Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

Identifieur interne : 002F75 ( Pmc/Corpus ); précédent : 002F74; suivant : 002F76

Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

Auteurs : Marc Philipp Dittmer ; Moritz Nensa ; Meike Stiesch ; Philipp Kohorst

Source :

RBID : PMC:3881892

Abstract

Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics.

Objective

The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks.

Material and Methods

Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05).

Results

All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious.

Conclusion

The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.


Url:
DOI: 10.1590/1679-775720130077
PubMed: 24037068
PubMed Central: 3881892

Links to Exploration step

PMC:3881892

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge
<sup>®</sup>
2) before and after cyclic mechanical loading</title>
<author>
<name sortKey="Dittmer, Marc Philipp" sort="Dittmer, Marc Philipp" uniqKey="Dittmer M" first="Marc Philipp" last="Dittmer">Marc Philipp Dittmer</name>
<affiliation>
<nlm:aff id="aff01"> PD Dr, Private Practice, Hannover, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nensa, Moritz" sort="Nensa, Moritz" uniqKey="Nensa M" first="Moritz" last="Nensa">Moritz Nensa</name>
<affiliation>
<nlm:aff id="aff02"> Clinic for Maxillofacial Surgery, Plastic Surgery, Implant Center, Stuttgart, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stiesch, Meike" sort="Stiesch, Meike" uniqKey="Stiesch M" first="Meike" last="Stiesch">Meike Stiesch</name>
<affiliation>
<nlm:aff id="aff03"> Professor Dr., Head of the Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kohorst, Philipp" sort="Kohorst, Philipp" uniqKey="Kohorst P" first="Philipp" last="Kohorst">Philipp Kohorst</name>
<affiliation>
<nlm:aff id="aff04"> PD Dr., Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24037068</idno>
<idno type="pmc">3881892</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3881892</idno>
<idno type="RBID">PMC:3881892</idno>
<idno type="doi">10.1590/1679-775720130077</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002F75</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002F75</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge
<sup>®</sup>
2) before and after cyclic mechanical loading</title>
<author>
<name sortKey="Dittmer, Marc Philipp" sort="Dittmer, Marc Philipp" uniqKey="Dittmer M" first="Marc Philipp" last="Dittmer">Marc Philipp Dittmer</name>
<affiliation>
<nlm:aff id="aff01"> PD Dr, Private Practice, Hannover, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nensa, Moritz" sort="Nensa, Moritz" uniqKey="Nensa M" first="Moritz" last="Nensa">Moritz Nensa</name>
<affiliation>
<nlm:aff id="aff02"> Clinic for Maxillofacial Surgery, Plastic Surgery, Implant Center, Stuttgart, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stiesch, Meike" sort="Stiesch, Meike" uniqKey="Stiesch M" first="Meike" last="Stiesch">Meike Stiesch</name>
<affiliation>
<nlm:aff id="aff03"> Professor Dr., Head of the Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kohorst, Philipp" sort="Kohorst, Philipp" uniqKey="Kohorst P" first="Philipp" last="Kohorst">Philipp Kohorst</name>
<affiliation>
<nlm:aff id="aff04"> PD Dr., Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Applied Oral Science</title>
<idno type="ISSN">1678-7757</idno>
<idno type="eISSN">1678-7765</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics.</p>
<sec>
<title>Objective</title>
<p>The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks.</p>
</sec>
<sec>
<title>Material and Methods</title>
<p>Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge
<sup>®</sup>
2-concept (I-Bridge
<sup>®</sup>
2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). </p>
</sec>
<sec>
<title>Results</title>
<p>All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. </p>
</sec>
<sec>
<title>Conclusion</title>
<p>The load-bearing capacity of the I-Bridge
<sup>®</sup>
2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading
<italic>in vivo</italic>
depends on additional aspects. Further studies are needed to address these aspects.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Amin, Wm" uniqKey="Amin W">WM Amin</name>
</author>
<author>
<name sortKey="Fletcher, Am" uniqKey="Fletcher A">AM Fletcher</name>
</author>
<author>
<name sortKey="Ritchie, Gm" uniqKey="Ritchie G">GM Ritchie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atsu, Ss" uniqKey="Atsu S">SS Atsü</name>
</author>
<author>
<name sortKey="Gelgor, Ie" uniqKey="Gelgor I">IE Gelgör</name>
</author>
<author>
<name sortKey="Sahin, V" uniqKey="Sahin V">V Sahin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atsu, Ss" uniqKey="Atsu S">SS Atsü</name>
</author>
<author>
<name sortKey="Kilicarslan, Ma" uniqKey="Kilicarslan M">MA Kilicarslan</name>
</author>
<author>
<name sortKey="Kucukesmen, Hc" uniqKey="Kucukesmen H">HC Kucukesmen</name>
</author>
<author>
<name sortKey="Aka, Ps" uniqKey="Aka P">PS Aka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demir, H" uniqKey="Demir H">H Demir</name>
</author>
<author>
<name sortKey="Dogan, A" uniqKey="Dogan A">A Dogan</name>
</author>
<author>
<name sortKey="Dogan, Om" uniqKey="Dogan O">OM Dogan</name>
</author>
<author>
<name sortKey="Keskin, S" uniqKey="Keskin S">S Keskin</name>
</author>
<author>
<name sortKey="Bolayir, G" uniqKey="Bolayir G">G Bolayir</name>
</author>
<author>
<name sortKey="Soygun, K" uniqKey="Soygun K">K Soygun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dogan, Om" uniqKey="Dogan O">OM Dogan</name>
</author>
<author>
<name sortKey="Keskin, S" uniqKey="Keskin S">S Keskin</name>
</author>
<author>
<name sortKey="Dogan, A" uniqKey="Dogan A">A Dogan</name>
</author>
<author>
<name sortKey="Ataman, H" uniqKey="Ataman H">H Ataman</name>
</author>
<author>
<name sortKey="Usanmaz, A" uniqKey="Usanmaz A">A Usanmaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jacobsen, Nl" uniqKey="Jacobsen N">NL Jacobsen</name>
</author>
<author>
<name sortKey="Mitchell, Dl" uniqKey="Mitchell D">DL Mitchell</name>
</author>
<author>
<name sortKey="Johnson, Dl" uniqKey="Johnson D">DL Johnson</name>
</author>
<author>
<name sortKey="Holt, Ra" uniqKey="Holt R">RA Holt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiao, C" uniqKey="Jiao C">C Jiao</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Gui, Z" uniqKey="Gui Z">Z Gui</name>
</author>
<author>
<name sortKey="Hu, Y" uniqKey="Hu Y">Y Hu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Katsumata, Y" uniqKey="Katsumata Y">Y Katsumata</name>
</author>
<author>
<name sortKey="Hojo, S" uniqKey="Hojo S">S Hojo</name>
</author>
<author>
<name sortKey="Hamano, N" uniqKey="Hamano N">N Hamano</name>
</author>
<author>
<name sortKey="Watanabe, T" uniqKey="Watanabe T">T Watanabe</name>
</author>
<author>
<name sortKey="Yamaguchi, H" uniqKey="Yamaguchi H">H Yamaguchi</name>
</author>
<author>
<name sortKey="Okada, S" uniqKey="Okada S">S Okada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawano, F" uniqKey="Kawano F">F Kawano</name>
</author>
<author>
<name sortKey="Dootz, Er" uniqKey="Dootz E">ER Dootz</name>
</author>
<author>
<name sortKey="Koran Rd, A" uniqKey="Koran Rd A">A Koran 3rd</name>
</author>
<author>
