue columns denote delayed loading, orange columns are immediately loaded implants.</p>
</caption>
<graphic xlink:href="10.1177_1758736014533982-fig3"></graphic>
</fig>
<p>Maximum stress in the trabecular bone was higher in all cases in the IL model than in the DL model (
<xref ref-type="fig" rid="fig3-1758736014533982">Figure 3</xref>
). Stresses in trabecular bone were uniformly low for all implant lengths in the DL model. However, MES values in trabecular bone in the IL model appeared to be length-dependent, decreasing as implant length increased (
<xref ref-type="fig" rid="fig3-1758736014533982">Figure 3</xref>
).</p>
<p>MES values in cortical bone decreased slightly with increasing implant length, up to 15 mm. At 17 mm (bicortical fixation), the highest MES was observed in the cortical bone around the implant tip (
<xref ref-type="fig" rid="fig2-1758736014533982">Figures 2</xref>
and
<xref ref-type="fig" rid="fig3-1758736014533982">3</xref>
).</p>
</sec>
<sec id="section7-1758736014533982">
<title>Implant displacement and relative micromotion</title>
<p>
<xref ref-type="fig" rid="fig4-1758736014533982">Figure 4</xref>
shows the displacement of a 10-mm implant in both the DL and IL models. Predictably, no gap was found at the bone–implant interface in the DL model (
<xref ref-type="fig" rid="fig4-1758736014533982">Figure 4</xref>
, left panel), but there was evidence of micromotion between the lower surface of the implant thread and the adjacent bone in the IL model (
<xref ref-type="fig" rid="fig4-1758736014533982">Figure 4</xref>
, right panel).</p>
<fig id="fig4-1758736014533982" position="float">
<label>Figure 4.</label>
<caption>
<p>Implant displacement under immediate and delayed loadings. Regions of black shadowing between the implant threads can be seen, which represent micromotion between the implant and bone.</p>
</caption>
<graphic xlink:href="10.1177_1758736014533982-fig4"></graphic>
</fig>
<p>
<xref ref-type="fig" rid="fig5-1758736014533982">Figure 5</xref>
shows the displacement of the implant head at different implant lengths in the DL and IL models. Head displacement was length-dependent, decreasing as implant length increased.</p>
<fig id="fig5-1758736014533982" position="float">
<label>Figure 5.</label>
<caption>
<p>Displacement of the implant head in DL and IL models. Values show average displacement of the implant head under either immediate (orange) or delayed (blue) loadings of various length implants.</p>
<p>DL: delayed loading; IL: immediate loading.</p>
</caption>
<graphic xlink:href="10.1177_1758736014533982-fig5"></graphic>
</fig>
<p>
<xref ref-type="fig" rid="fig6-1758736014533982">Figure 6</xref>
shows the micromotion at interface of implant and bone in IL model.</p>
<fig id="fig6-1758736014533982" position="float">
<label>Figure 6.</label>
<caption>
<p>Micromotion between implant and bone in IL model.</p>
<p>IL: immediate loading.</p>
</caption>
<graphic xlink:href="10.1177_1758736014533982-fig6"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="section8-1758736014533982">
<title>Discussion</title>
<sec id="section9-1758736014533982">
<title>Difference in stress distribution</title>
<p>The conventional concept of osseointegration is that the direct contact relation at the interface of implant and bone provides an anchor mechanism, such that there is no relative motion between implant and bone.
