Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus

Identifieur interne : 002E51 ( Pmc/Corpus ); précédent : 002E50; suivant : 002E52

Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus

Auteurs : Keiko M. Tarquinio ; Nikhil K. Kothurkar ; Dharendra Y. Goswami ; Ronald C. Sanders ; Arno L. Zaritsky ; Ann Marie Levine

Source :

RBID : PMC:2865012

Abstract

Purpose:

Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in significant morbidity and mortality. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are pathogens associated with VAP. Silver (Ag) coating of endotracheal tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO2) coating has not been studied.

Methods:

Five types of ETT coatings were applied over silica layer: Ag, solgel TiO2, solgel TiO2 with Ag, Degussa P25 TiO2 (Degussa TiO2), and Degussa TiO2 with Ag. After ETTs were incubated with P. aeruginosa or S. aureus; colonization was determined quantitatively.

Results:

Pseudomonas aeruginosa and S. aureus grew for 5 days on standard ETTs. Compared to standard ETTs, P. aeruginosa growth was significantly inhibited by solgel TiO2 with Ag at 24 hours, and by Degussa TiO2 with Ag at 24 and 48 hours after inoculation. No significant difference in S. aureus growth was observed between the control and any of the five coatings for 5 days.

Conclusion:

In vitro, solgel TiO2 with Ag and Degussa TiO2 with Ag both attenuated P. aeruginosa growth, but demonstrated no effect on S. aureus colonization. Further studies using alternative coating and incorporating UV light exposure are needed to identify their potential utility in reducing VAP.