<name sortKey="Craig, Rg" uniqKey="Craig R">RG Craig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, Z" uniqKey="Khan Z">Z Khan</name>
</author>
<author>
<name sortKey="Martin, J" uniqKey="Martin J">J Martin</name>
</author>
<author>
<name sortKey="Collard, S" uniqKey="Collard S">S Collard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kulak Ozkan, Y" uniqKey="Kulak Ozkan Y">Y Kulak-Ozkan</name>
</author>
<author>
<name sortKey="Sertgoz, A" uniqKey="Sertgoz A">A Sertgoz</name>
</author>
<author>
<name sortKey="Gedik, H" uniqKey="Gedik H">H Gedik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le N, Bl" uniqKey="Le N B">BL León</name>
</author>
<author>
<name sortKey="Del Bel Cury, Aa" uniqKey="Del Bel Cury A">AA Del Bel Cury</name>
</author>
<author>
<name sortKey="Rodrigues Garcia, Rc" uniqKey="Rodrigues Garcia R">RC Rodrigues Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morshedian, J" uniqKey="Morshedian J">J Morshedian</name>
</author>
<author>
<name sortKey="Hoseinpour, Pm" uniqKey="Hoseinpour P">PM Hoseinpour</name>
</author>
<author>
<name sortKey="Azizi, H" uniqKey="Azizi H">H Azizi</name>
</author>
<author>
<name sortKey="Parvizzad, R" uniqKey="Parvizzad R">R Parvizzad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mulik, S" uniqKey="Mulik S">S Mulik</name>
</author>
<author>
<name sortKey="Sotiriou Leventis, C" uniqKey="Sotiriou Leventis C">C Sotiriou-Leventis</name>
</author>
<author>
<name sortKey="Leventis, N" uniqKey="Leventis N">N Leventis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mutluay, Mm" uniqKey="Mutluay M">MM Mutluay</name>
</author>
<author>
<name sortKey="Ruyter, Ie" uniqKey="Ruyter I">IE Ruyter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peutzfeldt, A" uniqKey="Peutzfeldt A">A Peutzfeldt</name>
</author>
<author>
<name sortKey="Asmussen, E" uniqKey="Asmussen E">E Asmussen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinto, Jr" uniqKey="Pinto J">JR Pinto</name>
</author>
<author>
<name sortKey="Mesquita, Mf" uniqKey="Mesquita M">MF Mesquita</name>
</author>
<author>
<name sortKey="Henriques, Ge" uniqKey="Henriques G">GE Henriques</name>
</author>
<author>
<name sortKey="Arruda N Bilo, Ma" uniqKey="Arruda N Bilo M">MA Arruda Nóbilo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pinto, Jr" uniqKey="Pinto J">JR Pinto</name>
</author>
<author>
<name sortKey="Mesquita, Mf" uniqKey="Mesquita M">MF Mesquita</name>
</author>
<author>
<name sortKey="N Bilo, Ma" uniqKey="N Bilo M">MA Nóbilo</name>
</author>
<author>
<name sortKey="Henriques, Ge" uniqKey="Henriques G">GE Henriques</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Polyzois, Gl" uniqKey="Polyzois G">GL Polyzois</name>
</author>
<author>
<name sortKey="Frangou, Mj" uniqKey="Frangou M">MJ Frangou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shimizu, H" uniqKey="Shimizu H">H Shimizu</name>
</author>
<author>
<name sortKey="Kawaguchi, T" uniqKey="Kawaguchi T">T Kawaguchi</name>
</author>
<author>
<name sortKey="Yoshida, K" uniqKey="Yoshida K">K Yoshida</name>
</author>
<author>
<name sortKey="Tsue, F" uniqKey="Tsue F">F Tsue</name>
</author>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, Wk" uniqKey="Wong W">WK Wong</name>
</author>
<author>
<name sortKey="Varrall, Dc" uniqKey="Varrall D">DC Varrall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yilmaz, K" uniqKey="Yilmaz K">K Yilmaz</name>
</author>
<author>
<name sortKey="Ozkan, P" uniqKey="Ozkan P">P Ozkan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quek, Hc" uniqKey="Quek H">HC Quek</name>
</author>
<author>
<name sortKey="Tan, Kb" uniqKey="Tan K">KB Tan</name>
</author>
<author>
<name sortKey="Nicholls, Ji" uniqKey="Nicholls J">JI Nicholls</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravald, N" uniqKey="Ravald N">N Ravald</name>
</author>
<author>
<name sortKey="Dahlgren, S" uniqKey="Dahlgren S">S Dahlgren</name>
</author>
<author>
<name sortKey="Teiwik, A" uniqKey="Teiwik A">A Teiwik</name>
</author>
<author>
<name sortKey="Grondahl, K" uniqKey="Grondahl K">K Gröndahl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosentritt, M" uniqKey="Rosentritt M">M Rosentritt</name>
</author>
<author>
<name sortKey="Behr, M" uniqKey="Behr M">M Behr</name>
</author>
<author>
<name sortKey="Gebhard, R" uniqKey="Gebhard R">R Gebhard</name>
</author>
<author>
<name sortKey="Handel, G" uniqKey="Handel G">G Handel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sailer, I" uniqKey="Sailer I">I Sailer</name>
</author>
<author>
<name sortKey="Sailer, T" uniqKey="Sailer T">T Sailer</name>
</author>
<author>
<name sortKey="Stawarczyk, B" uniqKey="Stawarczyk B">B Stawarczyk</name>
</author>
<author>
<name sortKey="Jung, Re" uniqKey="Jung R">RE Jung</name>
</author>
<author>
<name sortKey="Hammerle, Ch" uniqKey="Hammerle C">CH Hammerle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scherrer, Ss" uniqKey="Scherrer S">SS Scherrer</name>
</author>
<author>
<name sortKey="De Rijk, Wg" uniqKey="De Rijk W">WG de Rijk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schindler, Hj" uniqKey="Schindler H">HJ Schindler</name>
</author>
<author>
<name sortKey="Stengel, E" uniqKey="Stengel E">E Stengel</name>
</author>
<author>
<name sortKey="Spiess, We" uniqKey="Spiess W">WE Spiess</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sherif, S" uniqKey="Sherif S">S Sherif</name>
</author>
<author>
<name sortKey="Susarla, Sm" uniqKey="Susarla S">SM Susarla</name>
</author>
<author>
<name sortKey="Hwang, Jw" uniqKey="Hwang J">JW Hwang</name>
</author>
<author>
<name sortKey="Weber, Hp" uniqKey="Weber H">HP Weber</name>
</author>
<author>
<name sortKey="Wright, Rf" uniqKey="Wright R">RF Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weber, Hp" uniqKey="Weber H">HP Weber</name>
</author>
<author>
<name sortKey="Sukotjo, C" uniqKey="Sukotjo C">C Sukotjo</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Appl Oral Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">J Appl Oral Sci</journal-id>
<journal-id journal-id-type="publisher-id">J. Appl. Oral. Sci.</journal-id>
<journal-title-group>
<journal-title>Journal of Applied Oral Science</journal-title>
</journal-title-group>
<issn pub-type="ppub">1678-7757</issn>
<issn pub-type="epub">1678-7765</issn>
<publisher>
<publisher-name>Faculdade de Odontologia de Bauru da Universidade de São Paulo</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24037068</article-id>
<article-id pub-id-type="pmc">3881892</article-id>
<article-id pub-id-type="doi">10.1590/1679-775720130077</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge
<sup>®</sup>
2) before and after cyclic mechanical loading</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>DITTMER</surname>
<given-names>Marc Philipp</given-names>
</name>
<xref ref-type="aff" rid="aff01">1</xref>
<xref ref-type="corresp" rid="c01"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>NENSA</surname>
<given-names>Moritz</given-names>
</name>
<xref ref-type="aff" rid="aff02">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>STIESCH</surname>
<given-names>Meike</given-names>
</name>
<xref ref-type="aff" rid="aff03">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>KOHORST</surname>
<given-names>Philipp</given-names>
</name>
<xref ref-type="aff" rid="aff04">4</xref>
</contrib>
</contrib-group>
<aff id="aff01">
<label>1</label>
