Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 003023 ( Pmc/Corpus ); précédent : 0030229; suivant : 0030240 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Resistance of three implant-abutment interfaces to fatigue testing</title>
<author>
<name sortKey="Ribeiro, Cleide Gisele" sort="Ribeiro, Cleide Gisele" uniqKey="Ribeiro C" first="Cleide Gisele" last="Ribeiro">Cleide Gisele Ribeiro</name>
<affiliation>
<nlm:aff id="aff01"> DDS, MSc, PhD, Graduate student, Department of Dental Implantology, University of Santa Catarina, Florianópolis, SC, Brazil.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Maia, Maria Luiza Cabral" sort="Maia, Maria Luiza Cabral" uniqKey="Maia M" first="Maria Luiza Cabral" last="Maia">Maria Luiza Cabral Maia</name>
<affiliation>
<nlm:aff id="aff02"> DDS, Graduate student, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Scherrer, Susanne S" sort="Scherrer, Susanne S" uniqKey="Scherrer S" first="Susanne S." last="Scherrer">Susanne S. Scherrer</name>
<affiliation>
<nlm:aff id="aff03"> DDS, PhD, Senior lecturer, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, Antonio Carlos" sort="Cardoso, Antonio Carlos" uniqKey="Cardoso A" first="Antonio Carlos" last="Cardoso">Antonio Carlos Cardoso</name>
<affiliation>
<nlm:aff id="aff04"> DDS, MSc, PhD, Head Professor, Department of Dental Implantology, University of Santa Catarina, Florianópolis, SC, Brazil.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wiskott, H W Anselm" sort="Wiskott, H W Anselm" uniqKey="Wiskott H" first="H. W. Anselm" last="Wiskott">H. W. Anselm Wiskott</name>
<affiliation>
<nlm:aff id="aff05"> DDS, MSc, PhD, Senior lecturer, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">21710094</idno>
<idno type="pmc">4223795</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223795</idno>
<idno type="RBID">PMC:4223795</idno>
<idno type="doi">10.1590/S1678-77572011005000018</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">003023</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">003023</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Resistance of three implant-abutment interfaces to fatigue testing</title>
<author>
<name sortKey="Ribeiro, Cleide Gisele" sort="Ribeiro, Cleide Gisele" uniqKey="Ribeiro C" first="Cleide Gisele" last="Ribeiro">Cleide Gisele Ribeiro</name>
<affiliation>
<nlm:aff id="aff01"> DDS, MSc, PhD, Graduate student, Department of Dental Implantology, University of Santa Catarina, Florianópolis, SC, Brazil.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Maia, Maria Luiza Cabral" sort="Maia, Maria Luiza Cabral" uniqKey="Maia M" first="Maria Luiza Cabral" last="Maia">Maria Luiza Cabral Maia</name>
<affiliation>
<nlm:aff id="aff02"> DDS, Graduate student, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Scherrer, Susanne S" sort="Scherrer, Susanne S" uniqKey="Scherrer S" first="Susanne S." last="Scherrer">Susanne S. Scherrer</name>
<affiliation>
<nlm:aff id="aff03"> DDS, PhD, Senior lecturer, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cardoso, Antonio Carlos" sort="Cardoso, Antonio Carlos" uniqKey="Cardoso A" first="Antonio Carlos" last="Cardoso">Antonio Carlos Cardoso</name>
<affiliation>
<nlm:aff id="aff04"> DDS, MSc, PhD, Head Professor, Department of Dental Implantology, University of Santa Catarina, Florianópolis, SC, Brazil.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wiskott, H W Anselm" sort="Wiskott, H W Anselm" uniqKey="Wiskott H" first="H. W. Anselm" last="Wiskott">H. W. Anselm Wiskott</name>
<affiliation>
<nlm:aff id="aff05"> DDS, MSc, PhD, Senior lecturer, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Applied Oral Science</title>
<idno type="ISSN">1678-7757</idno>
<idno type="eISSN">1678-7765</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture.</p>
<sec>
<title>Objectives</title>
<p>The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. </p>
</sec>
<sec>
<title>Materials and Methods</title>
<p>In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 10
<sup>6</sup>
load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. </p>
</sec>
<sec>
<title>Results</title>
<p>The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. </p>
</sec>
<sec>
<title>Conclusion</title>
<p>Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Jabbari, Ys" uniqKey="Al Jabbari Y">YS Al Jabbari</name>
</author>
<author>
<name sortKey="Fournelle, R" uniqKey="Fournelle R">R Fournelle</name>
</author>
<author>
<name sortKey="Ziebert, G" uniqKey="Ziebert G">G Ziebert</name>
</author>
<author>
<name sortKey="Toth, J" uniqKey="Toth J">J Toth</name>
</author>
<author>
<name sortKey="Iacopino, Am" uniqKey="Iacopino A">AM Iacopino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Turki, Le" uniqKey="Al Turki L">LE Al-Turki</name>
</author>
<author>
<name sortKey="Chai, J" uniqKey="Chai J">J Chai</name>
</author>
<author>
<name sortKey="Lautenschlager, Ep" uniqKey="Lautenschlager E">EP Lautenschlager</name>
</author>
<author>
<name sortKey="Hutten, Mc" uniqKey="Hutten M">MC Hutten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binon, Pp" uniqKey="Binon P">PP Binon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binon, Pp" uniqKey="Binon P">PP Binon</name>
</author>
<author>
<name sortKey="Mchugh, Mj" uniqKey="Mchugh M">MJ McHugh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Br Gger, U" uniqKey="Br Gger U">U Brägger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carr, Bt" uniqKey="Carr B">BT Carr</name>
</author>
<author>
<name sortKey="Dersh, Da" uniqKey="Dersh D">DA Dersh</name>
</author>
<author>
<name sortKey="Harrison, Wr" uniqKey="Harrison W">WR Harrison</name>
</author>
<author>
<name sortKey="Kinsel, Rp" uniqKey="Kinsel R">RP Kinsel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cehreli, M" uniqKey="Cehreli M">M Cehreli</name>
</author>
<author>
<name sortKey="Duyck, J" uniqKey="Duyck J">J Duyck</name>
</author>
<author>
<name sortKey="De Cooman, M" uniqKey="De Cooman M">M De Cooman</name>
</author>
<author>
<name sortKey="Puers, R" uniqKey="Puers R">R Puers</name>
</author>
<author>
<name sortKey="Naert, I" uniqKey="Naert I">I Naert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cibirka, Rm" uniqKey="Cibirka R">RM Cibirka</name>
</author>
<author>
<name sortKey="Nelson, Sk" uniqKey="Nelson S">SK Nelson</name>
</author>
<author>
<name sortKey="Lang, Br" uniqKey="Lang B">BR Lang</name>
</author>
<author>
<name sortKey="Rueggeberg, Fa" uniqKey="Rueggeberg F">FA Rueggeberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collins, J" uniqKey="Collins J">J Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ding, Ta" uniqKey="Ding T">TA Ding</name>
</author>
<author>
<name sortKey="Woody, Rd" uniqKey="Woody R">RD Woody</name>
</author>
<author>
<name sortKey="Higginbottom, Fl" uniqKey="Higginbottom F">FL Higginbottom</name>
</author>
<author>
<name sortKey="Miller, Bh" uniqKey="Miller B">BH Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gehrke, P" uniqKey="Gehrke P">P Gehrke</name>
</author>
<author>
<name sortKey="Dhom, G" uniqKey="Dhom G">G Dhom</name>
</author>
<author>
<name sortKey="Brunner, J" uniqKey="Brunner J">J Brunner</name>
</author>
<author>
<name sortKey="Wolf, D" uniqKey="Wolf D">D Wolf</name>
</author>
<author>
<name sortKey="Degidi, M" uniqKey="Degidi M">M Degidi</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A Piattelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Henry, Pj" uniqKey="Henry P">PJ Henry</name>
</author>
<author>
<name sortKey="Laney, Wr" uniqKey="Laney W">WR Laney</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T Jemt</name>
</author>
<author>
<name sortKey="Harris, D" uniqKey="Harris D">D Harris</name>
</author>
<author>
<name sortKey="Krogh, Ph" uniqKey="Krogh P">PH Krogh</name>
</author>
<author>
<name sortKey="Polizzi, G" uniqKey="Polizzi G">G Polizzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Hm" uniqKey="Huang H">HM Huang</name>
</author>
<author>
