Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002D96 ( Pmc/Corpus ); précédent : 002D959; suivant : 002D970 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review</title>
<author>
<name sortKey="Najeeb, Shariq" sort="Najeeb, Shariq" uniqKey="Najeeb S" first="Shariq" last="Najeeb">Shariq Najeeb</name>
<affiliation>
<nlm:aff id="I1">Restorative Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khurshid, Zohaib" sort="Khurshid, Zohaib" uniqKey="Khurshid Z" first="Zohaib" last="Khurshid">Zohaib Khurshid</name>
<affiliation>
<nlm:aff id="I2">School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matinlinna, Jukka Pekka" sort="Matinlinna, Jukka Pekka" uniqKey="Matinlinna J" first="Jukka Pekka" last="Matinlinna">Jukka Pekka Matinlinna</name>
<affiliation>
<nlm:aff id="I3">Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, 4/F, The Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Siddiqui, Fahad" sort="Siddiqui, Fahad" uniqKey="Siddiqui F" first="Fahad" last="Siddiqui">Fahad Siddiqui</name>
<affiliation>
<nlm:aff id="I4">Division of Oral Health & Society, 2001 McGill College, Suite 500, Montreal, QC, Canada H3A 1G1</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nassani, Mohammad Zakaria" sort="Nassani, Mohammad Zakaria" uniqKey="Nassani M" first="Mohammad Zakaria" last="Nassani">Mohammad Zakaria Nassani</name>
<affiliation>
<nlm:aff id="I1">Restorative Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baroudi, Kusai" sort="Baroudi, Kusai" uniqKey="Baroudi K" first="Kusai" last="Baroudi">Kusai Baroudi</name>
<affiliation>
<nlm:aff id="I5">Preventive Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26495000</idno>
<idno type="pmc">4606406</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4606406</idno>
<idno type="RBID">PMC:4606406</idno>
<idno type="doi">10.1155/2015/381759</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">002D96</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002D96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review</title>
<author>
<name sortKey="Najeeb, Shariq" sort="Najeeb, Shariq" uniqKey="Najeeb S" first="Shariq" last="Najeeb">Shariq Najeeb</name>
<affiliation>
<nlm:aff id="I1">Restorative Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khurshid, Zohaib" sort="Khurshid, Zohaib" uniqKey="Khurshid Z" first="Zohaib" last="Khurshid">Zohaib Khurshid</name>
<affiliation>
<nlm:aff id="I2">School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matinlinna, Jukka Pekka" sort="Matinlinna, Jukka Pekka" uniqKey="Matinlinna J" first="Jukka Pekka" last="Matinlinna">Jukka Pekka Matinlinna</name>
<affiliation>
<nlm:aff id="I3">Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, 4/F, The Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Siddiqui, Fahad" sort="Siddiqui, Fahad" uniqKey="Siddiqui F" first="Fahad" last="Siddiqui">Fahad Siddiqui</name>
<affiliation>
<nlm:aff id="I4">Division of Oral Health & Society, 2001 McGill College, Suite 500, Montreal, QC, Canada H3A 1G1</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nassani, Mohammad Zakaria" sort="Nassani, Mohammad Zakaria" uniqKey="Nassani M" first="Mohammad Zakaria" last="Nassani">Mohammad Zakaria Nassani</name>
<affiliation>
<nlm:aff id="I1">Restorative Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baroudi, Kusai" sort="Baroudi, Kusai" uniqKey="Baroudi K" first="Kusai" last="Baroudi">Kusai Baroudi</name>
<affiliation>
<nlm:aff id="I5">Preventive Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Dentistry</title>
<idno type="ISSN">1687-8728</idno>
<idno type="eISSN">1687-8736</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Purpose</italic>
. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material.
<italic>Study Selection</italic>
. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16
<italic>in vivo</italic>
and
<italic>in vitro</italic>
studies were found suitable to be included in this review.
<italic>Results</italic>
. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials.