<sup>
<xref rid="bibr11-1758736014533982" ref-type="bibr">11</xref>
,
<xref rid="bibr12-1758736014533982" ref-type="bibr">12</xref>
</sup>
Accordingly, studies have demonstrated high stress concentration at the neck of implants in osseointegrated implant models,
<sup>
<xref rid="bibr13-1758736014533982" ref-type="bibr">13</xref>
<xref rid="bibr14-1758736014533982" ref-type="bibr"></xref>
<xref rid="bibr15-1758736014533982" ref-type="bibr"></xref>
<xref rid="bibr16-1758736014533982" ref-type="bibr">16</xref>
</sup>
which concurred with our stress distribution results in the DL model. However, we have revealed marked differences in stress distribution in our IL model, which showed that motion existed between the implant and bone (
<xref ref-type="fig" rid="fig4-1758736014533982">Figure 4</xref>
). This biomechanical characteristic of the interface resulting in stress distribution throughout the trabecular bone meant that implant shape and length might have a greater influence on stress distribution when immediately loaded. It has been demonstrated that bone resorption frequently occurs in the cortical bone around the implant neck, consistent with our MES stress distribution results in the DL model. However, our results showed that, with IL condition, the implant standing depended on bone tissue around the entire implant body.</p>
<p>Overload of an implant can lead to resorption of the peri-implant bone.
<sup>
<xref rid="bibr16-1758736014533982" ref-type="bibr">16</xref>
</sup>
Anglin et al.
<sup>
<xref rid="bibr17-1758736014533982" ref-type="bibr">17</xref>
</sup>
deduced that on average, the strength of trabecular bone is 10.3 MPa, therefore exceeding this value may lead to bone loss. The mechanical characteristics of IL implants dictated that higher stresses were distributed into the trabecular bone, therefore more appropriate designs of implant shape, length, and placement should be required to decrease the total stress being dissipated through this tissue. For instance, a countersink around the implant neck enables more load to be transferred to the compact bone instead.</p>
</sec>
<sec id="section10-1758736014533982">
<title>Difference in implant displacement (micromotion)</title>
<p>Some movement of an implant under IL is inevitable, and figures of implant “micromotion” during healing in the range of 50–150 µm have been deemed tolerable.
<sup>
<xref rid="bibr18-1758736014533982" ref-type="bibr">18</xref>
,
<xref rid="bibr19-1758736014533982" ref-type="bibr">19</xref>
</sup>
We achieved movements of just 2.5 µm in this study, under loading conditions of a 100-N vertical force. Chang et al.
<sup>
<xref rid="bibr7-1758736014533982" ref-type="bibr">7</xref>
</sup>
also investigated micromotion of 8–15 µm under loading condition of a 300 N vertical load. Both results are considered tolerable. However, trabecular bone was assumed to be homogeneous in this study, but in reality, the implant is supported by discontinuous porous spongy trabeculae. It is believed that the trabeculae were precisely meshed using Voxel method, and it is possible to conduct a much more predictable analysis of the amount of micromotion.</p>
</sec>
<sec id="section11-1758736014533982">
<title>FEM of IL</title>
<p>In recent years, it has been demonstrated that osseointegration is achieved by new bone anchoring into tiny concavo–convex formations within a rough surface and thus completely integrating with a titanium implant. However, this process is quite gradual, and implant longevity is closely linked to how rapidly after implantation it can form bonding contacts with the adjacent bone, a process that will be influenced by stresses being delivered through the implant. The stresses of DL implant are applied well after achieving osseointegration and are thus very different from those delivered to an implant immediately after placement. In this latter situation, the implant has only frictional contact with the bone and no bonding. Because of the different stress patterns of these situations, it becomes necessary to investigate appropriate implant designs for each type of loading, depending on its intended purpose.</p>
<p>FEA is a numerical analysis technique based on the equation of motion of a physical model and performs matrix calculations. Static elastic analysis, a common FEA in dentistry, assumes a continuous state at the interface between the implant and adjacent bone, irrespective of the loading condition. Conversely, conventional FEA specifically models the DL condition. Contact elements of a non-linear structure allow it to transfer compressive, but not tensile, force. Moreover, Coulomb frictional force exists in a shearing direction during transfer of compressive force.
<sup>
<xref rid="bibr20-1758736014533982" ref-type="bibr">20</xref>
</sup>
Mellal et al.