Url:
PubMed: 20463933
PubMed Central: 2865012

Links to Exploration step

PMC:2865012

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on
<italic>Pseudomonas aeruginosa</italic>
and
<italic>Staphylococcus aureus</italic>
</title>
<author>
<name sortKey="Tarquinio, Keiko M" sort="Tarquinio, Keiko M" uniqKey="Tarquinio K" first="Keiko M" last="Tarquinio">Keiko M. Tarquinio</name>
<affiliation>
<nlm:aff id="af1-ijn-5-177">Division of Pediatric Critical Care Medicine, Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, RI USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kothurkar, Nikhil K" sort="Kothurkar, Nikhil K" uniqKey="Kothurkar N" first="Nikhil K" last="Kothurkar">Nikhil K. Kothurkar</name>
<affiliation>
<nlm:aff id="af2-ijn-5-177">Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Ettimadai, Coimbatore, India;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goswami, Dharendra Y" sort="Goswami, Dharendra Y" uniqKey="Goswami D" first="Dharendra Y" last="Goswami">Dharendra Y. Goswami</name>
<affiliation>
<nlm:aff id="af3-ijn-5-177">Clean Energy Research Center, University of South Florida, Tampa, FL, USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sanders, Ronald C" sort="Sanders, Ronald C" uniqKey="Sanders R" first="Ronald C" last="Sanders">Ronald C. Sanders</name>
<affiliation>
<nlm:aff id="af4-ijn-5-177">Section of Pediatric Critical Care, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital, Little Rock, AR, USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zaritsky, Arno L" sort="Zaritsky, Arno L" uniqKey="Zaritsky A" first="Arno L" last="Zaritsky">Arno L. Zaritsky</name>
<affiliation>
<nlm:aff id="af5-ijn-5-177">Executive Medical Director, Children’s Hospital of The King’s Daughters, Norfolk, VA, USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Levine, Ann Marie" sort="Levine, Ann Marie" uniqKey="Levine A" first="Ann Marie" last="Levine">Ann Marie Levine</name>
<affiliation>
<nlm:aff id="af6-ijn-5-177">Pediatric Critical Care Medicine, University of Michigan Medical School, C.S. Mott Children’s Hospital, Ann Arbor, MI, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20463933</idno>
<idno type="pmc">2865012</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865012</idno>
<idno type="RBID">PMC:2865012</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">002E51</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002E51</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on
<italic>Pseudomonas aeruginosa</italic>
and
<italic>Staphylococcus aureus</italic>
</title>
<author>
<name sortKey="Tarquinio, Keiko M" sort="Tarquinio, Keiko M" uniqKey="Tarquinio K" first="Keiko M" last="Tarquinio">Keiko M. Tarquinio</name>
<affiliation>
<nlm:aff id="af1-ijn-5-177">Division of Pediatric Critical Care Medicine, Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, RI USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kothurkar, Nikhil K" sort="Kothurkar, Nikhil K" uniqKey="Kothurkar N" first="Nikhil K" last="Kothurkar">Nikhil K. Kothurkar</name>
<affiliation>
<nlm:aff id="af2-ijn-5-177">Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Ettimadai, Coimbatore, India;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Goswami, Dharendra Y" sort="Goswami, Dharendra Y" uniqKey="Goswami D" first="Dharendra Y" last="Goswami">Dharendra Y. Goswami</name>
<affiliation>
<nlm:aff id="af3-ijn-5-177">Clean Energy Research Center, University of South Florida, Tampa, FL, USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sanders, Ronald C" sort="Sanders, Ronald C" uniqKey="Sanders R" first="Ronald C" last="Sanders">Ronald C. Sanders</name>
<affiliation>
<nlm:aff id="af4-ijn-5-177">Section of Pediatric Critical Care, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital, Little Rock, AR, USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zaritsky, Arno L" sort="Zaritsky, Arno L" uniqKey="Zaritsky A" first="Arno L" last="Zaritsky">Arno L. Zaritsky</name>
<affiliation>
<nlm:aff id="af5-ijn-5-177">Executive Medical Director, Children’s Hospital of The King’s Daughters, Norfolk, VA, USA;</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Levine, Ann Marie" sort="Levine, Ann Marie" uniqKey="Levine A" first="Ann Marie" last="Levine">Ann Marie Levine</name>
<affiliation>
<nlm:aff id="af6-ijn-5-177">Pediatric Critical Care Medicine, University of Michigan Medical School, C.S. Mott Children’s Hospital, Ann Arbor, MI, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Nanomedicine</title>
<idno type="ISSN">1176-9114</idno>
<idno type="eISSN">1178-2013</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Purpose:</title>
<p>Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in significant morbidity and mortality.
<italic>Pseudomonas aeruginosa</italic>
(
<italic>P. aeruginosa</italic>
) and
<italic>Staphylococcus aureus</italic>
(
<italic>S. aureus</italic>
) are pathogens associated with VAP. Silver (Ag) coating of endotracheal tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO
<sub>2</sub>
) coating has not been studied.</p>
</sec>
<sec>
<title>Methods:</title>
<p>Five types of ETT coatings were applied over silica layer: Ag, solgel TiO
<sub>2</sub>
, solgel TiO
<sub>2</sub>
with Ag, Degussa P25 TiO
<sub>2</sub>
(Degussa TiO
<sub>2</sub>
), and Degussa TiO
<sub>2</sub>
with Ag. After ETTs were incubated with
<italic>P. aeruginosa</italic>
or
<italic>S. aureus</italic>
; colonization was determined quantitatively.</p>
</sec>
<sec>
<title>Results:</title>
<p>
<italic>Pseudomonas aeruginosa</italic>
and
<italic>S. aureus</italic>
grew for 5 days on standard ETTs. Compared to standard ETTs,
<italic>P. aeruginosa</italic>
growth was significantly inhibited by solgel TiO
<sub>2</sub>
with Ag at 24 hours, and by Degussa TiO
<sub>2</sub>
with Ag at 24 and 48 hours after inoculation. No significant difference in
<italic>S. aureus</italic>
growth was observed between the control and any of the five coatings for 5 days.</p>
</sec>
<sec>
<title>Conclusion:</title>
<p>
<italic>In vitro</italic>
, solgel TiO
<sub>2</sub>
with Ag and Degussa TiO
<sub>2</sub>
with Ag both attenuated
<italic>P. aeruginosa</italic>
growth, but demonstrated no effect on
<italic>S. aureus</italic>
colonization. Further studies using alternative coating and incorporating UV light exposure are needed to identify their potential utility in reducing VAP.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Chastre, J" uniqKey="Chastre J">J Chastre</name>
</author>
<author>
<name sortKey="Fagon, Jy" uniqKey="Fagon J">JY Fagon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elward, Am" uniqKey="Elward A">AM Elward</name>
</author>
<author>
<name sortKey="Warren, Dk" uniqKey="Warren D">DK Warren</name>
</author>
<author>
<name sortKey="Fraser, Vj" uniqKey="Fraser V">VJ Fraser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warren, Dk" uniqKey="Warren D">DK Warren</name>
</author>
<author>
<name sortKey="Shukla, Sj" uniqKey="Shukla S">SJ Shukla</name>
</author>
<author>
<name sortKey="Olsen, Ma" uniqKey="Olsen M">MA Olsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, D" uniqKey="Cook D">D Cook</name>
</author>
<author>
<name sortKey="Reeve, B" uniqKey="Reeve B">B Reeve</name>
</author>
<author>
<name sortKey="Guyatt, G" uniqKey="Guyatt G">G Guyatt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crnich, C" uniqKey="Crnich C">C Crnich</name>
</author>
<author>
<name sortKey="Safdar, N" uniqKey="Safdar N">N Safdar</name>
</author>
<author>
<name sortKey="Maki, D" uniqKey="Maki D">D Maki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rello, J" uniqKey="Rello J">J Rello</name>
</author>
<author>
<name sortKey="Sonora, R" uniqKey="Sonora R">R Sonora</name>
</author>
<author>
<name sortKey="Jubert, P" uniqKey="Jubert P">P Jubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gujadhur, R" uniqKey="Gujadhur R">R Gujadhur</name>
</author>
<author>
<name sortKey="Helme, Bw" uniqKey="Helme B">BW Helme</name>
</author>
<author>
<name sortKey="Sanni, A" uniqKey="Sanni A">A Sanni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deriso, Aj" uniqKey="Deriso A">AJ DeRiso</name>
</author>
<author>
<name sortKey="Ladowski, Js" uniqKey="Ladowski J">JS Ladowski</name>
</author>
<author>
<name sortKey="Dillon, Ta" uniqKey="Dillon T">TA Dillon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drakulovic, Mb" uniqKey="Drakulovic M">MB Drakulovic</name>
</author>
<author>
<name sortKey="Torres, A" uniqKey="Torres A">A Torres</name>
</author>
<author>
<name sortKey="Bauer, Tt" uniqKey="Bauer T">TT Bauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adair, Cg" uniqKey="Adair C">CG Adair</name>
</author>
<author>
<name sortKey="Gorman, Sp" uniqKey="Gorman S">SP Gorman</name>
</author>
<author>
<name sortKey="Byers, Lm" uniqKey="Byers L">LM Byers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Safdar, N" uniqKey="Safdar N">N Safdar</name>
</author>
<author>
<name sortKey="Crnich, C" uniqKey="Crnich C">C Crnich</name>
</author>
<author>
<name sortKey="Maki, D" uniqKey="Maki D">D Maki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costerton, Jw" uniqKey="Costerton J">JW Costerton</name>
</author>
<author>
<name sortKey="Stewart, Ps" uniqKey="Stewart P">PS Stewart</name>
</author>
<author>