<italic>Conclusion</italic>
. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Awad, M A" uniqKey="Awad M">M. A. Awad</name>
</author>
<author>
<name sortKey="Rashid, F" uniqKey="Rashid F">F. Rashid</name>
</author>
<author>
<name sortKey="Feine, J S" uniqKey="Feine J">J. S. Feine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turkyilmaz, I" uniqKey="Turkyilmaz I">I. Turkyilmaz</name>
</author>
<author>
<name sortKey="Company, A M" uniqKey="Company A">A. M. Company</name>
</author>
<author>
<name sortKey="Mcglumphy, E A" uniqKey="Mcglumphy E">E. A. McGlumphy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T. Albrektsson</name>
</author>
<author>
<name sortKey="Br Nemark, P I" uniqKey="Br Nemark P">P.-I. Brånemark</name>
</author>
<author>
<name sortKey="Hansson, H A" uniqKey="Hansson H">H.-A. Hansson</name>
</author>
<author>
<name sortKey="Lindstrom, J" uniqKey="Lindstrom J">J. Lindström</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Br Nemark, P I" uniqKey="Br Nemark P">P.-I. Brånemark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, C Y" uniqKey="Guo C">C. Y. Guo</name>
</author>
<author>
<name sortKey="Tang, A T H" uniqKey="Tang A">A. T. H. Tang</name>
</author>
<author>
<name sortKey="Matinlinna, J P" uniqKey="Matinlinna J">J. P. Matinlinna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, D" uniqKey="Liu D">D. Liu</name>
</author>
<author>
<name sortKey="Matinlinna, J P" uniqKey="Matinlinna J">J. P. Matinlinna</name>
</author>
<author>
<name sortKey="Pow, E H N" uniqKey="Pow E">E. H. N. Pow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, M" uniqKey="Zhang M">M. Zhang</name>
</author>
<author>
<name sortKey="Matinlinna, J P" uniqKey="Matinlinna J">J. P. Matinlinna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mallineni, S K" uniqKey="Mallineni S">S. K. Mallineni</name>
</author>
<author>
<name sortKey="Nuvvula, S" uniqKey="Nuvvula S">S. Nuvvula</name>
</author>
<author>
<name sortKey="Matinlinna, J P" uniqKey="Matinlinna J">J. P. Matinlinna</name>
</author>
<author>
<name sortKey="Yiu, C K" uniqKey="Yiu C">C. K. Yiu</name>
</author>
<author>
<name sortKey="King, N M" uniqKey="King N">N. M. King</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Esposito, M" uniqKey="Esposito M">M. Esposito</name>
</author>
<author>
<name sortKey="Hirsch, J M" uniqKey="Hirsch J">J.-M. Hirsch</name>
</author>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U. Lekholm</name>
</author>
<author>
<name sortKey="Thomsen, P" uniqKey="Thomsen P">P. Thomsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rupp, F" uniqKey="Rupp F">F. Rupp</name>
</author>
<author>
<name sortKey="Scheideler, L" uniqKey="Scheideler L">L. Scheideler</name>
</author>
<author>
<name sortKey="Olshanska, N" uniqKey="Olshanska N">N. Olshanska</name>
</author>
<author>
<name sortKey="De Wild, M" uniqKey="De Wild M">M. de Wild</name>
</author>
<author>
<name sortKey="Wieland, M" uniqKey="Wieland M">M. Wieland</name>
</author>
<author>
<name sortKey="Geis Gerstorfer, J" uniqKey="Geis Gerstorfer J">J. Geis-Gerstorfer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Guehennec, L" uniqKey="Le Guehennec L">L. Le Guéhennec</name>
</author>
<author>
<name sortKey="Soueidan, A" uniqKey="Soueidan A">A. Soueidan</name>
</author>
<author>
<name sortKey="Layrolle, P" uniqKey="Layrolle P">P. Layrolle</name>
</author>
<author>
<name sortKey="Amouriq, Y" uniqKey="Amouriq Y">Y. Amouriq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, A H" uniqKey="Choi A">A. H. Choi</name>
</author>
<author>
<name sortKey="Ben Nissan, B" uniqKey="Ben Nissan B">B. Ben-Nissan</name>
</author>
<author>
<name sortKey="Matinlinna, J P" uniqKey="Matinlinna J">J. P. Matinlinna</name>
</author>
<author>
<name sortKey="Conway, R C" uniqKey="Conway R">R. C. Conway</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Br Nemark, P I" uniqKey="Br Nemark P">P.-I. Brånemark</name>