<name sortKey="Tsai, Cm" uniqKey="Tsai C">CM Tsai</name>
</author>
<author>
<name sortKey="Chang, Cc" uniqKey="Chang C">CC Chang</name>
</author>
<author>
<name sortKey="Lin, Ct" uniqKey="Lin C">CT Lin</name>
</author>
<author>
<name sortKey="Lee, Sy" uniqKey="Lee S">SY Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jorneus, L" uniqKey="Jorneus L">L Jörnéus</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T Jemt</name>
</author>
<author>
<name sortKey="Carlsson, L" uniqKey="Carlsson L">L Carlsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kano, Sc" uniqKey="Kano S">SC Kano</name>
</author>
<author>
<name sortKey="Binon, Pp" uniqKey="Binon P">PP Binon</name>
</author>
<author>
<name sortKey="Curtis, Da" uniqKey="Curtis D">DA Curtis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maeda, Y" uniqKey="Maeda Y">Y Maeda</name>
</author>
<author>
<name sortKey="Satoh, T" uniqKey="Satoh T">T Satoh</name>
</author>
<author>
<name sortKey="Sogo, M" uniqKey="Sogo M">M Sogo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meng, Jc" uniqKey="Meng J">JC Meng</name>
</author>
<author>
<name sortKey="Everts, Je" uniqKey="Everts J">JE Everts</name>
</author>
<author>
<name sortKey="Qian, F" uniqKey="Qian F">F Qian</name>
</author>
<author>
<name sortKey="Gratton, Dg" uniqKey="Gratton D">DG Gratton</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mollersten, L" uniqKey="Mollersten L">L Möllersten</name>
</author>
<author>
<name sortKey="Lockowandt, P" uniqKey="Lockowandt P">P Lockowandt</name>
</author>
<author>
<name sortKey="Linden, La" uniqKey="Linden L">LA Lindén</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Norton, Mr" uniqKey="Norton M">MR Norton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patterson, Ea" uniqKey="Patterson E">EA Patterson</name>
</author>
<author>
<name sortKey="Johns, Rb" uniqKey="Johns R">RB Johns</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piermatti, J" uniqKey="Piermatti J">J Piermatti</name>
</author>
<author>
<name sortKey="Yousef, H" uniqKey="Yousef H">H Yousef</name>
</author>
<author>
<name sortKey="Luke, A" uniqKey="Luke A">A Luke</name>
</author>
<author>
<name sortKey="Mahevich, R" uniqKey="Mahevich R">R Mahevich</name>
</author>
<author>
<name sortKey="Weiner, S" uniqKey="Weiner S">S Weiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rangert, B" uniqKey="Rangert B">B Rangert</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T Jemt</name>
</author>
<author>
<name sortKey="Jorneus, L" uniqKey="Jorneus L">L Jörneus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ritchie, R" uniqKey="Ritchie R">R Ritchie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwarz, Ms" uniqKey="Schwarz M">MS Schwarz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinebrunner, L" uniqKey="Steinebrunner L">L Steinebrunner</name>
</author>
<author>
<name sortKey="Wolfart, S" uniqKey="Wolfart S">S Wolfart</name>
</author>
<author>
<name sortKey="Ludwig, K" uniqKey="Ludwig K">K Ludwig</name>
</author>
<author>
<name sortKey="Kern, M" uniqKey="Kern M">M Kern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Strub, Jr" uniqKey="Strub J">JR Strub</name>
</author>
<author>
<name sortKey="Gerds, T" uniqKey="Gerds T">T Gerds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stuker, Ra" uniqKey="Stuker R">RA Stüker</name>
</author>
<author>
<name sortKey="Teixeira, Er" uniqKey="Teixeira E">ER Teixeira</name>
</author>
<author>
<name sortKey="Beck, Jc" uniqKey="Beck J">JC Beck</name>
</author>
<author>
<name sortKey="Costa, Np" uniqKey="Costa N">NP Costa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutter, F" uniqKey="Sutter F">F Sutter</name>
</author>
<author>
<name sortKey="Weber, J" uniqKey="Weber J">J Weber</name>
</author>
<author>
<name sortKey="Sorensen, J" uniqKey="Sorensen J">J Sorensen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Td" uniqKey="Taylor T">TD Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theoharidou, A" uniqKey="Theoharidou A">A Theoharidou</name>
</author>
<author>
<name sortKey="Petridis, Hp" uniqKey="Petridis H">HP Petridis</name>
</author>
<author>
<name sortKey="Tzannas, K" uniqKey="Tzannas K">K Tzannas</name>
</author>
<author>
<name sortKey="Garefis, P" uniqKey="Garefis P">P Garefis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiskott, Hw" uniqKey="Wiskott H">HW Wiskott</name>
</author>
<author>
<name sortKey="Jaquet, R" uniqKey="Jaquet R">R Jaquet</name>
</author>
<author>
<name sortKey="Scherrer, Ss" uniqKey="Scherrer S">SS Scherrer</name>
</author>
<author>
<name sortKey="Belser, Uc" uniqKey="Belser U">UC Belser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiskott, Hw" uniqKey="Wiskott H">HW Wiskott</name>
</author>
<author>
<name sortKey="Nicholls, Ji" uniqKey="Nicholls J">JI Nicholls</name>
</author>
<author>
<name sortKey="Belser, Uc" uniqKey="Belser U">UC Belser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiskott, Hw" uniqKey="Wiskott H">HW Wiskott</name>
</author>
<author>
<name sortKey="Pavone, Af" uniqKey="Pavone A">AF Pavone</name>
</author>
<author>
<name sortKey="Scherrer, Ss" uniqKey="Scherrer S">SS Scherrer</name>
</author>
<author>
<name sortKey="Renevey, Rr" uniqKey="Renevey R">RR Renevey</name>
</author>
<author>
<name sortKey="Belser, Uc" uniqKey="Belser U">UC Belser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yousef, H" uniqKey="Yousef H">H Yousef</name>
</author>
<author>
<name sortKey="Luke, A" uniqKey="Luke A">A Luke</name>
</author>
<author>
<name sortKey="Ricci, J" uniqKey="Ricci J">J Ricci</name>
</author>
<author>
<name sortKey="Weiner, S" uniqKey="Weiner S">S Weiner</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Appl Oral Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">J Appl Oral Sci</journal-id>
<journal-title-group>
<journal-title>Journal of Applied Oral Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">1678-7757</issn>
<issn pub-type="epub">1678-7765</issn>
<publisher>
<publisher-name>Faculdade de Odontologia de Bauru da Universidade de São Paulo</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">21710094</article-id>
<article-id pub-id-type="pmc">4223795</article-id>
<article-id pub-id-type="doi">10.1590/S1678-77572011005000018</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Resistance of three implant-abutment interfaces to fatigue testing</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>RIBEIRO</surname>
<given-names>Cleide Gisele</given-names>
</name>
<xref ref-type="aff" rid="aff01">1</xref>
<xref ref-type="corresp" rid="c01"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>MAIA</surname>
<given-names>Maria Luiza Cabral</given-names>
</name>
<xref ref-type="aff" rid="aff02">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>SCHERRER</surname>
<given-names>Susanne S.</given-names>
</name>
<xref ref-type="aff" rid="aff03">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>CARDOSO</surname>
<given-names>Antonio Carlos</given-names>
</name>
<xref ref-type="aff" rid="aff04">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>WISKOTT</surname>
<given-names>H. W. Anselm</given-names>
</name>
<xref ref-type="aff" rid="aff05">5</xref>
</contrib>
</contrib-group>
<aff id="aff01">
<label>1</label>
DDS, MSc, PhD, Graduate student, Department of Dental Implantology, University of Santa Catarina, Florianópolis, SC, Brazil.</aff>
<aff id="aff02">
<label>2</label>
DDS, Graduate student, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</aff>
<aff id="aff03">
<label>3</label>
DDS, PhD, Senior lecturer, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</aff>
<aff id="aff04">
<label>4</label>
DDS, MSc, PhD, Head Professor, Department of Dental Implantology, University of Santa Catarina, Florianópolis, SC, Brazil.</aff>
<aff id="aff05">
<label>5</label>
DDS, MSc, PhD, Senior lecturer, Department of Prosthodontics-Biomaterials, University of Geneva, Geneva, Switzerland.</aff>
<author-notes>
<corresp id="c01">