<name sortKey="Greenberg, Ep" uniqKey="Greenberg E">EP Greenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feldman, C" uniqKey="Feldman C">C Feldman</name>
</author>
<author>
<name sortKey="Kassel, M" uniqKey="Kassel M">M Kassel</name>
</author>
<author>
<name sortKey="Cantrell, J" uniqKey="Cantrell J">J Cantrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pacheco Fowler, V" uniqKey="Pacheco Fowler V">V Pacheco-Fowler</name>
</author>
<author>
<name sortKey="Gaonkar, T" uniqKey="Gaonkar T">T Gaonkar</name>
</author>
<author>
<name sortKey="Wyer, Pc" uniqKey="Wyer P">PC Wyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rello, J" uniqKey="Rello J">J Rello</name>
</author>
<author>
<name sortKey="Kollef, M" uniqKey="Kollef M">M Kollef</name>
</author>
<author>
<name sortKey="Diaz, E" uniqKey="Diaz E">E Diaz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kollef, Mh" uniqKey="Kollef M">MH Kollef</name>
</author>
<author>
<name sortKey="Afessa, B" uniqKey="Afessa B">B Afessa</name>
</author>
<author>
<name sortKey="Anzueto, A" uniqKey="Anzueto A">A Anzueto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujishima, A" uniqKey="Fujishima A">A Fujishima</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsuang, Yh" uniqKey="Tsuang Y">YH Tsuang</name>
</author>
<author>
<name sortKey="Sun, Js" uniqKey="Sun J">JS Sun</name>
</author>
<author>
<name sortKey="Huang, Yc" uniqKey="Huang Y">YC Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arai, T" uniqKey="Arai T">T Arai</name>
</author>
<author>
<name sortKey="Ueda, T" uniqKey="Ueda T">T Ueda</name>
</author>
<author>
<name sortKey="Sugiyama, T" uniqKey="Sugiyama T">T Sugiyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veltri, M" uniqKey="Veltri M">M Veltri</name>
</author>
<author>
<name sortKey="Ferrari, M" uniqKey="Ferrari M">M Ferrari</name>
</author>
<author>
<name sortKey="Balleri, P" uniqKey="Balleri P">P Balleri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mills, A" uniqKey="Mills A">A Mills</name>
</author>
<author>
<name sortKey="Elliott, N" uniqKey="Elliott N">N Elliott</name>
</author>
<author>
<name sortKey="Hill, G" uniqKey="Hill G">G Hill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramstedt, M" uniqKey="Ramstedt M">M Ramstedt</name>
</author>
<author>
<name sortKey="Houriet, R" uniqKey="Houriet R">R Houriet</name>
</author>
<author>
<name sortKey="Mossialos, D" uniqKey="Mossialos D">D Mossialos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Secer, Hi" uniqKey="Secer H">HI Secer</name>
</author>
<author>
<name sortKey="Kural, C" uniqKey="Kural C">C Kural</name>
</author>
<author>
<name sortKey="Kaplan, M" uniqKey="Kaplan M">M Kaplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hartmann, M" uniqKey="Hartmann M">M Hartmann</name>
</author>
<author>
<name sortKey="Guttmann, J" uniqKey="Guttmann J">J Guttmann</name>
</author>
<author>
<name sortKey="Muller, B" uniqKey="Muller B">B Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otto, M" uniqKey="Otto M">M Otto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corrigan, Rm" uniqKey="Corrigan R">RM Corrigan</name>
</author>
<author>
<name sortKey="Rigby, D" uniqKey="Rigby D">D Rigby</name>
</author>
<author>
<name sortKey="Handley, P" uniqKey="Handley P">P Handley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gotz, F" uniqKey="Gotz F">F Gotz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fluckiger, U" uniqKey="Fluckiger U">U Fluckiger</name>
</author>
<author>
<name sortKey="Ulrich, M" uniqKey="Ulrich M">M Ulrich</name>
</author>
<author>
<name sortKey="Steinhuber, A" uniqKey="Steinhuber A">A Steinhuber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guggenbichler, Jp" uniqKey="Guggenbichler J">JP Guggenbichler</name>
</author>
<author>
<name sortKey="Boswald, M" uniqKey="Boswald M">M Boswald</name>
</author>
<author>
<name sortKey="Lugauer, S" uniqKey="Lugauer S">S Lugauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Ohko, Y" uniqKey="Ohko Y">Y Ohko</name>
</author>
<author>
<name sortKey="Sekiguchi, Y" uniqKey="Sekiguchi Y">Y Sekiguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Leung, P" uniqKey="Leung P">P Leung</name>
</author>
<author>
<name sortKey="Yao, L" uniqKey="Yao L">L Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rogers, Ss" uniqKey="Rogers S">SS Rogers</name>
</author>
<author>
<name sortKey="Van Der Walle, C" uniqKey="Van Der Walle C">C van der Walle</name>
</author>
<author>
<name sortKey="Waigh, Ta" uniqKey="Waigh T">TA Waigh</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Nanomedicine</journal-id>
<journal-title-group>
<journal-title>International Journal of Nanomedicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">1176-9114</issn>
<issn pub-type="epub">1178-2013</issn>
<publisher>
<publisher-name>Dove Medical Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20463933</article-id>
<article-id pub-id-type="pmc">2865012</article-id>
<article-id pub-id-type="publisher-id">ijn-5-177</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on
<italic>Pseudomonas aeruginosa</italic>
and
<italic>Staphylococcus aureus</italic>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Tarquinio</surname>
<given-names>Keiko M</given-names>
</name>
<xref ref-type="corresp" rid="c1-ijn-5-177"></xref>
<xref ref-type="aff" rid="af1-ijn-5-177">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kothurkar</surname>
<given-names>Nikhil K</given-names>
</name>
<xref ref-type="aff" rid="af2-ijn-5-177">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Goswami</surname>
<given-names>Dharendra Y</given-names>
</name>
<xref ref-type="aff" rid="af3-ijn-5-177">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sanders</surname>
<given-names>Ronald C</given-names>
<suffix>Jr</suffix>
</name>
<xref ref-type="aff" rid="af4-ijn-5-177">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zaritsky</surname>
<given-names>Arno L</given-names>
</name>
<xref ref-type="aff" rid="af5-ijn-5-177">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>LeVine</surname>
<given-names>Ann Marie</given-names>
</name>
<xref ref-type="aff" rid="af6-ijn-5-177">6</xref>
</contrib>
</contrib-group>
<aff id="af1-ijn-5-177">
<label>1</label>
Division of Pediatric Critical Care Medicine, Department of Pediatrics, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, Providence, RI USA;</aff>
<aff id="af2-ijn-5-177">
<label>2</label>
Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Ettimadai, Coimbatore, India;</aff>
<aff id="af3-ijn-5-177">
<label>3</label>
Clean Energy Research Center, University of South Florida, Tampa, FL, USA;</aff>
<aff id="af4-ijn-5-177">
<label>4</label>
Section of Pediatric Critical Care, Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital, Little Rock, AR, USA;</aff>
<aff id="af5-ijn-5-177">
<label>5</label>
Executive Medical Director, Children’s Hospital of The King’s Daughters, Norfolk, VA, USA;</aff>
<aff id="af6-ijn-5-177">
<label>6</label>
Pediatric Critical Care Medicine, University of Michigan Medical School, C.S. Mott Children’s Hospital, Ann Arbor, MI, USA</aff>
<author-notes>
<corresp id="c1-ijn-5-177">Correspondence: Keiko Tarquinio, Division of Pediatric Critical Care Medicine, Rhode Island Hospital, The Warren Alpert Medical School, Brown University, 593 Eddy St, Potter 115, Providence, RI 02903, USA, Tel +1 401 444 4201, Fax +1 401 444 5527, Email
<email>ktarquinio@lifespan.org</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<pmc-comment>Dove Press titles changed from ppub to collections in 2009. Fake ppub written to satisfy Coll Date Type=ppub</pmc-comment>
<pub-date pub-type="ppub">
<year>2010</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>4</month>
<year>2010</year>
</pub-date>
<volume>5</volume>
<fpage>177</fpage>
<lpage>183</lpage>
<history>
<date date-type="received">
<day>12</day>
<month>3</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>© 2010 Tarquinio et al, publisher and licensee Dove Medical Press Ltd.</copyright-statement>
<license>
<license-p>This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>Purpose:</title>
<p>Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in significant morbidity and mortality.
<italic>Pseudomonas aeruginosa</italic>
(
<italic>P. aeruginosa</italic>
) and
<italic>Staphylococcus aureus</italic>
(
<italic>S. aureus</italic>
) are pathogens associated with VAP. Silver (Ag) coating of endotracheal tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO
<sub>2</sub>
) coating has not been studied.</p>
</sec>
<sec>
<title>Methods:</title>
<p>Five types of ETT coatings were applied over silica layer: Ag, solgel TiO
<sub>2</sub>
, solgel TiO
<sub>2</sub>
with Ag, Degussa P25 TiO
<sub>2</sub>
(Degussa TiO
<sub>2</sub>
), and Degussa TiO
<sub>2</sub>
with Ag. After ETTs were incubated with
<italic>P. aeruginosa</italic>
or
<italic>S. aureus</italic>
; colonization was determined quantitatively.</p>
</sec>
<sec>
<title>Results:</title>
<p>
<italic>Pseudomonas aeruginosa</italic>
and
<italic>S. aureus</italic>
grew for 5 days on standard ETTs. Compared to standard ETTs,
<italic>P. aeruginosa</italic>
growth was significantly inhibited by solgel TiO
<sub>2</sub>
with Ag at 24 hours, and by Degussa TiO
<sub>2</sub>