PD Dr, Private Practice, Hannover, Germany.</aff>
<aff id="aff02">
<label>2</label>
Clinic for Maxillofacial Surgery, Plastic Surgery, Implant Center, Stuttgart, Germany.</aff>
<aff id="aff03">
<label>3</label>
Professor Dr., Head of the Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.</aff>
<aff id="aff04">
<label>4</label>
PD Dr., Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany.</aff>
<author-notes>
<corresp id="c01">
<bold>Corresponding address:</bold>
Marc Philipp Dittmer - Kleinertstr. 9 - 30627 - Hannover - Germany - Phone: +49 (0) 511 7602151 - e-mail:
<email>marc@drdittmer.de</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Jul-Aug</season>
<year>2013</year>
</pub-date>
<volume>21</volume>
<issue>4</issue>
<fpage>307</fpage>
<lpage>313</lpage>
<history>
<date date-type="received">
<day>16</day>
<month>1</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>26</day>
<month>3</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>5</month>
<year>2013</year>
</date>
</history>
<permissions>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. </license-p>
</license>
</permissions>
<abstract>
<p>Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics.</p>
<sec>
<title>Objective</title>
<p>The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks.</p>
</sec>
<sec>
<title>Material and Methods</title>
<p>Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge
<sup>®</sup>
2-concept (I-Bridge
<sup>®</sup>
2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). </p>
</sec>
<sec>
<title>Results</title>
<p>All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. </p>
</sec>
<sec>
<title>Conclusion</title>
<p>The load-bearing capacity of the I-Bridge
<sup>®</sup>
2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading
<italic>in vivo</italic>
depends on additional aspects. Further studies are needed to address these aspects.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Dental implants</kwd>
<kwd>Implant-supported dental prosthesis</kwd>
<kwd>Dental implant-abutment connection</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>Biomain</funding-source>
</award-group>
</funding-group>
</article-meta>
</front>
<body>
<sec>
<title>INTRODUCTION</title>
<p>Since the long-term success rates of osseointegrated dental implants may be as high as 99%
<sup>
<xref ref-type="bibr" rid="r20">20</xref>
</sup>
, this treatment option has become increasingly important in the field of oral rehabilitation. Besides single tooth replacement
<sup>
<xref ref-type="bibr" rid="r08">8</xref>
</sup>
, oral implants offer the possibility of rehabilitating partial and total edentulous jaws with fixed (FDPs) or removable dental prostheses (RDPs)
<sup>
<xref ref-type="bibr" rid="r16">16</xref>
</sup>
. However, meta-analyses have shown that there is insufficient evidence to establish clinical guidelines for either FDPs or RDPs in partially edentulous jaws
<sup>
<xref ref-type="bibr" rid="r02">2</xref>
,
<xref ref-type="bibr" rid="r30">30</xref>
</sup>
. Notwithstanding, most patients prefer implant-supported FDPs, since this kind of prosthesis replaces the tooth under as natural conditions as possible.</p>
<p>Implant-supported FDPs can be connected to the implant fixture in two ways. The first option is to place a screw-retained abutment onto the endosseal implant and to fix the FDP by conventional cementation; with the second option, the superstructure is directly connected with the implant by a screw. There have been no consistent conclusions about the long-term success of the two connection types: Nissan, et al.
<sup>
<xref ref-type="bibr" rid="r21">21</xref>
</sup>
(2011) reported that the long-term outcome of cemented implant-supported FDPs was superior to that of screw-retained FDPs
<sup>
<xref ref-type="bibr" rid="r21">21</xref>
</sup>
. In contrast, the results of Sherif, et al.
<sup>
<xref ref-type="bibr" rid="r29">29</xref>
</sup>
(2011) indicate that screw and cement-retained restorations are equivalent with respect to most success parameters as assessed by the clinician or patient
<sup>
<xref ref-type="bibr" rid="r29">29</xref>
</sup>
. A major problem with all implant-supported FDPs was identified in a systematic review: technical complications related to implant components and suprastructures were reported in 60-80% of the studies included, whereas the fixture failed in less than 1% of the cases
<italic>in vivo</italic>
<sup>
<xref ref-type="bibr" rid="r05">5</xref>
</sup>
. Implant overload was thought to be responsible for cracks developing in the material, leading to catastrophic failure even after short periods of function
<sup>
<xref ref-type="bibr" rid="r22">22</xref>
</sup>
.</p>
<p>Cemented FDPs are aesthetically superior, since they have no screw channel and angulations of the implant can be compensated by the abutment. Furthermore, fabrication tolerances are adjusted by the cement layer and bacterial microleakage is less, especially in combination with a conical implant-abutment connection
<sup>
<xref ref-type="bibr" rid="r04">4</xref>
</sup>
. However, removal of the superstructure for maintenance or hygienic reasons is very demanding or even impossible. In contrast, with screw-retained FDPs, these procedures can be handled easily, for example if a fixation screw has become loose or has failed, or another technical or biological maintenance is needed. A further advantage of these FDPs is that they are less expensive due to minor complexity of the manufacturing process if CAD/CAM technology is applied. Nevertheless, screw-retained FDPs require a passive fit and some studies have reported that CAD/CAM produced frameworks may exhibit misfits and deformation stresses
<sup>
<xref ref-type="bibr" rid="r11">11</xref>
,
<xref ref-type="bibr" rid="r18">18</xref>
</sup>
.</p>
<p>One example of a screw-retained FDP is the I-Bridge
<sup>®</sup>
2, introduced in 2005 by Biomain (Biomain AB, Helsingborg, Sweden). This kind of restoration is a CAD/CAM-milled implant bridge of either titanium or cobalt chromium alloy with the possibility of angling the screw channels by up to 20º. Due to this angulation, the screw channels can be placed at the oral side of the FDP, especially in the anterior region, thus making it possible to build FDPs with larger spans with satisfactory aesthetics. Furthermore, this system is compatible with most established implant systems, since the FDP can be directly connected to the fixture or with a special abutment between the implant and framework, e.g. with Astra Tech (see
<xref ref-type="fig" rid="f01">Figure 1</xref>
).</p>
<fig id="f01" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Schematic cross-section of the I-Bridge
<sup>®</sup>
2 system</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g01"></graphic>
</fig>
<p>There is a lack of information about the mechanical characteristics of screw-retained FDPs, especially when these are connected directly with the implant fixture. The authors expect major stresses and distortions within the connection area and the screw which may affect the mechanical characteristics of these restorations. The aim of the present study was therefore to evaluate the load-bearing capacity of a five-unit milled titanium implant framework (I-Bridge
<sup>®</sup>