<sup>
<xref rid="bibr6-1758736014533982" ref-type="bibr">6</xref>
</sup>
were the first to use contact elements to simulate IL implants, using them to compare the differences in stress distributions via a screw implant before and after osseointegration in the mandible. Wu et al. analyzed stress distribution via IL implants in two different mandibular bones, one where Young’s modulus of the trabecular bone was set as 1.37 GPa (Type III) and a second with this value set at 0.7 GPa (Type IV). They reported that relaxation of intraosseous stress was best achieved in the Type III bone with short implants, but that longer implants were more effective in the Type IV bone.
<sup>
<xref rid="bibr19-1758736014533982" ref-type="bibr">19</xref>
</sup>
However, their findings in Type III bone differ from our present results, perhaps because their study was modeled in mandibular bone, using a 45°-inclined loading force, and having differing implant thread design to that used here. It is likely that further research will be necessary to provide a definitive proof of the influence of implant length on stress distribution in different types of bone. As shown above, some investigations using contact analysis are found, but there were no reports which compared stress distribution in IL and DL conditions for the edentulous maxilla. Further studies are planned using this maxilla model for the number of implant and location.</p>
<p>Many researchers have concluded that initial stability is a critical factor in the survival of IL implants. To achieve initial stability in practice, the implant is placed in a smaller implantation cavity, causing elastic deformation of the bone and developing initial strains at the bone–implant interface even without any external load. We filtered out the influence of this initial strain in this study, but it will be necessary in future studies to precisely define the effects of applying a load to an implant during the period of initial strain.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="section12-1758736014533982">
<title>Conclusion</title>
<p>We compared the stress distributions in peri-implant bone in an edentulous maxilla. Within the limitations of this study, the following conclusions were formulated:</p>
<list list-type="order" id="list1-1758736014533982">
<list-item>
<p>There was a stress distribution difference between the DL and IL models, such that higher stress concentration was observed in cortical bone in the DL model and in the trabecular bone in the IL model.</p>
</list-item>
<list-item>
<p>The maximum bone stress was higher in the IL model than in the DL model.</p>
</list-item>
<list-item>
<p>Increased implant length may decrease the stress distributed into bone (or at least distribute it more widely) in both the DL and IL models, but this effect is more marked in the IL model.</p>
</list-item>
</list>
</sec>
</body>
<back>
<ack>
<p>We express our appreciation to Dr Junichi Yamada for his valuable support.</p>
</ack>
<fn-group>
<fn fn-type="conflict">
<p>
<bold>Declaration of conflicting interests:</bold>
The authors declare that there is no conflict of interest.</p>
</fn>
<fn fn-type="financial-disclosure">
<p>
<bold>Funding:</bold>
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="bibr1-1758736014533982">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Testori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Meltzer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Del Fabbro</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Immediate occlusal loading of Osseotite implants in the lower edentulous jaw. A multicenter prospective study</article-title>
.
<source>Clin Oral Implants Res</source>
<year>2004</year>
;
<volume>15</volume>
(
<issue>3</issue>
):
<fpage>278</fpage>
<lpage>284</lpage>
<pub-id pub-id-type="pmid">15142089</pub-id>
</mixed-citation>
</ref>
<ref id="bibr2-1758736014533982">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alfadda</surname>
<given-names>SA</given-names>
</name>
</person-group>
.
<article-title>A randomized controlled clinical trial of edentulous patients treated with immediately loaded implant-supported mandibular fixed prostheses</article-title>
.
<source>Clin Implant Dent Relat Res</source>
. Epub ahead of print
<day>18</day>
<month>3</month>
<year>2013</year>
. DOI:
<pub-id pub-id-type="doi">10.1111/cid.12057</pub-id>
</mixed-citation>
</ref>
<ref id="bibr3-1758736014533982">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Bruyn</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Van de Velde</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Collaert</surname>
<given-names>B</given-names>
</name>
</person-group>
.