with Ag at 24 and 48 hours after inoculation. No significant difference in
<italic>S. aureus</italic>
growth was observed between the control and any of the five coatings for 5 days.</p>
</sec>
<sec>
<title>Conclusion:</title>
<p>
<italic>In vitro</italic>
, solgel TiO
<sub>2</sub>
with Ag and Degussa TiO
<sub>2</sub>
with Ag both attenuated
<italic>P. aeruginosa</italic>
growth, but demonstrated no effect on
<italic>S. aureus</italic>
colonization. Further studies using alternative coating and incorporating UV light exposure are needed to identify their potential utility in reducing VAP.</p>
</sec>
</abstract>
<kwd-group>
<kwd>ventilator-associated pneumonia</kwd>
<kwd>Degussa titanium dioxide</kwd>
<kwd>solgel titanium dioxide</kwd>
<kwd>quantitative culture</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Ventilator-associated pneumonia (VAP) is one of the most common nosocomial infections among intensive care unit patients, which prolongs ventilation and hospitalization, resulting in significant morbidity, mortality and medical costs.
<xref ref-type="bibr" rid="b1-ijn-5-177">1</xref>
<xref ref-type="bibr" rid="b3-ijn-5-177">3</xref>
Researchers have developed strategies to prevent VAP, including controlling gastric pH, intratracheal intubation with a high-pressure endotracheal tube (ETT) cuff, continuous subglottic suction to prevent microaspiration, promoting oral hygiene with chlorhexidine, and semi-recumbent positioning.
<xref ref-type="bibr" rid="b4-ijn-5-177">4</xref>
<xref ref-type="bibr" rid="b9-ijn-5-177">9</xref>
</p>
<p>One strategy to reduce VAP is to treat the ETT with an antiseptic agent to control ETT biofilm formation.
<xref ref-type="bibr" rid="b10-ijn-5-177">10</xref>
,
<xref ref-type="bibr" rid="b11-ijn-5-177">11</xref>
A biofilm is an aggregate of a bacterial community attached to a solid surface and encased in an exopolysaccharide matrix, making it resistant to antibiotic penetration.
<xref ref-type="bibr" rid="b12-ijn-5-177">12</xref>
Biofilm formation is most prominent in the distal third of the ETT and can occur as early as sixty hours following endotracheal intubation.
<xref ref-type="bibr" rid="b13-ijn-5-177">13</xref>
</p>
<p>Due to silver’s antimicrobial properties, Pacheco-Fowler and colleagues studied chlorhexidine and Ag carbonate impregnated ETTs in an
<italic>in vitro</italic>
model and observed that bacterial growth of
<italic>S. aureus</italic>
,
<italic>P. aeruginosa</italic>
, and other organisms was attenuated.
<xref ref-type="bibr" rid="b14-ijn-5-177">14</xref>
Similarly, Rello et al found that bacterial colonization was delayed for seven days in adults intubated with Ag-coated ETTs compared with standard ETTs,
<xref ref-type="bibr" rid="b15-ijn-5-177">15</xref>
and Kollef and colleagues concluded a statistically significant reduction in the VAP incidence in a randomized multicenter trial.
<xref ref-type="bibr" rid="b16-ijn-5-177">16</xref>
</p>
<p>Titanium dioxide is widely used as an antimicrobial agent, but it is not commonly employed in the medical setting. In a process known as photocatalysis, TiO
<sub>2</sub>
is activated into potent oxidative species when exposed to UV light, with antiviral, antibacterial as well as fungicidal actions.
<xref ref-type="bibr" rid="b17-ijn-5-177">17</xref>
Recent, investigations have suggested that the photocatalytic activity is important in destroying a range of bacteria including
<italic>S. aureus</italic>
and
<italic>P. aeruginosa</italic>
in aqueous solutions.
<xref ref-type="bibr" rid="b18-ijn-5-177">18</xref>
Photocatalytic activity also is implicated in the inhibition of biofilm formation on TiO
<sub>2</sub>
based dental implants.
<xref ref-type="bibr" rid="b19-ijn-5-177">19</xref>
,
<xref ref-type="bibr" rid="b20-ijn-5-177">20</xref>
In view of these antimicrobial actions it is plausible that TiO
<sub>2</sub>
-coating of ETTs, potentially in combination with UV light, may sterilize ETTs in patients’ airways, thereby reducing the risk of VAP.</p>
<p>We conducted a pilot study of bacterial growth behavior on TiO
<sub>2</sub>
-coated ETTs without UV exposure to evaluate the antimicrobial effect of TiO
<sub>2</sub>
on polyvinyl chloride (PVC) which is used to manufacture ETTs. Initial experiments examined TiO
<sub>2</sub>
without UV light exposure for two reasons. First, the Ag and TiO
<sub>2</sub>
combination has not been studied on PVC material. Second, if the Ag and TiO
<sub>2</sub>
coating has antimicrobial activity without photocatalysis, this would reduce potential toxicity from UV exposure. The objective of this study was to determine if TiO
<sub>2</sub>
-coated ETTs with or without Ag would reduce bacterial colonization by two common VAP pathogens (ie,
<italic>P. aeruginosa</italic>
or
<italic>S. aureus</italic>
) in an
<italic>in vitro</italic>
model compared with standard ETTs.</p>
</sec>
<sec sec-type="methods">
<title>Material and methods</title>
<sec>
<title>Solgel TiO
<sub>2</sub>
synthesis</title>
<p>Sols of TiO
<sub>2</sub>
were made using a method adapted from Mills and colleagues.
<xref ref-type="bibr" rid="b21-ijn-5-177">21</xref>
A solution of 10 mL titanium isopropoxide (AC19470 98+%; Acros Organics, Geel, Belgium) in 2.32 g glacial acetic acid (A465-250; Fisher Chemical, Pittsburgh, PA), was stirred into 60 mL deionized water acidified with 0.59 g concentrated nitric acid (S719721; Fisher Chemical). The reaction solution was then heated rapidly and held at 80°C for 8 hours. The solution was concentrated by heating at 150°C to 11 wt% TiO
<sub>2</sub>
followed by dilution with ethanol (AC61510; Acros Organics) to obtain a translucent white sol containing 6 wt% TiO
<sub>2</sub>
sol.</p>
</sec>
<sec>
<title>Endotracheal tubes</title>
<p>The inner lumens of the ETTs were first coated with silica (SiO
<sub>2</sub>
) which served as a passivating layer to prevent the TiO
<sub>2</sub>
from degrading the polyvinyl chloride (PVC) and to improve surface wettability by the subsequently applied TiO
<sub>2</sub>
coatings. The SiO
<sub>2</sub>
layer was applied using a nebulizer spray of 15 wt% colloidal SiO
<sub>2</sub>
in deionized water through the ETT, through a custom-designed nozzle, for 1 minute with an air flow rate of 10 liters per minute. The ETT was then dried with 85°C air for 1 minute.</p>
<p>The respective TiO
<sub>2</sub>
and Ag treatments are summarized in
<xref ref-type="table" rid="t1-ijn-5-177">Table 1</xref>
. Five types of coatings were applied over the SiO
<sub>2</sub>
layer (
<xref ref-type="fig" rid="f1-ijn-5-177">Figure 1</xref>
): 1) solgel TiO
<sub>2</sub>
, 2) solgel TiO
<sub>2</sub>
with Ag, 3) Degussa TiO
<sub>2</sub>
(Evonik Degussa, Parsippany, NJ, USA), 4) Degussa TiO
<sub>2</sub>
with Ag, and 5) Ag (not shown in
<xref ref-type="fig" rid="f1-ijn-5-177">Figure 1</xref>
). Each of the coating solutions A–D had 0.19 wt% TiO
<sub>2</sub>
on a dry weight basis. Water and ethanol were used as solvents in variable ratios for each solution. Solgel TiO
<sub>2</sub>
was used for solutions A and B, while C and D solutions consisted of solgel and Degussa TiO
<sub>2</sub>
in the ratio 20:80 wt/wt. Silver nitrate (AgNO
<sub>3</sub>
) was added to solutions B and D. For solution E, AgNO
<sub>3</sub>
0.1 wt% was mixed in ethanol-water (50:50 wt/wt). Two types of TiO
<sub>2</sub>
coatings were applied; solgel to increase adherence to PVC for substrate depositition and Degussa TiO
<sub>2</sub>
for potentially high photocatalytic performance. Since Degussa TiO
<sub>2</sub>
suspensions had very poor adhesion to the ETTs, they were mixed with a small amount of sols of solgel TiO
<sub>2</sub>
. After TiO
<sub>2</sub>
coating, the ETTs were dried with 85°C air for 1 minute, followed by further drying in an air-circulating oven at 100°C for 15 minutes, then packed while warm.</p>
</sec>
<sec>
<title>Preparation of
<italic>P. aeruginosa</italic>
</title>
<p>Freeze-dried
<italic>P. aeruginosa</italic>
(ATCC #25668; American Type Culture Collection, Manassas, VA, USA) was rehydrated with nutrient broth in aliquots to be stored at −80°C. After a loopful of frozen bacteria was plated and incubated, a single colony was inoculated into 4 mL tryptic soy broth (TSB) and incubated overnight at 37°C. The following day, the turbid bacterial broth was vortexed and inoculated. To determine the exact inoculums, 100μL of bacterial broth was serially diluted with phosphate-buffered saline (PBS), then optical density was measured to obtain 10
<sup>8</sup>
colony forming units/milliliter (CFU/mL).</p>
</sec>
<sec>
<title>Preparation of
<italic>S. aureus</italic>
</title>
<p>Frozen
<italic>S. aureus</italic>
(ATCC #25923) was rehydrated with TSB in the same fashion as
<italic>P. aeruginosa</italic>
, and stored at −80°C. Frozen
<italic>S. aureus</italic>
was inoculated into 50 mL TSB in a flask, and incubated overnight at 37°C. Turbid
<italic>S. aureus</italic>
bacterial broth was transferred to a 50 mL sterile culture tube, centrifuged for 15 minutes, and the supernatant was discarded. A concentrated broth was made by the addition of 1 mL of TSB to the pellet of
<italic>S. aureus</italic>
. Optical density was measured to obtain 10
<sup>9</sup>
CFU/mL for ETT inoculation.</p>
</sec>
<sec>
<title>Bacterial inoculation of ETTs</title>