2, Biomain AB, Helsingborg, Sweden) supported by three implants and to test the influence of artificial aging from cyclic mechanical loading on the load-bearing capacity. Additionally, failed specimens were micro- and macroscopically analyzed to identify the failure modes.</p>
<p>The hypotheses to be tested within the present study were: 1) Load-bearing capacity of screw-retained, five-unit milled titanium implant frameworks supported by considerably angulated implants is higher than static functional forces occurring in the posterior region. 2) Even after extended cyclic mechanical loading specimens show a stable implant-framework connection and a sufficient load-bearing capacity for use in the posterior area.</p>
</sec>
<sec sec-type="materials|methods">
<title>MATERIAL AND METHODS</title>
<sec>
<title>Fabrication of the master model and framework pattern</title>
<p>For each test specimen, three implants had to be reproducibly placed into a bone-simulating socket. A master model was prepared for this purpose: a silicone negative (Optosil
<sup>®</sup>
, Heraeus Kulzer, Hanau, Germany) of a block - 55 mm in length, 25 mm in height and 25 mm in depth - served as the parent for all sockets. The silicone form was cast once with polyurethane (AlphaDie Top
<sup>®</sup>
, Schütz Dental GmbH, Rosbach, Germany) to generate a master socket for the implants in order to simulate placement in the right mandibular canine (43), the right mandibular second premolar (45) and the right mandibular second molar (47) region. To mimic a realistic clinical worst-case scenario with respect to the shape of the mandibular jaw, the implants were angulated as follows: 43: 30º buccal angulation, 45: no angulation, 47: 30º lingual angulation. Drilling holes for implant analogues were prepared with a device for the manufacturing of surgical templates (gonyX
<sup>®</sup>
, Straumann GmbH, Freiburg, Germany), thus guaranteeing the predefined angulation and drilling hole depth. Implant analogues were placed into the drilling holes and fixed with acrylic resin (Palavit
<sup>®</sup>
G, Heraeus Kulzer, Hanau, Germany) in such a manner that a simulated bone loss of 3 mm from the implant shoulder was considered in accordance with ISO 14801
<sup>
<xref ref-type="bibr" rid="r15">15</xref>
</sup>
. The distances between the center points of the implants were 14 mm (43-45) and 19 mm (45-47). In the next step, the implant analogues were prepared for modelling an I-Bridge
<sup>®</sup>
2 master framework by adding viscous acrylic resin (Pattern Resin LS, GC International Corp., Tokyo, Japan) (see
<xref ref-type="fig" rid="f02">Figure 2</xref>
). For this purpose, special components of the I-Bridge
<sup>®</sup>
2 system, called the I-Flex
<sup>TM</sup>
(see
<xref ref-type="fig" rid="f03">Figure 3</xref>
), were fixed at the implant analogues. The I-Flex
<sup>TM</sup>
is a screw with a spherical head that serves as a substructure for the modelling and is used to define the angling of the screws connecting the implant and the framework. Modelling caps were then placed onto the substructure and the FDP was modelled in such a manner that the occlusal surfaces were planar, except for both pontics, where small cavities were included for the exact load application. The distance between the shoulder of the middle implant and the occlusal surface was 12 mm (
<xref ref-type="fig" rid="f02">Figure 2</xref>
). Finally, the whole model was sent to the manufacturer (Biomain
<sup>®</sup>
), for scanning of the implant situation and the master framework and for milling 10 identical titanium frameworks according to the I-Bridge
<sup>®</sup>
2 system.</p>
<fig id="f02" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p> I-Bridge®2 master framework made of acrylic resin</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g02"></graphic>
</fig>
<fig id="f03" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Special components of the I-Bridge®2 system, called the I-Flex™, placed on the implants prior to master framework modelling</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g03"></graphic>
</fig>
</sec>
<sec>
<title>Fabrication of specimens</title>
<p>Using the special abutment (Biomain
<sup>®</sup>
) as interconnecting components (see also
<xref ref-type="fig" rid="f01">Figure 1</xref>
), original implants (OsseoSpeed
<sup>TM</sup>
4.0 S, 13 mm length, Astra Tech, Mölndal, Sweden) were fixed to the frameworks with the corresponding screws. The framework-implant assemblies were then consecutively placed in the above mentioned silicone negative which was afterwards poured out with polyurethane (AlphaDie Top
<sup>®</sup>
, Schütz Dental GmbH, Rosbach, Germany). After the curing process was finished, all implant-framework connections were removed. To assure reproducible assemblies, the abutment and the frameworks were reconnected to the implants with the corresponding screws and the torque given by the manufacturer (implant-abutment 15 Ncm, abutment-framework 20 Ncm). Five specimens were randomly selected for cyclic mechanical loading and prepared with a resilient silicone bearing at the socket (Mollosil Plus, DETAX, Ettlingen, Germany), in order to prevent socket fracture due to non-planar contact during cyclic loading.</p>
</sec>
<sec>
<title>Cyclic mechanical loading</title>
<p>Specimens of the test group underwent five million cycles of mechanical loading in a chewing simulator (machine shop, Hannover Medical School, Hannover, Germany), with 100 N as the upper load limit at a frequency of 2.5 Hz prior to final testing. After every 250,000 load cycles, the specimens were macroscopically checked to see whether the screws had loosened or failed. For this purpose, the mechanical loading was stopped and the specimens were macroscopically evaluated by visual inspection regarding the potential changes in the construction. Furthermore, the stiffness of the screw connection was tested by use of the recommended screw driver without applying an additional force to the complex. As
<xref ref-type="fig" rid="f04">Figure 4</xref>
shows, the load was applied onto the pontics at two points 16.5 mm apart via two tungsten carbide balls (diameter 6.0 mm) on interposed tin foils (thickness 0.2 mm) to ensure an equally distributed load application. The loading piston was mounted using an intermediate silicone layer (Mollosil Plus, DETAX, Ettlingen, Germany) to prevent point-wise overload and to guarantee a homogeneous load application (see
<xref ref-type="fig" rid="f04">Figure 4</xref>
). Since a survey has revealed that the average number of chewing cycles is about 800,000
<italic>per</italic>
year
<sup>
<xref ref-type="bibr" rid="r25">25</xref>
</sup>
, the five million cycles applied in this study corresponded to an
<italic>in-vivo</italic>
service period of approximately 75 months (6 years, 3 months).</p>
<fig id="f04" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>I-Bridge
<sup>®</sup>
2 in the universal test instrument prior to cyclic mechanical loading. The force was transferred to the pontics via two tungsten carbide balls</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g04"></graphic>
</fig>
</sec>
<sec>
<title>Load until failure testing</title>