<bold>Corresponding address:</bold>
Cleide Gisele Ribeiro - Avenida Barão do Rio Branco, 2406/506 e 507 - Centro - 36010-011 - Juiz de Fora - Minas Gerais - Brazil - Phone: +55-32-3216-6246 - Fax: +55-32-9109-2678 - e-mail:
<email>cleidegr@yahoo.com.br</email>
</corresp>
</author-notes>
<pub-date pub-type="epub-ppub">
<season>Jul-Aug</season>
<year>2011</year>
</pub-date>
<pmc-comment>Fake ppub date generated by PMC from publisher pub-date/@pub-type='epub-ppub' </pmc-comment>
<pub-date pub-type="ppub">
<season>Jul-Aug</season>
<year>2011</year>
</pub-date>
<volume>19</volume>
<issue>4</issue>
<fpage>413</fpage>
<lpage>420</lpage>
<history>
<date date-type="received">
<day>25</day>
<month>5</month>
<year>2009</year>
</date>
<date date-type="rev-recd">
<day>27</day>
<month>4</month>
<year>2010</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>10</month>
<year>2010</year>
</date>
</history>
<permissions>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. </license-p>
</license>
</permissions>
<abstract>
<p>The design and retentive properties of implant-abutment connectors affect the mechanical resistance of implants. A number of studies have been carried out to compare the efficacy of connecting mechanisms between abutment and fixture.</p>
<sec>
<title>Objectives</title>
<p>The aims of this study were: 1) to compare 3 implant-abutment interfaces (external hexagon, internal hexagon and cone-in-cone) regarding the fatigue resistance of the prosthetic screw, 2) to evaluate the corresponding mode of failure, and 3) to compare the results of this study with data obtained in previous studies on Nobel Biocare and Straumann connectors. </p>
</sec>
<sec>
<title>Materials and Methods</title>
<p>In order to duplicate the alternating and multivectorial intraoral loading pattern, the specimens were submitted to the rotating cantilever beam test. The implants, abutments and restoration analogs were spun around their longitudinal axes while a perpendicular force was applied to the external end. The objective was to determine the force level at which 50% of the specimens survived 10
<sup>6</sup>
load cycles. The mean force levels at which 50% failed and the corresponding 95% confidence intervals were determined using the staircase procedure. </p>
</sec>
<sec>
<title>Results</title>
<p>The external hexagon interface presented better than the cone-in-cone and internal hexagon interfaces. There was no significant difference between the cone-in-cone and internal hex interfaces. </p>
</sec>
<sec>
<title>Conclusion</title>
<p>Although internal connections present a more favorable design, this study did not show any advantage in terms of strength. The external hexagon connector used in this study yielded similar results to those obtained in a previous study with Nobel Biocare and Straumann systems. However, the internal connections (cone-in-cone and internal hexagon) were mechanically inferior compared to previous results.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Dental implants</kwd>
<kwd>Fatigue</kwd>
<kwd>Prosthesis failure</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>INTRODUCTION</title>
<p>Dental implantology has revolutionized the treatment for edentulous and partially edentulous patients, and successful implant integration has been well documented for patients with those clinical conditions. With the high rate of implant success for edentulous individuals, the concept of osseointegration and implant therapy has flourished as a predictable treatment modality
<sup>
<xref rid="r10" ref-type="bibr">10</xref>
</sup>
.</p>
<p>Clinical observations have indicated that the major causes of implant failure are (a) deficient osseointegration, (b) complications of the neighboring soft tissues (peri-mucositis and periimplantitis) and (c) mechanical complications
<sup>
<xref rid="r13" ref-type="bibr">13</xref>
</sup>
. Among the biomechanical problems, screw loosening, abutment rotation, and abutment fracture are the major issues
<sup>
<xref rid="r15" ref-type="bibr">15</xref>
,
<xref rid="r28" ref-type="bibr">28</xref>
</sup>
. In a prospective multicenter investigation, Henry, et al.
<sup>
<xref rid="r12" ref-type="bibr">12</xref>
</sup>
(1996) evaluated 92 patients with 107 implants and found that the problems most frequently experienced during the first year were related to lose screws. The two mechanisms involved in screw loosening are: excessive bending (plastic deformation that takes place when a load larger than the yield strength of the screw is applied) and settling (when external loads applied to the screw interface create micromotion between both surfaces). As the mating surfaces wear, they "settle" closer together
<sup>
<xref rid="r15" ref-type="bibr">15</xref>
</sup>
. The factors that contribute to screw instability are: misfit of the prosthesis, insufficient tightening force, screw settling, mechanical overload, and mismatch in screw material and design
<sup>
<xref rid="r02" ref-type="bibr">2</xref>
</sup>
.</p>
<p>A number of studies have been conducted to compare the efficacy of different connecting mechanisms securing the abutment to the implant head
<sup>
<xref rid="r16" ref-type="bibr">16</xref>
</sup>
. The design of the implant-to-abutment mating surface and the retentive properties of the screw joints affect the mechanical resistance of the implant-abutment complex
<sup>
<xref rid="r03" ref-type="bibr">3</xref>
,
<xref rid="r20" ref-type="bibr">20</xref>
</sup>
. The implant-abutment connection is also influenced by factors such as component fit, machining accuracy, saliva contamination and screw preload
<sup>
<xref rid="r04" ref-type="bibr">4</xref>
</sup>
.</p>
<p>Current designs are derived from two basic designs: the "butt-joint", consisting of 2 parallel flat contacting surfaces
<sup>
<xref rid="r03" ref-type="bibr">3</xref>
</sup>
, and the internal "cone-in-cone" design. The latter has been introduced in the ITI implant system (Institute Straumann AG, Waldenburg, Basel, Switzerland) and offered a sound, stable, and self-locking interface
<sup>
<xref rid="r29" ref-type="bibr">29</xref>
</sup>
. Recent studies have indicated a potential mechanical advantage of conical connectors over butt-joint designs
<sup>
<xref rid="r20" ref-type="bibr">20</xref>
</sup>
. Indeed, the mechanics of the ITI cone-in-cone
<sup>
<xref rid="r20" ref-type="bibr">20</xref>
</sup>
resulted in lower incidences of mechanical complications, specifically abutment screw loosening and fracture, in comparison with those reported for butt-joint implants
<sup>
<xref rid="r23" ref-type="bibr">23</xref>
,
<xref rid="r25" ref-type="bibr">25</xref>
</sup>
. With few exceptions, most of the long-term clinical data on implant performance involve external hexagons. This is primarily the result of their extensive use, the broad number of prescribed clinical applications, the level of complications reported, and the resulting efforts to find solutions (specific torque application to abutment screws)
<sup>
<xref rid="r03" ref-type="bibr">3</xref>
</sup>
. Industry surveys have shown that external hex implants still dominate the European market
<sup>
<xref rid="r18" ref-type="bibr">18</xref>
</sup>
.</p>
<p>Fatigue is a progressive, localized and permanent structural damage that occurs in a material subjected to repeated or fluctuating strains. Experimentally, three modes of loading may be used to duplicate fatigue failures: direct axial loading (the specimen is submitted to a uniform stress through its cross-section), plane-bending (the majority of the specimen is subjected to a uniform bending stress) and rotating-beam loading (the specimen is rotation-symmetric and is subjected to dead-weight loading while swivel bearings permit rotation)
<sup>
<xref rid="r24" ref-type="bibr">24</xref>
</sup>
. In order to duplicate the multivectorial force pattern of the mouth, a laboratory test has been developed by Wiskott, et al.