</author>
<author>
<name sortKey="Breine, U" uniqKey="Breine U">U. Breine</name>
</author>
<author>
<name sortKey="Adell, R" uniqKey="Adell R">R. Adell</name>
</author>
<author>
<name sortKey="Hansson, B O" uniqKey="Hansson B">B. O. Hansson</name>
</author>
<author>
<name sortKey="Lindstrom, J" uniqKey="Lindstrom J">J. Lindström</name>
</author>
<author>
<name sortKey="Ohlsson, A" uniqKey="Ohlsson A">A. Ohlsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarot, J R" uniqKey="Sarot J">J. R. Sarot</name>
</author>
<author>
<name sortKey="Contar, C M M" uniqKey="Contar C">C. M. M. Contar</name>
</author>
<author>
<name sortKey="Cruz, A C C D" uniqKey="Cruz A">A. C. C. D. Cruz</name>
</author>
<author>
<name sortKey="De Souza Magini, R" uniqKey="De Souza Magini R">R. De Souza Magini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huiskes, R" uniqKey="Huiskes R">R. Huiskes</name>
</author>
<author>
<name sortKey="Weinans, H" uniqKey="Weinans H">H. Weinans</name>
</author>
<author>
<name sortKey="Van Rietbergen, B" uniqKey="Van Rietbergen B">B. Van Rietbergen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sicilia, A" uniqKey="Sicilia A">A. Sicilia</name>
</author>
<author>
<name sortKey="Cuesta, S" uniqKey="Cuesta S">S. Cuesta</name>
</author>
<author>
<name sortKey="Coma, G" uniqKey="Coma G">G. Coma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siddiqi, A" uniqKey="Siddiqi A">A. Siddiqi</name>
</author>
<author>
<name sortKey="Payne, A G T" uniqKey="Payne A">A. G. T. Payne</name>
</author>
<author>
<name sortKey="De Silva, R K" uniqKey="De Silva R">R. K. de Silva</name>
</author>
<author>
<name sortKey="Duncan, W J" uniqKey="Duncan W">W. J. Duncan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, W" uniqKey="Becker W">W. Becker</name>
</author>
<author>
<name sortKey="Becker, B E" uniqKey="Becker B">B. E. Becker</name>
</author>
<author>
<name sortKey="Ricci, A" uniqKey="Ricci A">A. Ricci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwitalla, A" uniqKey="Schwitalla A">A. Schwitalla</name>
</author>
<author>
<name sortKey="Muller, W D" uniqKey="Muller W">W.-D. Müller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skinner, H B" uniqKey="Skinner H">H. B. Skinner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rho, J Y" uniqKey="Rho J">J. Y. Rho</name>
</author>
<author>
<name sortKey="Ashman, R B" uniqKey="Ashman R">R. B. Ashman</name>
</author>
<author>
<name sortKey="Turner, C H" uniqKey="Turner C">C. H. Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yildiz, H" uniqKey="Yildiz H">H. Yildiz</name>
</author>
<author>
<name sortKey="Chang, F K" uniqKey="Chang F">F.-K. Chang</name>
</author>
<author>
<name sortKey="Goodman, S" uniqKey="Goodman S">S. Goodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olivares Navarrete, R" uniqKey="Olivares Navarrete R">R. Olivares-Navarrete</name>
</author>
<author>
<name sortKey="Gittens, R A" uniqKey="Gittens R">R. A. Gittens</name>
</author>
<author>
<name sortKey="Schneider, J M" uniqKey="Schneider J">J. M. Schneider</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rabiei, A" uniqKey="Rabiei A">A. Rabiei</name>
</author>
<author>
<name sortKey="Sandukas, S" uniqKey="Sandukas S">S. Sandukas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ha, S W" uniqKey="Ha S">S.-W. Ha</name>
</author>
<author>
<name sortKey="Mayer, J" uniqKey="Mayer J">J. Mayer</name>
</author>
<author>
<name sortKey="Koch, B" uniqKey="Koch B">B. Koch</name>
</author>
<author>
<name sortKey="Wintermantel, E" uniqKey="Wintermantel E">E. Wintermantel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suska, F" uniqKey="Suska F">F. Suska</name>
</author>
<author>
<name sortKey="Omar, O" uniqKey="Omar O">O. Omar</name>
</author>
<author>