<article-title>Immediate functional loading of TiOblast dental implants in full-arch edentulous mandibles: a 3-year prospective study</article-title>
.
<source>Clin Oral Implants Res</source>
<year>2008</year>
;
<volume>19</volume>
(
<issue>7</issue>
):
<fpage>717</fpage>
<lpage>723</lpage>
<pub-id pub-id-type="pmid">18492081</pub-id>
</mixed-citation>
</ref>
<ref id="bibr4-1758736014533982">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strub</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Jurdzik</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Tuna</surname>
<given-names>T</given-names>
</name>
</person-group>
.
<article-title>Prognosis of immediately loaded implants and their restorations: a systematic literature review</article-title>
.
<source>J Oral Rehabil</source>
<year>2012</year>
;
<volume>39</volume>
(
<issue>9</issue>
):
<fpage>704</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">22607161</pub-id>
</mixed-citation>
</ref>
<ref id="bibr5-1758736014533982">
<label>5.</label>
<mixed-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Cochran</surname>
<given-names>DL</given-names>
</name>
</person-group>
.
<article-title>The evidence for immediate loading of implants</article-title>
(
<conf-name>Presented at the 2nd evidence-based dentistry conference</conf-name>
,
<conf-loc>Chicago, IL</conf-loc>
,
<conf-date>6 November 2005</conf-date>
).
<source>J Evid Based Dent Pract</source>
<volume>2006</volume>
(
<issue>6</issue>
):
<fpage>155</fpage>
<lpage>163</lpage>
</mixed-citation>
</ref>
<ref id="bibr6-1758736014533982">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mellal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wiskott</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Botsis</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data</article-title>
.
<source>Clin Oral Implants Res</source>
<year>2004</year>
;
<volume>15</volume>
(
<issue>2</issue>
):
<fpage>239</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="pmid">15008937</pub-id>
</mixed-citation>
</ref>
<ref id="bibr7-1758736014533982">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>CC</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study</article-title>
.
<source>Int J Oral Maxillofac Implants</source>
<year>2012</year>
;
<volume>27</volume>
(
<issue>6</issue>
):
<fpage>e96</fpage>
<lpage>e101</lpage>
<pub-id pub-id-type="pmid">23189316</pub-id>
</mixed-citation>
</ref>
<ref id="bibr8-1758736014533982">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Yip</surname>
<given-names>SW</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Stress distribution and micromotion analyses of immediately loaded implants of varying lengths in the mandible and fibular bone grafts: a three-dimensional finite element analysis</article-title>
.
<source>Int J Oral Maxillofac Implants</source>
<year>2012</year>
;
<volume>27</volume>
(
<issue>5</issue>
):
<fpage>e77</fpage>
<lpage>e84</lpage>
<pub-id pub-id-type="pmid">23057046</pub-id>
</mixed-citation>
</ref>
<ref id="bibr9-1758736014533982">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abreu</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Spazzin</surname>
<given-names>AO</given-names>
</name>
<name>
<surname>Noritomi</surname>
<given-names>PY</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Influence of material of overdenture-retaining bar with vertical misfit on three-dimensional stress distribution</article-title>
.
<source>J Prosthodont</source>
<year>2010</year>
;
<volume>19</volume>
(
<issue>6</issue>
):
<fpage>425</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">20546493</pub-id>
</mixed-citation>
</ref>
<ref id="bibr10-1758736014533982">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stegaroiu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kitamura</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis</article-title>
.
<source>Int J Oral Maxillofac Implants</source>
<year>2003</year>
;
<volume>18</volume>
(
<issue>3</issue>
):
<fpage>357</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="pmid">12814310</pub-id>
</mixed-citation>
</ref>
<ref id="bibr11-1758736014533982">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Berglundh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Abrahamsson</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>NP</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>De novo alveolar bone formation adjacent to endosseous implants</article-title>
.