<sup>
<xref rid="r34" ref-type="bibr">34</xref>
</sup>
(2004) using the rotating beam principle. The test consists in spinning a specimen while holding it at one end and loading it at the protruding end. The samples are thus subjected to a 360-degree field of transverse tensile and compressive force vectors. Actuator-driven fatigue testing systems are unable to reproduce the complex force patterns that are active clinically. Hence data obtained using rotational fatigue testing have a superior pertinence relative to single-axis testing designs
<sup>
<xref rid="r32" ref-type="bibr">32</xref>
-
<xref rid="r33" ref-type="bibr">33</xref>
</sup>
.</p>
<p>To overcome some of the inherent design limitations of the external hex connector, a variety of alternative connections have been developed. The goals of this study were: (1) to evaluate the fatigue resistance of 3 implant-abutment connectors (external hexagon, internal hexagon and cone-in-cone) analyzing the prosthetic screw; 2) to determine their failure modes; and (3) to compare the obtained results with previous data generated from Nobel Biocare-Replace and Straumann-ITI connectors.</p>
</sec>
<sec sec-type="materials|methods">
<title>MATERIAL AND METHODS</title>
<p>Three geometries of implant-abutment interfaces were evaluated. Thirty implants (4.0 mm diameter and 13 mm long) of each connector type were connected to Micro-unit abutments (Conexão Sistemas de Prótese, Arujá, SP, Brazil) and torqued to 30 Ncm using a calibrated torque controller. The Micro-unit abutments are industrially machined prosthetic components that are intended for use in fixed partial and complete implant-supported dentures at all sulcus depths and for all platforms. They were designed to provide versatility while optimizing the esthetics of multiple unit, screw retained, restorations. Therefore, the sole differences between groups were the variations in the interface geometry between the implant head and the Micro-unit abutment. The cone-in-cone Micro-unit abutment used in this study presents an internal modification (internal hexagon), which is located at the bottom of the cone to allow the angular repositioning of the abutments. The groups were set up as follows: group A (external hex implant+micro-unit abutment+restoration analog); group B (cone-in-cone implant+micro-unit abutment+restoration analog); group C (internal hex implant+micro-unit abutment+restoration analog).</p>
<p>In order to duplicate the mouth's multivectorial force pattern, the specimens (implant, abutment and restoration analog) were configured as rotating cantilever beams (
<xref ref-type="fig" rid="f01">Figure 1</xref>
). The rotating beam principle demands that a concentric arrangement be established between all the components. One end of the test specimen is clamped into a collet and rotated, while a perpendicular force is applied to the other end via a ball bearing. This perpendicular force submits the specimens to alternating sinusoidal tension-compression stresses which, depending on the magnitude of the load applied, cause breakage of the components within a predetermined number of cycles. The fatigue resistance of the connectors is expressed as the force level at which 50% of the specimens survive 10
<sup>6</sup>
load cycles without breakage and 50% fail.</p>
<fig id="f01" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic drawing of the sample (internal hexagon interface- group C)</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g01"></graphic>
</fig>
<sec>
<title>Restoration analog</title>
<p>The Micro-unit abutments used were 1-mm-high collar platforms. To allow valid comparisons with previous data, the restoration analog was 20 mm in length. This provided a 11.3 mm distance between the midplane of the ball bearing and the emergence of the implant from the collet. The torque recommended by the manufacturer was 20 Ncm for the abutment screw and 20 Ncm for the prosthetic screw. At this torque, however, both screws loosened during the course of the experiment. It was therefore decided to torque the abutment screw to 30 Ncm and the prosthetic screw to 25 Ncm to induce failure by screw breakage and not by screw loosening.</p>
</sec>
<sec>
<title>Experimental procedure and data analysis</title>
<p>The three implant-abutment interfaces were evaluated regarding their fatigue resistance at 10
<sup>6</sup>
cycles (an arbitrarily set number whose theoretical and practical basis has been previously explained)
<sup>
<xref rid="r33" ref-type="bibr">33</xref>
</sup>
. The experimental procedure required that a number of specimens be tested in sequence. To this effect, the specimens were loaded via the ball bearing and spun at 1.000 rpm (16.7 Hz). After 10
<sup>6</sup>
cycles, the experimenter checked whether the specimen was intact or whether it had broken. If it was intact, the next specimen was loaded at the previous magnitude plus 5 N. The same force (5 N) was subtracted from the former load magnitude if the previous specimen had failed. This leads to the characteristic up-and-down pattern of run-outs and failures that characterizes the staircase procedure. After suitable arrangement of the data, the mean F
<sub>50</sub>
(at which 50% of the samples failed and 50% ran out) and the standard deviation were calculated (
<xref ref-type="table" rid="t01">Table 1</xref>
). When applying the staircase procedure, the examiner must set an appropriate force increment (or decrement) (F
<sub>
<italic>incr.</italic>
</sub>
) - 5 N in the present test series. If it is too large, the test looses its discriminating potential. In this experiment, F
<sub>
<italic>incr</italic>
</sub>
was taken from previous studies
<sup>
<xref rid="r32" ref-type="bibr">32</xref>
,
<xref rid="r34" ref-type="bibr">34</xref>
</sup>
.</p>
<table-wrap id="t01" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Example of data arrangement for staircase analyses (external hexagon interface)</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr align="center" style="background-color:#dcddde">
<th rowspan="1" colspan="1">
<bold>Applied forces in newtons</bold>
</th>
<th rowspan="1" colspan="1">
<bold>Force level
<italic>(i)</italic>
</bold>
</th>
<th rowspan="1" colspan="1">
<bold># of failures (n
<sup>I</sup>
)</bold>
</th>
<th rowspan="1" colspan="1">
<bold>i n
<sup>I</sup>
</bold>
</th>
<th rowspan="1" colspan="1">
<bold>i
<sup>2</sup>
n
<sup>I</sup>
</bold>
</th>
</tr>
</thead>
<tbody>
<tr align="center">
<td rowspan="1" colspan="1">65</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">5</td>
<td rowspan="1" colspan="1">25</td>
</tr>
<tr align="center" style="background-color:#dcddde">
<td rowspan="1" colspan="1">60</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">4</td>
<td rowspan="1" colspan="1">16</td>
<td rowspan="1" colspan="1">64</td>
</tr>
<tr align="center">
<td rowspan="1" colspan="1">55</td>
<td rowspan="1" colspan="1">3</td>
<td rowspan="1" colspan="1">6</td>
<td rowspan="1" colspan="1">18</td>
<td rowspan="1" colspan="1">54</td>
</tr>
<tr align="center" style="background-color:#dcddde">
<td rowspan="1" colspan="1">50</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">2</td>
<td rowspan="1" colspan="1">4</td>
</tr>
<tr align="center">
<td rowspan="1" colspan="1">45</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
<td rowspan="1" colspan="1">1</td>
</tr>
<tr align="center" style="background-color:#dcddde">
<td rowspan="1" colspan="1">40</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">0</td>
<td rowspan="1" colspan="1">0</td>
</tr>
<tr align="center">
<td rowspan="1" colspan="1"> </td>
<td rowspan="1" colspan="1"> </td>
<td rowspan="1" colspan="1">n=13</td>
<td rowspan="1" colspan="1">A=42</td>
<td rowspan="1" colspan="1">B=148</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>n=Σ n
<sup>I</sup>
, A=Σ in
<sup>I</sup>
, B=Σ i
<sup>2</sup>
n
<sup>I</sup>
</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>During testing, the results were graphically charted as in
<xref ref-type="fig" rid="f02">Figure 2</xref>
. After all tests had been completed, they were arranged as shown in
<xref ref-type="table" rid="t01">Table 1</xref>
. Taking A and B from
<xref ref-type="table" rid="t01">Table 1</xref>
, F50 was calculated as</p>
<mml:math id="eq01">
<mml:mstyle mathcolor="#000000" mathsize="12.0pt" mathvariant="normal">
<mml:msub>
<mml:mi mathvariant="normal">F</mml:mi>
<mml:mn mathsize="50.0%" mathvariant="normal">50</mml:mn>
</mml:msub>
<mml:mo mathvariant="normal">=</mml:mo>
<mml:msub>