<p>After cyclic mechanical loading, the resilient silicone socket bearing and the tin foils were removed and the test and control specimens were loaded in a universal testing machine (Type 20K, UTS Testsysteme, Ulm-Einsingen, Germany). Load-displacement curves were recorded until failure (defined as a drop in load of more than 500 N, see
<xref ref-type="fig" rid="f05">Figure 5</xref>
). The load piston was the same as that used for the cyclic mechanical loading; the crosshead speed was 1 mm/min. The statistical analysis was performed using the t-test for independent groups, with the level of significance set at p=0.05.</p>
<fig id="f05" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Exemplarily chosen load-displacement curve of a test specimen</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g05"></graphic>
</fig>
</sec>
<sec>
<title>Failure analysis</title>
<p>Before and after testing, all specimens were macro- and microscopically analyzed at the interface of the implant and superstructure, using a reflected light microscope (M3Z, Wild, Heerbrugg, Switzerland). Failure modes were documented via a digital camera (ProgRes C12 plus, Jenoptik, Jena, Germany) with all pictures including a scale bar. Changes in the frameworks' geometry due to load testing were evaluated by comparing pictures of the specimens before and after the testing procedure.</p>
<p>Additionally, one specimen from each test group was selected for cross-sectional analysis. For this purpose, the specimens were embedded in clear methylmethacrylate (Acryfix, Struers GmbH, Willich, Germany) and mid-sectioned along the longitudinal axis of each implant in the bucco-lingual direction using a diamond saw (IsoMet 4000, Buehler, Illinois, USA). After polishing the cross-sectional surface to a roughness depth of less than 9 µm, the internal configuration was visually inspected and photographed under a reflected-light microscope (M3Z, Wild, Heerbrugg, Switzerland) at tenfold magnification to evaluate the failure mode.</p>
</sec>
</sec>
<sec sec-type="results">
<title>RESULTS</title>
<p>All specimens survived cyclic mechanical loading and no obvious failure or screw loosening could be observed. Load-displacement curves showed a more or less steep increase until a maximum force was reached, followed by a gradually decreasing force and, finally, failure.</p>
<p>
<xref ref-type="table" rid="t01">Table 1</xref>
and
<xref ref-type="fig" rid="f06">Figure 6</xref>
show the results of the load-bearing capacity testing. In comparison to the control group with a load-bearing capacity of 8,496 N±196 N, the aged specimens exhibited a broad decrease in load-bearing capacity to 7,592 N±901 N. However, the cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060).</p>
<table-wrap id="t01" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Mean values (MV), standard deviations (SD), medians (MD), maximum (Max) and minimum (Min) are given</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
<td colspan="3" align="center" valign="top" style="background-color:#CCCCCC" rowspan="1">
<bold>Load-bearing capacity in Newton (N)</bold>
</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1">
<bold>MV</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>SD</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>MD</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Max</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Min</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">Control</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">8,495.9</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">196.3</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">8,434.8</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">8,723.6</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">8,294.2</td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1">Test</td>
<td align="center" rowspan="1" colspan="1">7,591.6</td>
<td align="center" rowspan="1" colspan="1">901.3</td>
<td align="center" rowspan="1" colspan="1">7,850.6</td>
<td align="center" rowspan="1" colspan="1">8,448.0</td>
<td align="center" rowspan="1" colspan="1">6,159.8</td>
</tr>
<tr>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">p</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1">0.060</td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
<td align="center" style="background-color:#CCCCCC" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="f06" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Box chart representing load-bearing capacity for both test groups. Medians and quartiles are given</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g06"></graphic>
</fig>
<p>External inspection of the specimens revealed an identical failure mode for all specimens. Large deformations of the titanium framework in the abutment area accompanied by a loss of vertical dimension were obvious. Nevertheless, all FDPs were still fixed on the implants and no screw fracture could be detected.</p>
<p>Analyses of cross-sections showed framework fractures near the abutment in both the control and test group (see
<xref ref-type="fig" rid="f07">Figure 7A-C</xref>
). Furthermore, the screw threads of the abutment and the implant were deformed. In one case, the implant head even fractured in the middle of the thread.</p>
<fig id="f07" orientation="portrait" position="float">
<label>Figure 7 A-C</label>
<caption>
<p>Polished cross-sections of embedded failed specimens of the differently angulated implants (a: +30°, b: 0°, c: -30°). Large deformations of the framework at the implant connection area are obvious</p>
</caption>
<graphic xlink:href="jaos-21-04-0307-g07"></graphic>
</fig>
</sec>
<sec sec-type="discussion">
<title>DISCUSSION</title>
<p>Dental implants are subjected to functional loading during their period of wear
<italic>in vivo</italic>
. Hence, it is of crucial importance to consider cyclic mechanical loading when evaluating the long-term behaviour of implant-supported restorations
<italic>in vitro</italic>
. Fatigue testing until failure is accepted as a method to generate data on the fracture strength and implant longevity
<sup>
<xref ref-type="bibr" rid="r23">23</xref>
,
<xref ref-type="bibr" rid="r26">26</xref>
</sup>
. A standardized guideline (ISO 14801) for the dynamic fatigue testing of single implants has been established by the International Organization for Standardization
<sup>
<xref ref-type="bibr" rid="r15">15</xref>
</sup>
. In contrast to single implant testing, testing of multi-implant supported FDPs is not yet standardized, but the experimental setup of the present study was carefully chosen to be in accordance with ISO 14801. Furthermore, an unfavourable clinical situation was imitated as best as possible: the distance between the implant shoulder and crestal bone level was adjusted to 3 mm in order to represent a typical reduction in the bone support, as recommended in ISO 14801
<sup>
<xref ref-type="bibr" rid="r15">15</xref>
</sup>
. To mimic natural bone, the implants were embedded in reinforced polyurethane with an elastic modulus similar to that of bone
<sup>
<xref ref-type="bibr" rid="r27">27</xref>
</sup>
. Moreover, since in numerous clinical situations implants are angulated to the restoration's axis, in particular in the vestibulo-oral direction
<sup>
<xref ref-type="bibr" rid="r03">3</xref>
</sup>