<p>Each ETT was marked at 4 cm intervals for later division into six equal pieces, then immersed in 75% alcohol for 15 minutes to sterilize, rinsed with 20 mL 0.9% sterile saline, and air dried. After sterilization, each ETT was cut into six pieces, sealed on one end with Tegaderm
<sup>®</sup>
(3M, St. Paul, MN), filled with either 8 μl of
<italic>P. aeruginosa</italic>
broth plus 800 μl TSB or 100 μl
<italic>S. aureus</italic>
broth plus 700 μl TSB, then sealed with Tegaderm. All ETT pieces were placed in a 2 liter dry flask and agitated at 37°C overnight. On the following day, the bacterial fluid was drained from each ETT piece.</p>
</sec>
<sec>
<title>Peroxidase assay after coating ETTs</title>
<p>Colorimetric measurement was used to detect whether TiO
<sub>2</sub>
on ETTs generated peroxidase as part its antimicrobial property. EM Quant Peroxide Test Strips (EMD Chemicals Inc. Gibbstown, NJ, USA) which measure peroxidase between 1–100 parts-per million were used. Trypic soy broth 800 μL was placed on the TiO
<sub>2</sub>
-coated ETT for 24 hours at 37°C in the dark. Following incubation, the colorimetric strip was dipped into the TSB and the value of peroxidase production was determined.</p>
</sec>
<sec>
<title>Observation of bacterial growth</title>
<p>Bacterial inoculated ETT pieces were placed in an incubator to simulate the
<italic>in vitro</italic>
human trachea with no ambient light, a relative humidity of >90%, temperature of 37°C and at standard atmospheric pressure. Bacterial growth was observed for 24, 48, 72, 96, 120, and 144 hours after inoculation on the standard and five test ETTs. The inner surface of bacteria was collected by washing with 0.5 mL of sterile PBS and swabbing every 24 hours after inoculation. The collected fluid was serially diluted and plated on tryptic soy agar for incubation overnight at 37°C. Colony counts were expressed as CFU/mL, and each experiment was repeated four times.</p>
</sec>
<sec sec-type="methods">
<title>Statistical analysis</title>
<p>Data were reported as mean ± standard error of mean (SEM). Bacterial colony counts were analyzed using Mann–Whitney
<italic>U</italic>
test comparing coated ETTs with standard ETTs. A
<italic>P-</italic>
value of < 0.05 was considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>The coating was slightly opaque using solgel TiO
<sub>2</sub>
compared with Degussa TiO
<sub>2</sub>
. Samples with Ag-containing coatings appeared dark due to the reduction of AgNO
<sub>3</sub>
to Ag. The coating was particulate in appearance to the naked eye and peeled off while collecting the bacteria by mechanical force. Peroxidase production was not detected on TiO
<sub>2</sub>
-coated ETTs.</p>
<sec>
<title>Pseudomonas aeruginosa</title>
<p>Growth peaked at 72 hours and continued for 144 hours on standard ETTs.
<italic>Pseudomonas aeruginosa</italic>
growth was more robust on Ag-coated ETTs compared to standard ETTs at 120 hours (
<italic>P</italic>
= 0.04) and 144 hours (
<italic>P</italic>
= 0.06) despite initial slow growth in the first 24 hours (
<xref ref-type="fig" rid="f2-ijn-5-177">Figure 2</xref>
). There was no difference in
<italic>P. aeruginosa</italic>
growth over 144 hours among standard, solgel TiO
<sub>2</sub>
and Degussa TiO
<sub>2</sub>
-coated ETTs (
<xref ref-type="fig" rid="f3-ijn-5-177">Figure 3</xref>
). Compared to standard ETTs, solgel TiO
<sub>2</sub>
with Ag inhibited
<italic>P. aeruginosa</italic>
growth at 24 hours (
<italic>P</italic>
= 0.02), and Degussa TiO
<sub>2</sub>
with Ag inhibited
<italic>P. aeruginosa</italic>
growth at 24 and 48 hours after inoculation (
<italic>P</italic>
= 0.02 and
<italic>P</italic>
= 0.02, respectively) (
<xref ref-type="fig" rid="f4-ijn-5-177">Figure 4</xref>
).</p>
</sec>
<sec>
<title>Staphylococcus aureus</title>
<p>Growth was observed up to 144 hours.
<italic>Staphylococcus aureus</italic>
growth peaked at 48 hours after inoculation on both standard and Ag-coated ETTs without a difference over 144 hours (
<xref ref-type="fig" rid="f5-ijn-5-177">Figure 5</xref>
). Furthermore, there was also no difference in
<italic>S. aureus</italic>
growth over 144 hours between standard, solgel TiO
<sub>2</sub>
and Degussa TiO
<sub>2</sub>
-coated ETTs (
<xref ref-type="fig" rid="f6-ijn-5-177">Figure 6</xref>
). Compared to standard ETTs, neither solgel TiO
<sub>2</sub>
with Ag nor Degussa TiO
<sub>2</sub>
with Ag showed a difference in
<italic>S. aureus</italic>
growth over a 144 hour period except solgel TiO
<sub>2</sub>
with Ag at the 144 hour point after inoculation in which there was a significant attenuation of
<italic>S. aureus</italic>
growth compared to the standard ETT (
<xref ref-type="fig" rid="f7-ijn-5-177">Figure 7</xref>
).</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>Clinically, VAP is diagnosed after patients have been mechanically ventilated for more than 48 hours similar to the duration of bacterial growth in our simulated model. The growth of
<italic>P. aeruginosa</italic>
was consistent with the findings of other investigators under comparable conditions when monitoring growth in the first 24 hours.
<xref ref-type="bibr" rid="b22-ijn-5-177">22</xref>
,
<xref ref-type="bibr" rid="b23-ijn-5-177">23</xref>
An initial suppression of
<italic>P. aeruginosa</italic>
in Ag-coated ETT was also observed in sections of intraventricular tubing impregnated with Ag.
<xref ref-type="bibr" rid="b23-ijn-5-177">23</xref>
Moreover, our experience was similar to results of others who observed an undulating pattern of bacterial growth over a 50 hour period in Ag-coated ETTs.
<xref ref-type="bibr" rid="b24-ijn-5-177">24</xref>
The second
<italic>P. aeruginosa</italic>
growth peak observed in
<xref ref-type="fig" rid="f2-ijn-5-177">Figure 2</xref>
was thought to be an experimental variation due to the small sample size.</p>
<p>A similar growth pattern on Ag-coated ETT was also observed in a study evaluating the growth of
<italic>P. aeruginosa</italic>
and
<italic>S. aureus</italic>
on PVC even in the presence of antimicrobials. Both
<italic>P. aeruginosa</italic>
and
<italic>S. aureus</italic>
produce a biofilm; its robustness is strain dependent.
<xref ref-type="bibr" rid="b25-ijn-5-177">25</xref>
<xref ref-type="bibr" rid="b27-ijn-5-177">27</xref>
Biofilm generating species of
<italic>S. aureus</italic>
exhibit accelerating growth kinetics in the first 6 days in animal models. Furthermore, these strains form microcolonies on catheter substrates that serve as sites of biofilm formation.
<xref ref-type="bibr" rid="b28-ijn-5-177">28</xref>
Thus, it is likely that
<italic>S. aureus</italic>
growth was probably blunted in our model until a glycocalyx developed, then growth proceeded in the presence of nutrients and favorable conditions.</p>
<p>The antimicrobial properties of Ag result from Ag ions binding to bacterial sulphydryl- or histidyl-containing proteins, which disrupt transmembranous energy metabolism and electrolyte transport systems.
<xref ref-type="bibr" rid="b29-ijn-5-177">29</xref>
Because the cell wall composition and thickness vary between gram positive and gram negative bacteria, silver’s antimicrobial effect may be greater in
<italic>P. aerugionsa</italic>
than in
<italic>S. aureus</italic>
during the initial phase of bacterial multiplication.</p>
<p>The characteristics of discolored Ag-coated particles were not analyzed in this experiment. However, AgNO
<sub>3</sub>
is known to undergo photochemical reduction to metallic Ag upon exposure to light as described by the reaction:
<disp-formula>
<mml:math id="M1">
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:msub>
<mml:mrow>
<mml:mtext>AgNO</mml:mtext>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:msub>
<mml:mo></mml:mo>
<mml:mn>2</mml:mn>
<mml:msub>
<mml:mrow>
<mml:mtext>Ag</mml:mtext>
<mml:mo>+</mml:mo>
<mml:mn>2</mml:mn>
<mml:mtext>NO</mml:mtext>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mtext>O</mml:mtext>
<mml:mn>2</mml:mn>
</mml:msub>
</mml:mrow>
</mml:math>
</disp-formula>
</p>
<p>This leads to the tiny particles precipitation of Ag that appears black or brown. Future studies are needed to define the specific mechanism involved in the antimicrobial properties of Ag as well as the physiological impact of discolored Ag. Silver nitrate was not expected to react with SiO
<sub>2</sub>
under ambient conditions, since SiO
<sub>2</sub>
is quite nonreactive.</p>
<p>Application and treatment of ETTs with these chemicals may also change the surface charge and hydrophobicity, as in this study, thus changing the PVC characteristics from hydrophobic to hydrophilic.</p>
<p>This study demonstrated that the addition of TiO
<sub>2</sub>
significantly augmented the antibacterial effects of Ag on
<italic>P. aeruginosa</italic>
during the first 72 hours, but had no effect on
<italic>S. aureus</italic>
. In our limited study, TiO
<sub>2</sub>
photocatalysis was not observed as determined by the release of hydrogen peroxide as a part of reactive oxygen species. Silver and TiO
<sub>2</sub>
might have reacted with each other releasing Ag ion, and this reactant might have a synergistic antimicrobial effect even in a dark environment without photocatalysis.</p>
<p>In contrast, Yao showed that application of thin films of Ag and TiO