<name sortKey="Emanuelsson, L" uniqKey="Emanuelsson L">L. Emanuelsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abu Bakar, M S" uniqKey="Abu Bakar M">M. S. Abu Bakar</name>
</author>
<author>
<name sortKey="Cheng, M H W" uniqKey="Cheng M">M. H. W. Cheng</name>
</author>
<author>
<name sortKey="Tang, S M" uniqKey="Tang S">S. M. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, K L" uniqKey="Wong K">K. L. Wong</name>
</author>
<author>
<name sortKey="Wong, C T" uniqKey="Wong C">C. T. Wong</name>
</author>
<author>
<name sortKey="Liu, W C" uniqKey="Liu W">W. C. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L. Wang</name>
</author>
<author>
<name sortKey="He, S" uniqKey="He S">S. He</name>
</author>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, X" uniqKey="Wu X">X. Wu</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Wei, J" uniqKey="Wei J">J. Wei</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
<author>
<name sortKey="Deng, F" uniqKey="Deng F">F. Deng</name>
</author>
<author>
<name sortKey="Wei, S" uniqKey="Wei S">S. Wei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Chueh, P J" uniqKey="Chueh P">P. J. Chueh</name>
</author>
<author>
<name sortKey="Lin, Y W" uniqKey="Lin Y">Y.-W. Lin</name>
</author>
<author>
<name sortKey="Shih, T S" uniqKey="Shih T">T.-S. Shih</name>
</author>
<author>
<name sortKey="Chuang, S M" uniqKey="Chuang S">S.-M. Chuang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Jiao, F" uniqKey="Jiao F">F. Jiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugita, Y" uniqKey="Sugita Y">Y. Sugita</name>
</author>
<author>
<name sortKey="Ishizaki, K" uniqKey="Ishizaki K">K. Ishizaki</name>
</author>
<author>
<name sortKey="Iwasa, F" uniqKey="Iwasa F">F. Iwasa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gittens, R A" uniqKey="Gittens R">R. A. Gittens</name>
</author>
<author>
<name sortKey="Mclachlan, T" uniqKey="Mclachlan T">T. McLachlan</name>
</author>
<author>
<name sortKey="Olivares Navarrete, R" uniqKey="Olivares Navarrete R">R. Olivares-Navarrete</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W. Lü</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wiegand, A" uniqKey="Wiegand A">A. Wiegand</name>
</author>
<author>
<name sortKey="Buchalla, W" uniqKey="Buchalla W">W. Buchalla</name>
</author>
<author>
<name sortKey="Attin, T" uniqKey="Attin T">T. Attin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamilton, I R" uniqKey="Hamilton I">I. R. Hamilton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tahriri, M" uniqKey="Tahriri M">M. Tahriri</name>
</author>
<author>
<name sortKey="Moztarzadeh, F" uniqKey="Moztarzadeh F">F. Moztarzadeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gineste, L" uniqKey="Gineste L">L. Gineste</name>
</author>
<author>
<name sortKey="Gineste, M" uniqKey="Gineste M">M. Gineste</name>
</author>
<author>
<name sortKey="Ranz, X" uniqKey="Ranz X">X. Ranz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stani, V" uniqKey="Stani V">V. Stanić</name>
</author>
<author>
<name sortKey="Dimitrijevi, S" uniqKey="Dimitrijevi S">S. Dimitrijević</name>
</author>
<author>
<name sortKey="Antonovi, D G" uniqKey="Antonovi D">D. G. Antonović</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Canal, C" uniqKey="Canal C">C. Canal</name>
</author>
<author>
<name sortKey="Molina, R" uniqKey="Molina R">R. Molina</name>
</author>
<author>
<name sortKey="Bertran, E" uniqKey="Bertran E">E. Bertran</name>
</author>
<author>
<name sortKey="Erra, P" uniqKey="Erra P">P. Erra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barkarmo, S" uniqKey="Barkarmo S">S. Barkarmo</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A. Wennerberg</name>
</author>
<author>
<name sortKey="Hoffman, M" uniqKey="Hoffman M">M. Hoffman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barkarmo, S" uniqKey="Barkarmo S">S. Barkarmo</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M. Andersson</name>