, in the current test scenario the anterior (43 region) and the posterior implant (47 region) were angulated 30º off-axis in the buccal and lingual directions, respectively. Cyclic mechanical loading was performed with a chewing simulator and an upper load limit of 100 N, which is in accordance with the average bite forces of between 20 N and 120 N, depending on the nutrition's hardness
<sup>
<xref ref-type="bibr" rid="r28">28</xref>
</sup>
. However, a fixed number of mechanical cycles (five million) was applied, representing an
<italic>in vivo</italic>
service period of approximately 75 months (6 years, 3 months)
<sup>
<xref ref-type="bibr" rid="r25">25</xref>
</sup>
. This period of wear makes it possible to draw conclusions on the long-term behaviour of the implant components
<sup>
<xref ref-type="bibr" rid="r07">7</xref>
</sup>
. Even though tests were performed under highly realistic conditions, the significance of the present study may be limited due to the sample size of only five specimens
<italic>per</italic>
group. Notwithstanding this, the number of test samples seems to be adequate, since several other authors have conducted studies on implant connection stability with the same sample size
<sup>
<xref ref-type="bibr" rid="r09">9</xref>
,
<xref ref-type="bibr" rid="r10">10</xref>
,
<xref ref-type="bibr" rid="r23">23</xref>
</sup>
.</p>
<p>In a systematic review, Berglundh, et al.
<sup>
<xref ref-type="bibr" rid="r05">5</xref>
</sup>
(2002) showed that technical complications related to implant components and superstructures were reported in 60-80% of the studies included, in contrast to biological complications in only 40-60% of the studies
<sup>
<xref ref-type="bibr" rid="r05">5</xref>
</sup>
. Screw loosening and joint failure are major problems
<sup>
<xref ref-type="bibr" rid="r06">6</xref>
,
<xref ref-type="bibr" rid="r19">19</xref>
</sup>
. In the present study, no screw loosened or failed during the cyclic mechanical loading. The locking of multiple implants seems to stabilize the whole implant-framework assembly
<sup>
<xref ref-type="bibr" rid="r11">11</xref>
</sup>
. Furthermore, this may be due to the passive fit of the CAD/CAM-milled I-Bridge
<sup>®</sup>
2. Abduo, et al.
<sup>
<xref ref-type="bibr" rid="r01">1</xref>
</sup>
(2011) considered that the CAD/CAM is the most consistent method for screw-retained implant frameworks, potentially giving an excellent fit
<sup>
<xref ref-type="bibr" rid="r01">1</xref>
</sup>
. In contrast, Eliasson, et al.
<sup>
<xref ref-type="bibr" rid="r11">11</xref>
</sup>
(2010) reported clinically acceptable I-Bridges
<sup>®</sup>
without passive fitting
<sup>
<xref ref-type="bibr" rid="r11">11</xref>
</sup>
.</p>
<p>The load-bearing capacity of the I-Bridge
<sup>®</sup>
2 even after cyclic mechanical loading was 7,592 N, which is much higher than maximum bite forces. These range approximately between 150 N and 880 N in the posterior region, depending on experimental conditions and the individual
<sup>
<xref ref-type="bibr" rid="r12">12</xref>
,
<xref ref-type="bibr" rid="r13">13</xref>
,
<xref ref-type="bibr" rid="r17">17</xref>
</sup>
. Nevertheless, large deformations of the framework were obvious in the connection area of the implant. The onset of plastic deformation typically appears earlier than the load drop which defined failure. Hence, it is possible that some of the veneering layer may delaminate in clinical practice before failure sets in. As the load-bearing capacity of the I-Bridge
<sup>®</sup>
2 achieves approximately tenfold the maximum bite forces, it can be assumed that this phenomenon may be quite rare. As a limitation of the present study, it has to be mentioned that the frameworks fabricated were a little bulkier than many actual clinical frameworks, thus resulting in a higher load-bearing capacity.</p>
<p>The present results suggest that screw-retained implant bridges are sufficient to rehabilitate partial and total edentulous jaws. A recently published long-term evaluation of full-arch implant bridges is in accordance with these findings
<sup>
<xref ref-type="bibr" rid="r24">24</xref>
</sup>
. However, it has to be emphasized that just one specific implant system was included in this study, so that conclusions for other systems are hard to draw. Furthermore, long-term success depends on additional aspects, e. g. peri-implant soft tissue complications
<sup>
<xref ref-type="bibr" rid="r14">14</xref>
</sup>
.</p>
</sec>
<sec sec-type="conclusions">
<title>CONCLUSION</title>
<p>The load-bearing capacity of the I-Bridge
<sup>®</sup>
2 frameworks is much higher than the clinical relevant occlusal forces, even with non-optimally placed implants, so that there is a huge safety margin. The cyclic mechanical loading did not significantly influence the load-bearing capacity, but
<italic>in vivo</italic>
long-term stability depends on additional aspects, e. g. bacterial microleakage.</p>
</sec>
</body>
<back>
<ack>
<sec>
<title>ACKNOWLEDGEMENT</title>
<p>This study was supported by Biomain, Sweden, whose support is gratefully acknowledged.</p>
</sec>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="r01">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amin</surname>
<given-names>WM</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Ritchie</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>The nature of the interface between polymethyl methacrylate denture base materials and soft lining materials</article-title>
<source>J Dent</source>
<year>1981</year>
<volume>9</volume>
<fpage>336</fpage>
<lpage>346</lpage>
<pub-id pub-id-type="pmid">7033318</pub-id>
</element-citation>
</ref>
<ref id="r02">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atsü</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Gelgör</surname>
<given-names>IE</given-names>
</name>
<name>
<surname>Sahin</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Effects of silica coating and silane surface conditioning on the bond strength of metal and ceramic brackets to enamel</article-title>
<source>Angle Orthod</source>
<year>2006</year>
<volume>76</volume>
<fpage>857</fpage>
<lpage>862</lpage>
<pub-id pub-id-type="pmid">17029522</pub-id>
</element-citation>
</ref>
<ref id="r03">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atsü</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Kilicarslan</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Kucukesmen</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Aka</surname>
<given-names>PS</given-names>
</name>
</person-group>
<article-title>Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin</article-title>
<source>J Prosthet Dent</source>
<year>2006</year>
<volume>95</volume>
<fpage>430</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="pmid">16765155</pub-id>
</element-citation>
</ref>
<ref id="r04">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demir</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dogan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Dogan</surname>
<given-names>OM</given-names>
</name>
<name>
<surname>Keskin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bolayir</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Soygun</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Peel bond strength of two silicone soft liners to a heat-cured denture base resin</article-title>
<source>J Adhes Dent</source>