<sub>2</sub>
for sterilization purposes on silicone catheters promptly eliminates
<italic>S. aureus</italic>
within 90 minutes without TiO
<sub>2</sub>
-photocatalysis. They also showed inhibition of growth of
<italic>Escherichia coli</italic>
(
<italic>E. coli</italic>
)
<italic>and P. aeruginosa</italic>
, although they only observed growth for 24 hours.
<xref ref-type="bibr" rid="b30-ijn-5-177">30</xref>
Li and colleagues demonstrated that AgNO
<sub>3</sub>
and TiO
<sub>2</sub>
pulverized to surgical masks reduced
<italic>E. coli</italic>
and
<italic>S. aureus</italic>
by 100%. In Li’s study, Ag plus TiO
<sub>2</sub>
pulverized masks were exposed to UV-C irradiation prior to bacterial inoculation.
<xref ref-type="bibr" rid="b31-ijn-5-177">31</xref>
<italic>Pseudomonas aeruginosa</italic>
behaves very differently in the initial phase of bacterial attachment to the surface compared to
<italic>S. aureus</italic>
. Rogers and colleagues demonstrated that
<italic>S. aureus</italic>
multiplies and produces a biofilm on the surface that thickens monotonically, becoming hard during growth and softening during starvation. In comparison,
<italic>P. aeruginosa</italic>
showed much less reproducible behavior; the organism was loosely adhered and detached from the surface after several hours
<italic>in vitro</italic>
.
<xref ref-type="bibr" rid="b32-ijn-5-177">32</xref>
Until
<italic>P. aerugionosa</italic>
attachment is established, this initial motile motion phase may be inhibited or delayed by synergistic bactericidal activity of Ag and either form of TiO
<sub>2</sub>
as we demonstrated.</p>
<p>Our study has several limitations. First, it was conducted in an
<italic>in vitro</italic>
model that was designed to replicate the human tracheal environment. However, the results may not be applicable to the
<italic>in vivo</italic>
setting where other factors may impact the ETT surface such as frequent suctioning, nebulizer therapy or host factors. Second, the concomitant use of Ag and TiO
<sub>2</sub>
would seem to be marginally effective against VAP if it does not inhibit a common cause of VAP (ie,
<italic>S. aureus)</italic>
. Third, minimizing the particulate surface that facilitates bacterial binding could be effective by reducing the surface area for bacterial adherence and growth. Fourth, the coating, peeled off under mechanical stress, could be dislodged by a suction catheter and produce potentially harmful Ag particles in the human airway and lung parenchyma. Nevertheless, titanium dioxide is known to be safe in humans and is used in such products as cosmetics, toothpaste, and sun screen. Hence, the combination of Ag and TiO
<sub>2</sub>
needs to be evaluated in a clinical setting. Lastly, this study did not directly evaluate the attractive feature of TiO
<sub>2</sub>
photocatalysis. The potency of TiO
<sub>2</sub>
either individually or in combination with Ag needs to be examined in conjunction with photocatalysis. However, exposing tracheal mucosa to UV light involves potential toxicity. This potential risk and, more importantly, its clinical feasibility, need to be ascertained in future studies.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>One strategy to reduce the incidence of VAP is to pretreat ETT with an antiseptic agent to reduce or delay bacterial biofilm formation. The use of TiO
<sub>2</sub>
with Ag-coated ETTs effectively inhibited
<italic>P. aeruginosa</italic>
growth, but not
<italic>S. aureus</italic>
growth, in an
<italic>in vitro</italic>
model of a human trachea environment.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Disclosures</bold>
</p>
<p>The authors have no conflicts of interest to disclose in this work.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="b1-ijn-5-177">
<label>1.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chastre</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fagon</surname>
<given-names>JY</given-names>
</name>
</person-group>
<article-title>Ventilator-associated pneumonia</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2002</year>
<volume>165</volume>
<fpage>867</fpage>
<lpage>903</lpage>
<pub-id pub-id-type="pmid">11934711</pub-id>
</mixed-citation>
</ref>
<ref id="b2-ijn-5-177">
<label>2.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elward</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>VJ</given-names>
</name>
</person-group>
<article-title>Ventilator-associated pneumonia in pediatric intensive care unit patients: risk factors and outcomes</article-title>
<source>Pediatrics</source>
<year>2002</year>
<volume>109</volume>
<fpage>758</fpage>
<lpage>764</lpage>
<pub-id pub-id-type="pmid">11986433</pub-id>
</mixed-citation>
</ref>
<ref id="b3-ijn-5-177">
<label>3.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warren</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Shukla</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Olsen</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center</article-title>
<source>Crit Care Med</source>
<year>2003</year>
<volume>31</volume>
<fpage>1312</fpage>
<lpage>1317</lpage>
<pub-id pub-id-type="pmid">12771596</pub-id>
</mixed-citation>
</ref>
<ref id="b4-ijn-5-177">
<label>4.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cook</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Reeve</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Guyatt</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta-analyses</article-title>
<source>JAMA</source>
<year>1996</year>
<volume>275</volume>
<fpage>308</fpage>
<lpage>314</lpage>
<pub-id pub-id-type="pmid">8544272</pub-id>
</mixed-citation>
</ref>
<ref id="b5-ijn-5-177">
<label>5.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crnich</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Safdar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Maki</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The role of the intensive care unit environment in the pathogenesis and prevention of ventilator-associated pneumonia</article-title>
<source>Respir Care</source>
<year>2005</year>
<volume>50</volume>
<fpage>813</fpage>
<lpage>836</lpage>
<comment>discussion, 836–818.</comment>
<pub-id pub-id-type="pmid">15913471</pub-id>
</mixed-citation>
</ref>
<ref id="b6-ijn-5-177">
<label>6.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rello</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sonora</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Jubert</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pneumonia in intubated patients: role of respiratory airway care</article-title>
<source>Am J Respir Crit Care Med</source>
<year>1996</year>
<volume>154</volume>
<fpage>111</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">8680665</pub-id>
</mixed-citation>
</ref>
<ref id="b7-ijn-5-177">
<label>7.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gujadhur</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Helme</surname>
<given-names>BW</given-names>
</name>
<name>
<surname>Sanni</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Continuous subglottic suction is effective for prevention of ventilator associated pneumonia</article-title>
<source>Interact Cardiovasc Thorac Surg</source>
<year>2005</year>
<volume>4</volume>
<fpage>110</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">17670368</pub-id>
</mixed-citation>
</ref>
<ref id="b8-ijn-5-177">
<label>8.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeRiso</surname>
<given-names>AJ</given-names>
<suffix>2nd</suffix>
</name>
<name>
<surname>Ladowski</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Dillon</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chlorhexidine gluconate 0.12% oral rinse reduces the incidence of total nosocomial respiratory infection and nonprophylactic systemic antibiotic use in patients undergoing heart surgery</article-title>
<source>Chest</source>
<year>1996</year>
<volume>109</volume>
<fpage>1556</fpage>
<lpage>1561</lpage>
<pub-id pub-id-type="pmid">8769511</pub-id>
</mixed-citation>
</ref>
<ref id="b9-ijn-5-177">
<label>9.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drakulovic</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Torres</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>TT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial</article-title>
<source>Lancet</source>
<year>1999</year>
<volume>354</volume>
<fpage>1851</fpage>
<lpage>1858</lpage>
<pub-id pub-id-type="pmid">10584721</pub-id>
</mixed-citation>
</ref>
<ref id="b10-ijn-5-177">
<label>10.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adair</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Gorman</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Byers</surname>
<given-names>LM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Eradication of endotracheal tube biofilm by nebulised gentamicin</article-title>
<source>Intensive Care Med</source>
<year>2002</year>
<volume>28</volume>
<fpage>426</fpage>
<lpage>431</lpage>
<pub-id pub-id-type="pmid">11967596</pub-id>
</mixed-citation>
</ref>
<ref id="b11-ijn-5-177">