<mml:mi mathvariant="normal">F</mml:mi>
<mml:mn mathsize="50.0%" mathvariant="normal">0</mml:mn>
</mml:msub>
<mml:msub>
<mml:mo mathvariant="normal">+</mml:mo>
<mml:mi mathsize="50.0%" mathvariant="normal">Fincr</mml:mi>
</mml:msub>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mfenced close="]" open="[">
<mml:mrow>
<mml:mfrac>
<mml:mi mathvariant="normal">A</mml:mi>
<mml:mi mathvariant="italic">n</mml:mi>
</mml:mfrac>
<mml:mo mathvariant="normal">±</mml:mo>
<mml:mfrac>
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mfrac>
</mml:mrow>
</mml:mfenced>
</mml:mstyle>
</mml:math>
<fig id="f02" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Staircase data for the implant abutment interfaces analyzed in the study</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g02"></graphic>
</fig>
<p>with: + if the test is based on run-outs, - if the test is based on failures</p>
<p>Whenever the number of run-outs and failures differed, data analysis was based on the least frequent event.</p>
<p>The corresponding standard deviation was taken as:</p>
<mml:math id="eq02">
<mml:mstyle mathcolor="#000000" mathsize="12.0pt" mathvariant="normal">
<mml:mn mathvariant="normal">1</mml:mn>
<mml:mi mathvariant="normal">.</mml:mi>
<mml:msub>
<mml:mn mathvariant="normal">62</mml:mn>
<mml:mi mathsize="50.0%" mathvariant="normal">Fincr</mml:mi>
</mml:msub>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mfenced close="]" open="[">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mi mathvariant="italic">nB</mml:mi>
<mml:mo mathvariant="italic"></mml:mo>
<mml:mi mathvariant="italic">A</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="italic">n</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mn>0</mml:mn>
<mml:mi mathvariant="normal">.</mml:mi>
<mml:mn>029</mml:mn>
</mml:mrow>
</mml:mfenced>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mi mathvariant="normal">if</mml:mi>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mfrac>
<mml:mrow>
<mml:mi mathvariant="italic">nB</mml:mi>
<mml:mo mathvariant="italic"></mml:mo>
<mml:mi mathvariant="italic">A</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="italic">n</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:mo mathvariant="normal"></mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
<mml:mi mathvariant="normal">.</mml:mi>
<mml:mn mathvariant="normal">3</mml:mn>
</mml:mstyle>
</mml:math>
<p>and</p>
<mml:math id="eq03">
<mml:mstyle mathcolor="#000000" mathsize="12.0pt" mathvariant="normal">
<mml:mn>0</mml:mn>
<mml:mi mathvariant="normal">.</mml:mi>
<mml:mn>5</mml:mn>
<mml:msub>
<mml:mn>3</mml:mn>
<mml:mi mathsize="50.0%" mathvariant="normal">Fincr</mml:mi>
</mml:msub>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mfenced close="]" open="[">
<mml:mrow>
<mml:mfrac>
<mml:mrow>
<mml:mi mathvariant="italic">nB</mml:mi>
<mml:mo mathvariant="italic"></mml:mo>
<mml:mi mathvariant="italic">A</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="italic">n</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mn>0</mml:mn>
<mml:mi mathvariant="normal">.</mml:mi>
<mml:mn>029</mml:mn>
</mml:mrow>
</mml:mfenced>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mi mathvariant="normal">if</mml:mi>
<mml:mspace width="0.33em"></mml:mspace>
<mml:mfrac>
<mml:mrow>
<mml:mi mathvariant="italic">nB</mml:mi>
<mml:mo mathvariant="italic"></mml:mo>
<mml:mi mathvariant="italic">A</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
<mml:mrow>
<mml:mi mathvariant="italic">n</mml:mi>
<mml:mn mathvariant="italic">2</mml:mn>
</mml:mrow>
</mml:mfrac>
<mml:mo></mml:mo>
<mml:mn mathvariant="normal">0</mml:mn>
<mml:mi mathvariant="normal">.</mml:mi>
<mml:mn mathvariant="normal">3</mml:mn>
</mml:mstyle>
</mml:math>
<p>Where F
<sub>50</sub>
was the mean force level at which 50% of specimens ran-out and 50% failed; F
<sub>0</sub>
was the lowest load level at which failure occurred; F
<sub>incr</sub>
was the chosen force increments or decrement, that is, 5 N; n=Σ n
<sup>i</sup>
(n
<sup>i</sup>
: the number of failures of each load level) (see
<xref ref-type="table" rid="t01">table 1</xref>
); A=Σ in
<sup>i</sup>
(i being the load level) and B=Σ i
<sup>2</sup>
n
<sup>i</sup>
.</p>
<p>To assess whether the F
<sub>50</sub>
's of each group were significantly different, the means were fitted with 95% confidence intervals using a method described by Collins
<sup>
<xref rid="r09" ref-type="bibr">9</xref>
</sup>
(1993). Means with overlapping intervals were considered equivalent.</p>
</sec>
<sec>
<title>Stereomicroscope examination and scanning electron microscopy (SEM)</title>
<p>Ten prosthetic screws of each interface were randomly selected and evaluated using a stereomicroscope (Wild M3Z, Heerbrugg, Switzerland) to inspect thread wear, defects and the fractured surfaces at low magnification. Stereomicroscopy is often used to conduct preliminary observations of fractured components. After this evaluation, 3 samples of fractured screws of each interface were gold-sputtered and examined with a scanning electron microscope (Philips XL Series - XL 20; Philips, Eindhoven, The Netherlands).</p>
</sec>
</sec>
<sec sec-type="results">
<title>RESULTS</title>
<p>The fatigue resistance for each connector expressed as the mean force level at which 50% of the samples survived 10
<sup>6</sup>
cycles and 50% failed (F
<sub>50</sub>
) is shown in
<xref ref-type="table" rid="t02">Table 2</xref>
, which also details each mean's 95% CI. Statistically, the external hexagon interface presented superior result compared to the conical and internal hexagon interfaces. There was no significant difference between the conical and internal hex interfaces.</p>
<table-wrap id="t02" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Fatigue resistance of the connectors subjected to the rotating-bending test</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr align="center" style="background-color:#dcddde">
<th rowspan="1" colspan="1"> </th>
<th rowspan="1" colspan="1">
<bold>F50</bold>
</th>
<th rowspan="1" colspan="1">
<bold>SD</bold>
</th>
<th align="left" rowspan="1" colspan="1">
<bold>Upper</bold>
</th>
<th rowspan="1" colspan="1">
<bold>Lower</bold>
</th>
</tr>
</thead>
<tbody>
<tr align="center">
<td align="left" rowspan="1" colspan="1">External hex interface</td>
<td rowspan="1" colspan="1">53.5</td>
<td rowspan="1" colspan="1">7.80</td>
<td rowspan="1" colspan="1">49.5</td>
<td rowspan="1" colspan="1">57.5</td>
</tr>
<tr align="center" style="background-color:#dcddde">
<td align="left" rowspan="1" colspan="1">Cone-in-cone interface</td>
<td rowspan="1" colspan="1">44.0</td>
<td rowspan="1" colspan="1">2.49</td>
<td rowspan="1" colspan="1">42.3</td>
<td rowspan="1" colspan="1">45.7</td>
</tr>
<tr align="center">
<td align="left" rowspan="1" colspan="1">Internal hex interface</td>
<td rowspan="1" colspan="1">45.0</td>
<td rowspan="1" colspan="1">3.40</td>
<td rowspan="1" colspan="1">43.1</td>
<td rowspan="1" colspan="1">46.9</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>F
<sub>50</sub>
=mean failure level (force level at which 50% of the samples survive and 50% fail before 10
<sup>6</sup>
cycles). When the interfaces with overlapping CIs were combined, 1 group was identified: group A - external hex interface. SD= standard deviation</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>Analysis of the fractured screws stereomicroscopy and SEM revealed that the mode and the region of fracture were the same for 24 of the 30 screws evaluated (fracture of the threaded part -
<xref ref-type="fig" rid="f03">Figures 3</xref>
,
<xref ref-type="fig" rid="f04">4</xref>
). Six screws presented damages in the last two threads but no fracture (
<xref ref-type="fig" rid="f05">Figure 5</xref>
). Fatigue striations were seen on the SEM micrographs (
<xref ref-type="fig" rid="f06">Figure 6</xref>
). Such striations are an absolute indication of fatigue failure. "Overload" or fast fracture zone, that is, the portions of the components where final catastrophic failure occurred were also seen. The surface structure of this zone was similar for all groups (
<xref ref-type="fig" rid="f07">Figures 7A</xref>
-
<xref ref-type="fig" rid="f07">C</xref>
).</p>
<fig id="f03" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Stereomicroscope image of the prosthetic screw at the fractured surface</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g03"></graphic>
</fig>
<fig id="f04" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Scanning electron microscopy (SEM) micrograph of the screw abutment at the fractured surface</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g04"></graphic>