<year>2011</year>
<volume>13</volume>
<issue>6</issue>
<fpage>579</fpage>
<lpage>584</lpage>
<pub-id pub-id-type="pmid">21734974</pub-id>
</element-citation>
</ref>
<ref id="r05">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dogan</surname>
<given-names>OM</given-names>
</name>
<name>
<surname>Keskin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Dogan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ataman</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Usanmaz</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Structureproperty relation of a soft liner material used in denture applications</article-title>
<source>Dent Mater J</source>
<year>2007</year>
<volume>26</volume>
<fpage>329</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="pmid">17694740</pub-id>
</element-citation>
</ref>
<ref id="r06">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jacobsen</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Mitchell</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Holt</surname>
<given-names>RA</given-names>
</name>
</person-group>
<article-title>Lased and sandblasted denture base surface preparations affecting resilient liner bonding</article-title>
<source>J Prosthet Dent</source>
<year>1997</year>
<volume>78</volume>
<fpage>153</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">9260132</pub-id>
</element-citation>
</ref>
<ref id="r07">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiao</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gui</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Silane grafting and crosslinking of ethylene-octene copolymer</article-title>
<source>Eur Polym J</source>
<year>2005</year>
<volume>41</volume>
<fpage>1204</fpage>
<lpage>1211</lpage>
</element-citation>
</ref>
<ref id="r08">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Katsumata</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hojo</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hamano</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamaguchi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>S</given-names>
</name>
<etal>et al</etal>
</person-group>
<article-title>Bonding strength of autopolymerizing resin to nylon denture base polymer</article-title>
<source>Dent Mater J</source>
<year>2009</year>
<volume>28</volume>
<fpage>409</fpage>
<lpage>418</lpage>
<pub-id pub-id-type="pmid">19721277</pub-id>
</element-citation>
</ref>
<ref id="r09">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawano</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Dootz</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Koran 3rd</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Craig</surname>
<given-names>RG</given-names>
</name>
</person-group>
<article-title>Comparison of bond strength of six soft denture liners to denture base resin</article-title>
<source>J Prosthet Dent</source>
<year>1992</year>
<volume>68</volume>
<fpage>368</fpage>
<lpage>371</lpage>
<pub-id pub-id-type="pmid">1501192</pub-id>
</element-citation>
</ref>
<ref id="r10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Collard</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Adhesion characteristics of visible light-cured denture base material bonded to resilient lining materials</article-title>
<source>J Prosthet Dent</source>
<year>1989</year>
<volume>62</volume>
<fpage>196</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="pmid">2668515</pub-id>
</element-citation>
</ref>
<ref id="r11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kulak-Ozkan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sertgoz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gedik</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Effect of thermocycling on tensile bond strength of six silicone-based, resilient denture liners</article-title>
<source>J Prosthet Dent</source>
<year>2003</year>
<volume>89</volume>
<fpage>303</fpage>
<lpage>310</lpage>
<pub-id pub-id-type="pmid">12644808</pub-id>
</element-citation>
</ref>
<ref id="r12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>León</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Del Bel Cury</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Rodrigues Garcia</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>Water sorption, solubility, and tensile bond strength of resilient denture lining materials polymerized by different methods after thermal cycling</article-title>
<source>J Prosthet Dent</source>
<year>2005</year>
<volume>93</volume>
<fpage>282</fpage>
<lpage>287</lpage>
<pub-id pub-id-type="pmid">15775930</pub-id>
</element-citation>
</ref>
<ref id="r13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morshedian</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hoseinpour</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Azizi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Parvizzad</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Effect of polymer structure and additives on silane grafting of polyethylene</article-title>
<source>Express Polym Lett</source>
<year>2009</year>
<volume>3</volume>
<fpage>105</fpage>
<lpage>115</lpage>
</element-citation>
</ref>
<ref id="r14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mulik</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sotiriou-Leventis</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Leventis</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Adhesion enhancement of polymeric films on glass surfaces by a silane derivative of azobisisobutyroni trile (AIBN)</article-title>
<source>Polymer Preprints</source>
<year>2008</year>
<volume>49</volume>
<fpage>498</fpage>
<lpage>499</lpage>
</element-citation>
</ref>
<ref id="r15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mutluay</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Ruyter</surname>
<given-names>IE</given-names>
</name>
</person-group>
<article-title>Evaluation of bond strength of soft relining materials to denture base polymers</article-title>
<source>Dent Mater</source>
<year>2007</year>
<volume>23</volume>
<fpage>1373</fpage>
<lpage>1381</lpage>
<pub-id pub-id-type="pmid">17222898</pub-id>
</element-citation>
</ref>
<ref id="r16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peutzfeldt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Asmussen</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Silicoating: evaluation of a new method of bonding composite resin to metal</article-title>
<source>Scand J Dent Res</source>
<year>1988</year>
<volume>96</volume>
<fpage>171</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="pmid">3281245</pub-id>
</element-citation>
</ref>
<ref id="r17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinto</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Mesquita</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Henriques</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Arruda Nóbilo</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Effect of thermocycling on bond strength and elasticity of 4 long-term soft denture liners</article-title>
<source>J Prosthet Dent</source>
<year>2002</year>
<volume>88</volume>
<fpage>516</fpage>
<lpage>521</lpage>
<pub-id pub-id-type="pmid">12474002</pub-id>
</element-citation>
</ref>