<label>11.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Safdar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Crnich</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Maki</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The pathogenesis of ventilator-associated pneumonia: its relevance to developing effective strategies for prevention</article-title>
<source>Respir Care</source>
<year>2005</year>
<volume>50</volume>
<fpage>725</fpage>
<lpage>739</lpage>
<comment>discussion, 739–741.</comment>
<pub-id pub-id-type="pmid">15913465</pub-id>
</mixed-citation>
</ref>
<ref id="b12-ijn-5-177">
<label>12.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Costerton</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Greenberg</surname>
<given-names>EP</given-names>
</name>
</person-group>
<article-title>Bacterial biofilms: a common cause of persistent infections</article-title>
<source>Science</source>
<year>1999</year>
<volume>284</volume>
<fpage>1318</fpage>
<lpage>1322</lpage>
<pub-id pub-id-type="pmid">10334980</pub-id>
</mixed-citation>
</ref>
<ref id="b13-ijn-5-177">
<label>13.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feldman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kassel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cantrell</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The presence and sequence of endotracheal tube colonization in patients undergoing mechanical ventilation</article-title>
<source>Eur Respir J</source>
<year>1999</year>
<volume>13</volume>
<fpage>546</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="pmid">10232424</pub-id>
</mixed-citation>
</ref>
<ref id="b14-ijn-5-177">
<label>14.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pacheco-Fowler</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gaonkar</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wyer</surname>
<given-names>PC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antiseptic impregnated endotracheal tubes for the prevention of bacterial colonization</article-title>
<source>J Hosp Infect</source>
<year>2004</year>
<volume>57</volume>
<fpage>170</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="pmid">15183249</pub-id>
</mixed-citation>
</ref>
<ref id="b15-ijn-5-177">
<label>15.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rello</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kollef</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diaz</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduced burden of bacterial airway colonization with a novel silver-coated endotracheal tube in a randomized multiple-center feasibility study</article-title>
<source>Crit Care Med</source>
<year>2006</year>
<volume>34</volume>
<fpage>2766</fpage>
<lpage>2772</lpage>
<pub-id pub-id-type="pmid">16957639</pub-id>
</mixed-citation>
</ref>
<ref id="b16-ijn-5-177">
<label>16.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kollef</surname>
<given-names>MH</given-names>
</name>
<name>
<surname>Afessa</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Anzueto</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial</article-title>
<source>JAMA</source>
<year>2008</year>
<volume>300</volume>
<fpage>805</fpage>
<lpage>813</lpage>
<pub-id pub-id-type="pmid">18714060</pub-id>
</mixed-citation>
</ref>
<ref id="b17-ijn-5-177">
<label>17.</label>
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Fujishima</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>TiO2 Photocatalysis: Fundamentals and applications</source>
<publisher-loc>Tokyo, Japan</publisher-loc>
<publisher-name>BKC, Inc</publisher-name>
<year>1999</year>
</mixed-citation>
</ref>
<ref id="b18-ijn-5-177">
<label>18.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsuang</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>YC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Studies of photokilling of bacteria using titanium dioxide nanoparticles</article-title>
<source>Artif Organs</source>
<year>2008</year>
<volume>32</volume>
<fpage>167</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="pmid">18269355</pub-id>
</mixed-citation>
</ref>
<ref id="b19-ijn-5-177">
<label>19.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sugiyama</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibiting microbial adhesion to denture base acrylic resin by titanium dioxide coating</article-title>
<source>J Oral Rehabil</source>
<year>2009</year>
<volume>36</volume>
<fpage>902</fpage>
<lpage>908</lpage>
<pub-id pub-id-type="pmid">19941590</pub-id>
</mixed-citation>
</ref>
<ref id="b20-ijn-5-177">
<label>20.</label>
<mixed-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Veltri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Balleri</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Stability values of titanium dioxide-blasted dental implants in edentulous maxillas: a 3-year pilot study</article-title>
<source>J Oral Rehabil</source>
<year>2009</year>
<month>11</month>
<day>4</day>
<comment>[Epub ahead of print]</comment>
</mixed-citation>
</ref>
<ref id="b21-ijn-5-177">
<label>21.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mills</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Elliott</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hill</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preparation and characterisation of novel thick sol-gel titania film photocatalysts</article-title>
<source>Photochem Photobiol Sci</source>
<year>2003</year>
<volume>2</volume>
<fpage>591</fpage>
<lpage>596</lpage>
<pub-id pub-id-type="pmid">12803083</pub-id>
</mixed-citation>
</ref>
<ref id="b22-ijn-5-177">
<label>22.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramstedt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Houriet</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mossialos</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Wet chemical silver treatment of endotracheal tubes to produce antibacterial surfaces</article-title>
<source>J Biomed Mater Res B Appl Biomater</source>
<year>2007</year>
<volume>83</volume>
<fpage>169</fpage>
<lpage>180</lpage>
<pub-id pub-id-type="pmid">17385236</pub-id>
</mixed-citation>
</ref>
<ref id="b23-ijn-5-177">
<label>23.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Secer</surname>
<given-names>HI</given-names>
</name>
<name>
<surname>Kural</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparison of the efficacies of antibiotic-impregnated and silver-impregnated ventricular catheters on the prevention of infections. An
<italic>in vitro</italic>
laboratory study</article-title>
<source>Pediatr Neurosurg</source>
<year>2008</year>
<volume>44</volume>
<fpage>444</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="pmid">19018152</pub-id>
</mixed-citation>
</ref>
<ref id="b24-ijn-5-177">
<label>24.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hartmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Guttmann</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduction of the bacterial load by the silver-coated endotracheal tube (SCET), a laboratory investigation</article-title>
<source>Technol Health Care</source>
<year>1999</year>
<volume>7</volume>
<fpage>359</fpage>
<lpage>370</lpage>
<pub-id pub-id-type="pmid">10543420</pub-id>
</mixed-citation>
</ref>
<ref id="b25-ijn-5-177">
<label>25.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otto</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Staphylococcal biofilms</article-title>
<source>Curr Top Microbiol Immunol</source>
<year>2008</year>
<volume>322</volume>
<fpage>207</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="pmid">18453278</pub-id>
</mixed-citation>
</ref>
<ref id="b26-ijn-5-177">
<label>26.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corrigan</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Rigby</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Handley</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The role of
<italic>Staphylococcus aureus</italic>
surface protein SasG in adherence and biofilm formation</article-title>
<source>Microbiology</source>
<year>2007</year>
<volume>153</volume>
<fpage>2435</fpage>
<lpage>2446</lpage>
<pub-id pub-id-type="pmid">17660408</pub-id>
</mixed-citation>
</ref>
<ref id="b27-ijn-5-177">
<label>27.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gotz</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Staphylococcus and biofilms</article-title>
<source>Mol Microbiol</source>
<year>2002</year>
<volume>43</volume>
<fpage>1367</fpage>
<lpage>1378</lpage>
<pub-id pub-id-type="pmid">11952892</pub-id>
</mixed-citation>
</ref>
<ref id="b28-ijn-5-177">
<label>28.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fluckiger</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Ulrich</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Steinhuber</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model</article-title>
<source>Infect Immun</source>
<year>2005</year>
<volume>73</volume>
<fpage>1811</fpage>
<lpage>1819</lpage>
<pub-id pub-id-type="pmid">15731082</pub-id>
</mixed-citation>
</ref>
<ref id="b29-ijn-5-177">
<label>29.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guggenbichler</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Boswald</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lugauer</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters</article-title>
<source>Infection</source>