</fig>
<fig id="f05" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Scanning electron microscopy (SEM) micrograph demonstrating damages in the screw threads without fracture</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g05"></graphic>
</fig>
<fig id="f06" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Scanning electron microscopy (SEM) micrograph showing fatigue striations</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g06"></graphic>
</fig>
<fig id="f07" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Scanning electron microscopy (SEM) micrograph images of prosthetic screws showing the same mode of fracture to all the types of implant-abutment interfaces (acone- in-cone; b- external hexagon and c- internal hexagon)</p>
</caption>
<graphic xlink:href="jaos-19-04-0413-g07"></graphic>
</fig>
</sec>
<sec sec-type="discussion">
<title>DISCUSSION</title>
<p>The effect of connector design on the mechanical resistance of a dental implant screw joint is still fraught with uncertainties. This is demonstrated by the numerous configurations available in today's market. Several systems are in clinical use, most notably the external hexagon, the internal hexagon and the tapered joints. According to Binon
<sup>
<xref rid="r03" ref-type="bibr">3</xref>
</sup>
(2000), contemporary implant systems are configured with about 20 different implant/abutment interface geometries.</p>
<p>Each implant-abutment interface has its pros and cons. According to Maeda, et al.
<sup>
<xref rid="r16" ref-type="bibr">16</xref>
</sup>
(2006), the external hex interface has advantages such as suitability for the two stage method, provision of an anti-rotation mechanism, retrievability and compatibility among different systems
<sup>
<xref rid="r06" ref-type="bibr">6</xref>
</sup>
. The external hex interface provides more versatility for the laboratory technician in solving problems related to emergence profile and esthetics, since the technician is able to bring the porcelain of a porcelain- fused-to-gold crown closer to the implant interface
<sup>
<xref rid="r06" ref-type="bibr">6</xref>
</sup>
. However, increased screw loosening, component fracture, and difficulty in seating abutments in deep subgingival tissues are problems commonly experienced with external hexagon connectors
<sup>
<xref rid="r29" ref-type="bibr">29</xref>
</sup>
.</p>
<p>Regarding the internal hex system, according to Maeda, et al.
<sup>
<xref rid="r16" ref-type="bibr">16</xref>
</sup>
(2006), its advantages are: ease in abutment connection, suitability for one stage implant installation, higher stability and suitability for single-tooth restoration, higher resistance to lateral loads due to the lower centre of rotation and better force distribution
<sup>
<xref rid="r06" ref-type="bibr">6</xref>
</sup>
. A systematic review conducted by Theoharidou, et al.
<sup>
<xref rid="r31" ref-type="bibr">31</xref>
</sup>
(2008) demonstrated stable abutment screw connections for internal-connection implants as well for external-connection implants with improved screw materials (altering the screw alloys and their surfaces) and preload. Tapered joint connections with a conical interface have advantages of better sealing capacity in closing the micro-gap on top of those in an internal hex system. Most
<italic>in vitro</italic>
studies have demonstrated that internal connections are more stable mechanically than external flat connections
<sup>
<xref rid="r16" ref-type="bibr">16</xref>
,
<xref rid="r20" ref-type="bibr">20</xref>
</sup>
. The general focus is clearly on deep internal connections, in which the screw takes little or no load and provides intimate contact with the implants walls to resist micromovement
<sup>
<xref rid="r03" ref-type="bibr">3</xref>
</sup>
.</p>
<p>The present data are in agreement with those of Piermatti, et al.
<sup>
<xref rid="r22" ref-type="bibr">22</xref>
</sup>
(2006), who reported inferior results for the internal hex connections when compared to external connections. Steinebrunner, et al.
<sup>
<xref rid="r26" ref-type="bibr">26</xref>
</sup>
(2008) evaluated the influence of long-term dynamic loading on the fracture strength of different implant-abutment connectors. External hex connections yielded better results compared to internal hex connections. Also, the internal tube-and-tube connections with a cam indexing system obtained the superior results with regard to longevity and fracture strength. Former research was able to show that there is a direct correlation between the amount of misfit of the components and screw loosening
<sup>
<xref rid="r04" ref-type="bibr">4</xref>
</sup>
. Binon and McHugh
<sup>
<xref rid="r04" ref-type="bibr">4</xref>
</sup>
(1996) pointed towards manufacturing tolerances as a reason for the screw loosening of the prefabricated parts and requested manufacturers to improve the fit of their implant components.</p>
<p>Preload protects the screw from breakage during cyclic loading. If the joint is compressed, preload will be lost, the screw and the interface are subjected to plastic deformation and the joint may separate
<sup>
<xref rid="r35" ref-type="bibr">35</xref>
</sup>
. The optimum preload force recommended for an implant screw is 60-80% of the yield strength of the material from which the screw is machined. At stresses at or beyond yield, the screw will function in its plastic deformation zone with resulting loss of preload and inefficient function. Conversely, stresses within the elastic region of the material are the most appropriate to resist the separation forces induced during occlusal loading
<sup>
<xref rid="r21" ref-type="bibr">21</xref>
</sup>
. Thus, the greater the clamping force (preload), the tighter the clamped joint. However, preload values should not be too high and should be within the elastic domain, else retaining screws may yield or break under repeated functional bite forces
<sup>
<xref rid="r01" ref-type="bibr">1</xref>
</sup>
. The torque used in this study was 30 Ncm in the abutment screw and 25 Ncm in the prosthetic screw. SEM analysis of screws tightened to 25 Ncm and to 40 Ncm demonstrated no damages in the screw morphology thereby indicating that the torque applied was below the elastic limit of the material. The yield strength and the breakage strength of screws are not commonly reported by manufacturers.</p>
<p>The literature provides an abundance of studies that analyzed the fatigue resistance of dental implants and prosthetic components. However, there was no standardization of the applied forces 300 N
<sup>
<xref rid="r01" ref-type="bibr">1</xref>
,
<xref rid="r35" ref-type="bibr">35</xref>
</sup>
; 100-150 N
<sup>
<xref rid="r07" ref-type="bibr">7</xref>
</sup>
; 10-250 N
<sup>
<xref rid="r17" ref-type="bibr">17</xref>
</sup>
; 20-200 N
<sup>
<xref rid="r08" ref-type="bibr">8</xref>
</sup>
; 100-450 N
<sup>
<xref rid="r11" ref-type="bibr">11</xref>
</sup>
; 50 N
<sup>
<xref rid="r27" ref-type="bibr">27</xref>
</sup>
; 120 N
<sup>
<xref rid="r26" ref-type="bibr">26</xref>
</sup>
and in the mode of loading (angle of load application) and simple (fatigue only) or combined (fatigue plus monotonic load). The loading frequencies were different also. The present study was carried out using comparable implant diameters, identical abutments and levers therefore rendering intergroup comparisons possible. The results demonstrated that the fatigue strength of the external hex interface used in this study was of the same magnitude as the Nobel Biocare Replace Select, multi-unit abutment and the Straumann ITI, standard abutment. The internal connections though (conical and internal hexagon) revealed inferior results compared to the previous data
<sup>
<xref rid="r32" ref-type="bibr">32</xref>
,
<xref rid="r34" ref-type="bibr">34</xref>
</sup>
.</p>
<p>The prosthetic screw that connects the fixed dental prosthesis to the abutment is intended as the weak link, that is, in case of occlusal overload, it is designed to break first and thus protect the implant and the bone from damage due to excessive stresses
<sup>
<xref rid="r05" ref-type="bibr">5</xref>
,
<xref rid="r23" ref-type="bibr">23</xref>
</sup>
. This is supported by the finding that the incidence of abutment screw and implant fracture is much lower than that of prosthetic screw loosening or fracturing
<sup>
<xref rid="r05" ref-type="bibr">5</xref>
,
<xref rid="r19" ref-type="bibr">19</xref>
</sup>
. Conversely, according to Sutter, et al.