<source>Clin Oral Implants Res</source>
<year>2003</year>
;
<volume>14</volume>
(
<issue>3</issue>
):
<fpage>251</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="pmid">12755774</pub-id>
</mixed-citation>
</ref>
<ref id="bibr12-1758736014533982">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baggi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Cappelloni</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Di Girolamo</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis</article-title>
.
<source>J Prosthet Dent</source>
<year>2008</year>
;
<volume>100</volume>
(
<issue>6</issue>
):
<fpage>422</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">19033026</pub-id>
</mixed-citation>
</ref>
<ref id="bibr13-1758736014533982">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Himmlová</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dostálová</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kácovský</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Influence of implant length and diameter on stress distribution: a finite element analysis</article-title>
.
<source>J Prosthet Dent</source>
<year>2004</year>
;
<volume>91</volume>
(
<issue>1</issue>
):
<fpage>20</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">14739889</pub-id>
</mixed-citation>
</ref>
<ref id="bibr14-1758736014533982">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coelho Goiato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pesqueira</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Falcón-Antenucci</surname>
<given-names>RM</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Stress distribution in implant-supported prosthesis with external and internal implant-abutment connections</article-title>
.
<source>Acta Odontol Scand</source>
<year>2013</year>
;
<volume>71</volume>
(
<issue>2</issue>
):
<fpage>283</fpage>
<lpage>288</lpage>
<pub-id pub-id-type="pmid">22486241</pub-id>
</mixed-citation>
</ref>
<ref id="bibr15-1758736014533982">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stegaroiu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kusakari</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Nishiyama</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis</article-title>
.
<source>Int J Oral Maxillofac Implants</source>
<year>1998</year>
;
<volume>13</volume>
(
<issue>6</issue>
):
<fpage>781</fpage>
<lpage>790</lpage>
<pub-id pub-id-type="pmid">9857588</pub-id>
</mixed-citation>
</ref>
<ref id="bibr16-1758736014533982">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kopp</surname>
<given-names>CD</given-names>
</name>
</person-group>
.
<article-title>Overdentures and osseointegration. Case studies in treatment planning</article-title>
.
<source>Dent Clin North Am</source>
<year>1990</year>
;
<volume>34</volume>
(
<issue>4</issue>
):
<fpage>729</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="pmid">2227043</pub-id>
</mixed-citation>
</ref>
<ref id="bibr17-1758736014533982">
<label>17.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anglin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tolhurst</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wyss</surname>
<given-names>UP</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Glenoid cancellous bone strength and modulus</article-title>
.
<source>J Biomech</source>
<year>1999</year>
;
<volume>32</volume>
(
<issue>10</issue>
):
<fpage>1091</fpage>
<lpage>1097</lpage>
<pub-id pub-id-type="pmid">10476847</pub-id>
</mixed-citation>
</ref>
<ref id="bibr18-1758736014533982">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szmukler-Moncler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Salama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Reingewirtz</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Timing of loading and effect of micromotion on bone–dental implant interface: review of experimental literature</article-title>
.
<source>J Biomed Mater Res</source>
<year>1998</year>
;
<volume>43</volume>
:
<fpage>192</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">9619438</pub-id>
</mixed-citation>
</ref>
<ref id="bibr19-1758736014533982">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Joos</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Mythili</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants</article-title>
.
<source>Biomaterials</source>
<year>2004</year>
;
<volume>25</volume>
:
<fpage>1959</fpage>
<lpage>1967</lpage>
<pub-id pub-id-type="pmid">14738860</pub-id>
</mixed-citation>
</ref>
<ref id="bibr20-1758736014533982">
<label>20.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rubin</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Rakotomanana</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Leyvraz</surname>
<given-names>PF</given-names>
</name>
<etal></etal>
</person-group>
.
<article-title>Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component</article-title>
.
<source>J Biomech</source>
<year>1993</year>
;
<volume>26</volume>
(
<issue>6</issue>
):
<fpage>725</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="pmid">8514816</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003099  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 003099  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022