<year>1999</year>
<volume>27</volume>
<issue>Suppl 1</issue>
<fpage>S16</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">10379438</pub-id>
</mixed-citation>
</ref>
<ref id="b30-ijn-5-177">
<label>30.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ohko</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sekiguchi</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Self-sterilization using silicone catheters coated with Ag and TiO
<sub>2</sub>
nanocomposite thin film</article-title>
<source>J Biomed Mater Res B Appl Biomater</source>
<year>2008</year>
<volume>85</volume>
<fpage>453</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="pmid">18098205</pub-id>
</mixed-citation>
</ref>
<ref id="b31-ijn-5-177">
<label>31.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antimicrobial effect of surgical masks coated with nanoparticles</article-title>
<source>J Hosp Infect</source>
<year>2006</year>
<volume>62</volume>
<fpage>58</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="pmid">16099072</pub-id>
</mixed-citation>
</ref>
<ref id="b32-ijn-5-177">
<label>32.</label>
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rogers</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>van der Walle</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Waigh</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Microrheology of bacterial biofilms
<italic>in vitro: Staphylococcus aureus</italic>
and
<italic>Pseudomonas aeruginosa</italic>
</article-title>
<source>Langmuir</source>
<year>2008</year>
<volume>24</volume>
<fpage>13549</fpage>
<lpage>13555</lpage>
<pub-id pub-id-type="pmid">18980352</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijn-5-177" position="float">
<label>Figure 1</label>
<caption>
<p>Standard endotracheal tubes were coated with a passivating layer of colloidal silica and served as controls. Five types of coatings were applied over a silica layer; 1. solgel titanium dioxide without silver, 2. solgel titanium dioxide with silver, 3. Degussa titanium dioxide without silver, 4. Degussa titanium dioxide with silver and 5. silver only (not shown).</p>
</caption>
<graphic xlink:href="ijn-5-177f1"></graphic>
</fig>
<fig id="f2-ijn-5-177" position="float">
<label>Figure 2</label>
<caption>
<p>Characterization of
<italic>P. aeruginosa</italic>
growth on polyvinyl chloride endotracheal tubes over a 144-hour period. Comparison of standard and silver only coated endotracheal tubes. There was less
<italic>P. aeruginosa</italic>
growth on silver-coated endotracheal tubes at 24 hours (
<italic>P</italic>
< 0.01), but more growth at 120 hours (
<italic>P</italic>
= 0.04) and 144 hours (
<italic>P</italic>
= 0.06) compared to standard endotracheal tubes.</p>
<p>
<bold>Notes:</bold>
Mean ± standard error of mean, *
<italic>P</italic>
< 0.05 compared to standard endotracheal tube. N = 4.</p>
<p>
<bold>Abbreviation:</bold>
CFU, colony-forming units.</p>
</caption>
<graphic xlink:href="ijn-5-177f2"></graphic>
</fig>
<fig id="f3-ijn-5-177" position="float">
<label>Figure 3</label>
<caption>
<p>Characterization of
<italic>P. aeruginosa</italic>
growth on polyvinyl chloride endotracheal tubes coated with titanium dioxide over 144 hour period. Comparison of standard, solgel titanium dioxide and Degussa titanium dioxide endotracheal tubes.
<italic>P. aeruginosa</italic>
growth was not statistically significant at all time points.</p>
<p>
<bold>Notes:</bold>
Mean ± standard error of mean, N = 4.</p>
<p>
<bold>Abbreviation:</bold>
CFU, colony-forming units.</p>
</caption>
<graphic xlink:href="ijn-5-177f3"></graphic>
</fig>
<fig id="f4-ijn-5-177" position="float">
<label>Figure 4</label>
<caption>
<p>Characterization of
<italic>P. aeruginosa</italic>
growth on polyvinyl chloride endotracheal tubes coated with titanium dioxide with silver over a 144-hour period. Comparison of standard, solgel titanium dioxide with silver, and Degussa titanium dioxide with silver endotracheal tubes.
<italic>P. aeruginosa</italic>
growth was inhibited significantly by solgel titanium dioxide with silver at 24 hours and by Degussa titanium dioxide with silver at 24 and 48 hours, respectively.</p>
<p>
<bold>Notes:</bold>
Mean ± standard error of mean; *
<italic>P</italic>
< 0.05 compared to standard endotracheal tube, #
<italic>P</italic>
< 0.05 compared to standard endotracheal tube. N = 4.</p>
<p>
<bold>Abbreviation:</bold>
CFU, colony-forming units.</p>
</caption>
<graphic xlink:href="ijn-5-177f4"></graphic>
</fig>
<fig id="f5-ijn-5-177" position="float">
<label>Figure 5</label>
<caption>
<p>Characterization of
<italic>S. aureus</italic>
growth on polyvinyl chloride endotracheal tubes coated with silver only over a 144-hour period. Comparison of standard and silver only coated endotracheal tubes. There was no difference in
<italic>S. aureus</italic>
growth between standard and silver coated endotracheal tubes at any time point over 144 hours compared with standard endotracheal tubes.</p>
<p>
<bold>Note:</bold>
N = 4.</p>
<p>
<bold>Abbreviation:</bold>
CFU, colony-forming units.</p>
</caption>
<graphic xlink:href="ijn-5-177f5"></graphic>
</fig>
<fig id="f6-ijn-5-177" position="float">
<label>Figure 6</label>
<caption>
<p>Characterization of
<italic>S. aureus</italic>
growth on polyvinyl chloride endotracheal tubes coated with titanium dioxide only over a 144-hour period. Comparison of standard, solgel titanium dioxide and Degussa titanium dioxide endotracheal tubes. There was no difference in
<italic>S. aureus</italic>
growth in the titanium dioxide-coated groups compared to standard endotracheal tubes at any time point.</p>
<p>
<bold>Note:</bold>
N = 4.</p>
<p>
<bold>Abbreviation:</bold>
CFU, colony-forming units.</p>
</caption>
<graphic xlink:href="ijn-5-177f6"></graphic>
</fig>
<fig id="f7-ijn-5-177" position="float">
<label>Figure 7</label>
<caption>
<p>Characterization of
<italic>S. aureus</italic>
growth on polyvinyl chloride endotracheal tubes coated with titanium dioxide with silver over a 144-hour period. Comparison of standard, solgel titanium dioxide with silver and Degussa titanium dioxide with silver endotracheal tubes. There was no difference in
<italic>S. aureus</italic>
growth in the titanium dioxide with silver-coated groups compared to standard endotracheal tubes except at 144 hours with solgel titanium dioxide with silver endotracheal tubes.</p>
<p>
<bold>Note:</bold>
N = 4.</p>
<p>
<bold>Abbreviation:</bold>
CFU, colony-forming units.</p>
</caption>
<graphic xlink:href="ijn-5-177f7"></graphic>
</fig>
<table-wrap id="t1-ijn-5-177" position="float">
<label>Table 1</label>
<caption>
<p>Coating solutions with their respective titanium dioxide and silver treatments</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="middle" align="left" rowspan="1" colspan="1">
<bold>Tube</bold>
</th>
<th valign="middle" align="left" rowspan="1" colspan="1">
<bold>Solution</bold>
</th>
<th valign="middle" align="left" rowspan="1" colspan="1">
<bold>TiO
<sub>2</sub>
source</bold>
</th>
<th valign="middle" align="left" rowspan="1" colspan="1">
<bold>Solvent</bold>
</th>
<th valign="middle" align="left" rowspan="1" colspan="1">
<bold>AgNO
<sub>3</sub>
: TiO
<sub>2</sub>
(mol%)</bold>
</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">A</td>
<td valign="top" align="left" rowspan="1" colspan="1">Solgel</td>
<td valign="top" align="left" rowspan="1" colspan="1">Water: Ethanol (60:40)</td>
<td valign="top" align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1">B</td>
<td valign="top" align="left" rowspan="1" colspan="1">Solgel</td>
<td valign="top" align="left" rowspan="1" colspan="1">Water: Ethanol (60:40)</td>
<td valign="top" align="left" rowspan="1" colspan="1">5.6</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1">C</td>
<td valign="top" align="left" rowspan="1" colspan="1">Solgel: Degussa (20:80)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Water: Ethanol (3:97)</td>
<td valign="top" align="left" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">D</td>
<td valign="top" align="left" rowspan="1" colspan="1">Solgel: Degussa (20:80)</td>
<td valign="top" align="left" rowspan="1" colspan="1">Water: Ethanol (5:95)</td>
<td valign="top" align="left" rowspan="1" colspan="1">5.6</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">5</td>
<td valign="top" align="left" rowspan="1" colspan="1">E</td>
<td valign="top" align="left" rowspan="1" colspan="1">No TiO
<sub>2</sub>
</td>
<td valign="top" align="left" rowspan="1" colspan="1">Water: Ethanol (50:50)</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.1wt% AgNO
<sub>3</sub>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn1-ijn-5-177">
<p>
<bold>Abbreviations:</bold>
Ag, silver; AgNO
<sub>3</sub>
, silver nitrate; Degussa TiO
<sub>2</sub>
, Degussa P25 titanium dioxide; TiO
<sub>2</sub>
, titanium dioxide.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E51 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002E51 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:2865012
   |texte=   Bactericidal effects of silver plus titanium dioxide-coated endotracheal tubes on Pseudomonas aeruginosa and Staphylococcus aureus
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:20463933" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022