<sup>
<xref rid="r29" ref-type="bibr">29</xref>
</sup>
(1993), in the two-stage system it is the abutment screw that most frequently fractures. This apparent incrongruity of the more massive abutment screw failing before the smaller occlusal screw might be explained by simple mechanics. In a two-stage system, the abutment screw secures the abutment to the implant. This interface is subjected to a higher level of stress because it is located near the alveolar crest, that is, where the applied lever is greatest. The abutment screw therefore, is subjected to much greater forces than the occlusal screw when the force vectors are nonaxial in nature. It is thus more susceptible to fatigue failure, although it is a more massive structure
<sup>
<xref rid="r30" ref-type="bibr">30</xref>
</sup>
. The present study confirms that the prosthetic screw fails more frequently than the abutment screw and failure varies according to the type of interface analyzed.</p>
</sec>
<sec sec-type="conclusions">
<title>CONCLUSIONS</title>
<p>Within the limitation of this study, the following conclusions can be drawn: 1. This study demonstrated the superior fatigue resistance of external hex interface. There was no significant difference between the conical and internal hex interfaces. Probably, the quality of the surface machining of the flat-to-flat mating surfaces (mainly, the machining accuracy of the screw and thread) determined the superior resistance of the connector; 2; The mode and region of fracture in prosthetic screws observed in this study suggested that failure of these screws occurred by fatigue (presence of fatigue striations) and involved the threaded part; 3. The present tests demonstrated that the fatigue strength of the external hex interface used in this study was of comparable strength as that determined in a previous study on Nobel Biocare and Straumann implants when similar abutments and level torque were used. It is important to emphasize that the prosthetic screw used in this study was designed specifically to support a higher torque (25 Ncm) than the conventional torque used for this screw (10 Ncm). In addition, the micro-unit abutment received a higher torque than the one recommended by the manufacturer; 4. The internal connections (cone-in-cone and internal hexagon) had inferior results compared to those found in previous results. Internal connections require accurate machining and tolerances and the reason for the present results may be a lack of precision of the components that allowed micromovement at the connector interface.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGMENTS</title>
<p>Our gratitude is expressed to Conexão Sistemas de Prótese (Arujá, SP, Brazil) for designing and machining the implants and components used in this study.</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="r01">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al Jabbari</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Fournelle</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ziebert</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Toth</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Iacopino</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use in vivo. Part 4: Failure analysis of 10 fractured retaining screws retrieved from three patients</article-title>
<source>J Prosthodont</source>
<year>2008</year>
<volume>17</volume>
<fpage>201</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="pmid">18205736</pub-id>
</element-citation>
</ref>
<ref id="r02">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Al-Turki</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Chai</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lautenschlager</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Hutten</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Changes in prosthetic screw stability because of misfit of implant-supported prostheses</article-title>
<source>Int J Prosthodont</source>
<year>2002</year>
<volume>15</volume>
<fpage>38</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">11887597</pub-id>
</element-citation>
</ref>
<ref id="r03">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binon</surname>
<given-names>PP</given-names>
</name>
</person-group>
<article-title>Implants and components: entering the new millennium</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2000</year>
<volume>15</volume>
<fpage>76</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">10697942</pub-id>
</element-citation>
</ref>
<ref id="r04">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binon</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>McHugh</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>The effect of eliminating implant/ abutment rotational misfit on screw joint stability</article-title>
<source>Int J Prosthodont</source>
<year>1996</year>
<volume>9</volume>
<fpage>511</fpage>
<lpage>519</lpage>
<pub-id pub-id-type="pmid">9171488</pub-id>
</element-citation>
</ref>
<ref id="r05">
<label>5</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Brägger</surname>
<given-names>U</given-names>
</name>
</person-group>
<chapter-title>Technical failures and complications related to prosthetic components of implant systems and different types of suprastructures</chapter-title>
<person-group person-group-type="editor">
<name>
<surname>Lang</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Karring</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lindhe</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>Proceedings of the 3rd European Workshop on Periodontology</source>
<publisher-loc>Berlin</publisher-loc>
<publisher-name>Quintessence</publisher-name>
<fpage>304</fpage>
<lpage>332</lpage>
<year>1999</year>
</element-citation>
</ref>
<ref id="r06">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carr</surname>
<given-names>BT</given-names>
</name>
<name>
<surname>Dersh</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Kinsel</surname>
<given-names>RP</given-names>
</name>
</person-group>
<article-title>When contemplating treatment involving endosseous implants, what clinical and laboratory factors most significantly affect your choice of an implant system</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2001</year>
<volume>16</volume>
<fpage>123</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="pmid">11280357</pub-id>
</element-citation>
</ref>
<ref id="r07">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cehreli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Duyck</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Cooman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Puers</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Naert</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Implant design and interface force transfer. A photoelastic and strain-gauge analysis</article-title>
<source>Clin Oral Implants Res</source>
<year>2004</year>
<volume>15</volume>
<fpage>249</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="pmid">15008938</pub-id>
</element-citation>
</ref>
<ref id="r08">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cibirka</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Nelson</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Rueggeberg</surname>
<given-names>FA</given-names>
</name>
</person-group>
<article-title>Examination of the implant-abutment interface after fatigue testing</article-title>
<source>J Prosthet Dent</source>
<year>2001</year>
<volume>85</volume>
<fpage>268</fpage>
<lpage>275</lpage>
<pub-id pub-id-type="pmid">11264934</pub-id>
</element-citation>
</ref>
<ref id="r09">
<label>9</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Collins</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>Failure of materials in mechanical design: analysis, prediction, prevention</source>
<publisher-loc>New York</publisher-loc>
<publisher-name>Wiley-Interscience</publisher-name>
<year>1993</year>
</element-citation>
</ref>
<ref id="r10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ding</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Woody</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Higginbottom</surname>
<given-names>FL</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>BH</given-names>
</name>
</person-group>
<article-title>Evaluation of the ITI Morse taper implant/abutment design with an internal modification</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2003</year>
<volume>18</volume>
<fpage>865</fpage>
<lpage>872</lpage>
<pub-id pub-id-type="pmid">14696662</pub-id>
</element-citation>
</ref>
<ref id="r11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gehrke</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Dhom</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brunner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Degidi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Zirconium implant abutments: fracture strength and influence of cyclic loading on retaining-screw loosening</article-title>
<source>Quintessence Int</source>
<year>2006</year>
<volume>37</volume>
<fpage>19</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">16429699</pub-id>
</element-citation>
</ref>
<ref id="r12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Henry</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Laney</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Krogh</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Polizzi</surname>
<given-names>G</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Osseointegrated implants for single-tooth replacement: a prospective 5-year multicenter study</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1996</year>
<volume>11</volume>
<fpage>450</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="pmid">8803340</pub-id>
</element-citation>
</ref>
<ref id="r13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SY</given-names>
</name>
</person-group>
<article-title>Evaluation of loading conditions on fatigue-failed implants by fracture surface analysis</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2005</year>
<volume>20</volume>
<fpage>854</fpage>
<lpage>859</lpage>
<pub-id pub-id-type="pmid">16392341</pub-id>
</element-citation>
</ref>
<ref id="r14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jörnéus</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Carlsson</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Loads and designs of screw joints for single crowns supported by osseointegrated implants</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1992</year>
<volume>7</volume>
<fpage>353</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="pmid">1289261</pub-id>