<ref id="r18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pinto</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Mesquita</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Nóbilo</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Henriques</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>Evaluation of varying amounts of thermal cycling on bond strength and permanent deformation of two resilient denture liners</article-title>
<source>J Prosthet Dent</source>
<year>2004</year>
<volume>92</volume>
<fpage>288</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="pmid">15343166</pub-id>
</element-citation>
</ref>
<ref id="r19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Polyzois</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Frangou</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Influence of curing method, sealer, and water storage on the hardness of a soft lining material over time</article-title>
<source>J Prosthodont</source>
<year>2001</year>
<volume>10</volume>
<fpage>42</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">11406795</pub-id>
</element-citation>
</ref>
<ref id="r20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shimizu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawaguchi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yoshida</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tsue</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Effect of surface preparation on the failure load of a highly filled composite resin bonded to a denture base resin</article-title>
<source>J Prosthodont</source>
<year>2009</year>
<volume>18</volume>
<fpage>684</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="pmid">19682216</pub-id>
</element-citation>
</ref>
<ref id="r21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Varrall</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Role of molecular structure on the silane cross-linking of polyethylene: the importance of resin molecular structure change during silane grafting</article-title>
<source>Polymer</source>
<year>1994</year>
<volume>35</volume>
<fpage>5447</fpage>
<lpage>5452</lpage>
</element-citation>
</ref>
<ref id="r22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yilmaz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ozkan</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Profilometer evaluation of the effect of various polishing methods on the surface roughness in dental ceramics of different structures subjected to repeated firings</article-title>
<source>Quintessence Int</source>
<year>2010</year>
<volume>41</volume>
<fpage>125</fpage>
<lpage>131</lpage>
<pub-id pub-id-type="pmid">20165744</pub-id>
</element-citation>
</ref>
<ref id="r23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quek</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Nicholls</surname>
<given-names>JI</given-names>
</name>
</person-group>
<article-title>Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2008</year>
<volume>23</volume>
<issue>2</issue>
<fpage>253</fpage>
<lpage>262</lpage>
<pub-id pub-id-type="pmid">18548921</pub-id>
</element-citation>
</ref>
<ref id="r24">
<label>24</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ravald</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Dahlgren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Teiwik</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gröndahl</surname>
<given-names>K</given-names>
</name>
</person-group>
<source>Long-term evaluation of Astra Tech and Brånemark implants in patients treated with full-arch bridges. Results after 12-15 years</source>
<publisher-name>Clin Oral Implants Res</publisher-name>
<day>04</day>
<month>7</month>
<year>2012</year>
<comment>[Epub ahead of print]</comment>
</element-citation>
</ref>
<ref id="r25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosentritt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Behr</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gebhard</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Handel</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Influence of stress simulation parameters on the fracture strength of all-ceramic fixed-partial dentures</article-title>
<source>Dent Mater</source>
<year>2006</year>
<volume>22</volume>
<issue>2</issue>
<fpage>176</fpage>
<lpage>182</lpage>
<pub-id pub-id-type="pmid">16039706</pub-id>
</element-citation>
</ref>
<ref id="r26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sailer</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sailer</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Stawarczyk</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Hammerle</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2009</year>
<volume>24</volume>
<issue>5</issue>
<fpage>850</fpage>
<lpage>858</lpage>
<pub-id pub-id-type="pmid">19865625</pub-id>
</element-citation>
</ref>
<ref id="r27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scherrer</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>de Rijk</surname>
<given-names>WG</given-names>
</name>
</person-group>
<article-title>The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli</article-title>
<source>Int J Prosthodont</source>
<year>1993</year>
<volume>6</volume>
<issue>5</issue>
<fpage>462</fpage>
<lpage>467</lpage>
<pub-id pub-id-type="pmid">8297457</pub-id>
</element-citation>
</ref>
<ref id="r28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schindler</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Stengel</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Spiess</surname>
<given-names>WE</given-names>
</name>
</person-group>
<article-title>Feedback control during mastication of solid food textures - a clinical-experimental study</article-title>
<source>J Prosthet Dent</source>
<year>1998</year>
<volume>80</volume>
<issue>3</issue>
<fpage>330</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="pmid">9760366</pub-id>
</element-citation>
</ref>
<ref id="r29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sherif</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Susarla</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>RF</given-names>
</name>
</person-group>
<article-title>Clinician- and patient-reported long-term evaluation of screw- and cement-retained implant restorations: a 5-year prospective study</article-title>
<source>Clin Oral Investig</source>
<year>2011</year>
<volume>15</volume>
<issue>6</issue>
<fpage>993</fpage>
<lpage>999</lpage>
</element-citation>
</ref>
<ref id="r30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weber</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Sukotjo</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Does the type of implant prosthesis affect outcomes in the partially edentulous patient</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2007</year>
<volume>22</volume>
<issue>Suppl</issue>
<fpage>140</fpage>
<lpage>172</lpage>
<pub-id pub-id-type="pmid">18437795</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002F75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3881892
   |texte=   Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant
frameworks (I-Bridge®2) before and after cyclic mechanical
loading
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24037068" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022