</element-citation>
</ref>
<ref id="r15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kano</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Binon</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Curtis</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>A classification system to measure the implant-abutment microgap</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2007</year>
<volume>22</volume>
<fpage>879</fpage>
<lpage>885</lpage>
<pub-id pub-id-type="pmid">18271368</pub-id>
</element-citation>
</ref>
<ref id="r16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maeda</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Satoh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sogo</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication</article-title>
<source>J Oral Rehabil</source>
<year>2006</year>
<volume>33</volume>
<fpage>75</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">16409521</pub-id>
</element-citation>
</ref>
<ref id="r17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meng</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Everts</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Gratton</surname>
<given-names>DG</given-names>
</name>
</person-group>
<article-title>Influence of connection geometry on dynamic micromotion at the implant-abutment interface</article-title>
<source>Int J Prosthodont</source>
<year>2007</year>
<volume>20</volume>
<fpage>623</fpage>
<lpage>625</lpage>
<pub-id pub-id-type="pmid">18069372</pub-id>
</element-citation>
</ref>
<ref id="r18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>Millennium Research Group</collab>
</person-group>
<article-title>European markets for dental implants and final abutments 2004: executive summary</article-title>
<source>Implant Dent</source>
<year>2004</year>
<volume>13</volume>
<fpage>193</fpage>
<lpage>196</lpage>
<pub-id pub-id-type="pmid">15359152</pub-id>
</element-citation>
</ref>
<ref id="r19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Möllersten</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lockowandt</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lindén</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>Comparison of strength and failure mode of seven implant systems: an in vitro test</article-title>
<source>J Prosthet Dent</source>
<year>1997</year>
<volume>78</volume>
<fpage>582</fpage>
<lpage>591</lpage>
<pub-id pub-id-type="pmid">9421787</pub-id>
</element-citation>
</ref>
<ref id="r20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Norton</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design</article-title>
<source>Clin Oral Implants Res</source>
<year>1997</year>
<volume>8</volume>
<fpage>290</fpage>
<lpage>298</lpage>
<pub-id pub-id-type="pmid">9586476</pub-id>
</element-citation>
</ref>
<ref id="r21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patterson</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Johns</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1992</year>
<volume>7</volume>
<fpage>26</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="pmid">1398820</pub-id>
</element-citation>
</ref>
<ref id="r22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piermatti</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yousef</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Luke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mahevich</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Weiner</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>An in vitro analysis of implant screw torque loss with external hex and internal connection implant systems</article-title>
<source>Implant Dent</source>
<year>2006</year>
<volume>15</volume>
<fpage>427</fpage>
<lpage>435</lpage>
<pub-id pub-id-type="pmid">17172962</pub-id>
</element-citation>
</ref>
<ref id="r23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rangert</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jörneus</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Forces and moments on Branemark implants</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1989</year>
<volume>4</volume>
<fpage>241</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="pmid">2700747</pub-id>
</element-citation>
</ref>
<ref id="r24">
<label>24</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ritchie</surname>
<given-names>R</given-names>
</name>
</person-group>
<chapter-title>Fatigue testing</chapter-title>
<person-group person-group-type="author">
<collab>ASM International</collab>
</person-group>
<source>ASM Handbook - Mechanical testing and evaluation</source>
<publisher-loc>Ohio</publisher-loc>
<publisher-name>ASM International</publisher-name>
<fpage>688</fpage>
<lpage>689</lpage>
<year>2000</year>
</element-citation>
</ref>
<ref id="r25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwarz</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Mechanical complications of dental implants</article-title>
<source>Clin Oral Implants Res</source>
<year>2000</year>
<volume>11</volume>
<fpage>156</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">11168264</pub-id>
</element-citation>
</ref>
<ref id="r26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steinebrunner</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wolfart</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ludwig</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Implantabutment interface design affects fatigue and fracture strength of implants</article-title>
<source>Clin Oral Implants Res</source>
<year>2008</year>
<volume>19</volume>
<fpage>1276</fpage>
<lpage>1284</lpage>
<pub-id pub-id-type="pmid">19040443</pub-id>
</element-citation>
</ref>
<ref id="r27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Strub</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Gerds</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Fracture strength and failure mode of five different single-tooth implant-abutment combinations</article-title>
<source>Int J Prosthodont</source>
<year>2003</year>
<volume>16</volume>
<fpage>167</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="pmid">12737249</pub-id>
</element-citation>
</ref>
<ref id="r28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stüker</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Teixeira</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Beck</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>NP</given-names>
</name>
</person-group>
<article-title>Preload and torque removal evaluation of three different abutment screws for single standing implant restorations</article-title>
<source>J Appl Oral Sci</source>
<year>2008</year>
<volume>16</volume>
<fpage>55</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="pmid">19089290</pub-id>
</element-citation>
</ref>
<ref id="r29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sutter</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sorensen</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The new restorative concept of the ITI dental implant system: design and engineering</article-title>
<source>Int J Periodont Rest Dent</source>
<year>1993</year>
<volume>13</volume>
<fpage>409</fpage>
<lpage>431</lpage>
</element-citation>
</ref>
<ref id="r30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>TD</given-names>
</name>
</person-group>
<article-title>Prosthodontic problems and limitations associated with osseointegration</article-title>
<source>J Prosthet Dent</source>
<year>1998</year>
<volume>79</volume>
<fpage>74</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">9474545</pub-id>
</element-citation>
</ref>
<ref id="r31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Theoharidou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Petridis</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Tzannas</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Garefis</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Abutment screw loosening in single-implant restorations: a systematic review</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2008</year>
<volume>23</volume>
<fpage>681</fpage>
<lpage>690</lpage>
<pub-id pub-id-type="pmid">18807565</pub-id>
</element-citation>
</ref>
<ref id="r32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiskott</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Jaquet</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Scherrer</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Belser</surname>
<given-names>UC</given-names>
</name>
</person-group>
<article-title>Resistance of internal-connection implant connectors under rotational fatigue loading</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2007</year>
<volume>22</volume>
<fpage>249</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="pmid">17465350</pub-id>
</element-citation>
</ref>
<ref id="r33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiskott</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Belser</surname>
<given-names>UC</given-names>
</name>
</person-group>
<article-title>Fatigue resistance of soldered joints: a methodological study</article-title>
<source>Dent Mater</source>
<year>1994</year>
<volume>10</volume>
<fpage>215</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="pmid">7758867</pub-id>
</element-citation>
</ref>
<ref id="r34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiskott</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Pavone</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Scherrer</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Renevey</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Belser</surname>
<given-names>UC</given-names>
</name>
</person-group>
<article-title>Resistance of ITI implant connectors to multivectorial fatigue load application</article-title>
<source>Int J Prosthodont</source>
<year>2004</year>
<volume>17</volume>
<fpage>672</fpage>
<lpage>679</lpage>
<pub-id pub-id-type="pmid">15686095</pub-id>
</element-citation>
</ref>
<ref id="r35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yousef</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Luke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ricci</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Weiner</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Analysis of changes in implant screws subject to occlusal loading: a preliminary analysis</article-title>
<source>Implant Dent</source>
<year>2005</year>
<volume>14</volume>
<fpage>378</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="pmid">16361889</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003023  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 003023  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022