</author>
<author>
<name sortKey="Currie, F" uniqKey="Currie F">F. Currie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johansson, P" uniqKey="Johansson P">P. Johansson</name>
</author>
<author>
<name sortKey="Jimbo, R" uniqKey="Jimbo R">R. Jimbo</name>
</author>
<author>
<name sortKey="Kjellin, P" uniqKey="Kjellin P">P. Kjellin</name>
</author>
<author>
<name sortKey="Chrcanovic, B" uniqKey="Chrcanovic B">B. Chrcanovic</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A. Wennerberg</name>
</author>
<author>
<name sortKey="Currie, F" uniqKey="Currie F">F. Currie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Lu, T" uniqKey="Lu T">T. Lu</name>
</author>
<author>
<name sortKey="Meng, F" uniqKey="Meng F">F. Meng</name>
</author>
<author>
<name sortKey="Zhu, H" uniqKey="Zhu H">H. Zhu</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waser Althaus, J" uniqKey="Waser Althaus J">J. Waser-Althaus</name>
</author>
<author>
<name sortKey="Salamon, A" uniqKey="Salamon A">A. Salamon</name>
</author>
<author>
<name sortKey="Waser, M" uniqKey="Waser M">M. Waser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poulsson, A H C" uniqKey="Poulsson A">A. H. C. Poulsson</name>
</author>
<author>
<name sortKey="Eglin, D" uniqKey="Eglin D">D. Eglin</name>
</author>
<author>
<name sortKey="Zeiter, S" uniqKey="Zeiter S">S. Zeiter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, C M" uniqKey="Chan C">C.-M. Chan</name>
</author>
<author>
<name sortKey="Ko, T M" uniqKey="Ko T">T.-M. Ko</name>
</author>
<author>
<name sortKey="Hiraoka, H" uniqKey="Hiraoka H">H. Hiraoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsougeni, K" uniqKey="Tsougeni K">K. Tsougeni</name>
</author>
<author>
<name sortKey="Vourdas, N" uniqKey="Vourdas N">N. Vourdas</name>
</author>
<author>
<name sortKey="Tserepi, A" uniqKey="Tserepi A">A. Tserepi</name>
</author>
<author>
<name sortKey="Gogolides, E" uniqKey="Gogolides E">E. Gogolides</name>
</author>
<author>
<name sortKey="Cardinaud, C" uniqKey="Cardinaud C">C. Cardinaud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rechendorff, K" uniqKey="Rechendorff K">K. Rechendorff</name>
</author>
<author>
<name sortKey="Hovgaard, M B" uniqKey="Hovgaard M">M. B. Hovgaard</name>
</author>
<author>
<name sortKey="Foss, M" uniqKey="Foss M">M. Foss</name>
</author>
<author>
<name sortKey="Zhdanov, V P" uniqKey="Zhdanov V">V. P. Zhdanov</name>
</author>
<author>
<name sortKey="Besenbacher, F" uniqKey="Besenbacher F">F. Besenbacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rochford, E T J" uniqKey="Rochford E">E. T. J. Rochford</name>
</author>
<author>
<name sortKey="Subbiahdoss, G" uniqKey="Subbiahdoss G">G. Subbiahdoss</name>
</author>
<author>
<name sortKey="Moriarty, T F" uniqKey="Moriarty T">T. F. Moriarty</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akkan, C K" uniqKey="Akkan C">C. K. Akkan</name>
</author>
<author>
<name sortKey="Hammadeh, M E" uniqKey="Hammadeh M">M. E. Hammadeh</name>
</author>
<author>
<name sortKey="May, A" uniqKey="May A">A. May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Randolph, S J" uniqKey="Randolph S">S. J. Randolph</name>
</author>
<author>
<name sortKey="Fowlkes, J D" uniqKey="Fowlkes J">J. D. Fowlkes</name>
</author>
<author>
<name sortKey="Rack, P D" uniqKey="Rack P">P. D. Rack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, C M" uniqKey="Han C">C.-M. Han</name>
</author>
<author>
<name sortKey="Lee, E J" uniqKey="Lee E">E.-J. Lee</name>
</author>
<author>
<name sortKey="Kim, H E" uniqKey="Kim H">H.-E. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, C M" uniqKey="Han C">C.-M. Han</name>
</author>
<author>
<name sortKey="Jang, T S" uniqKey="Jang T">T.-S. Jang</name>
</author>
<author>
<name sortKey="Kim, H E" uniqKey="Kim H">H.-E. Kim</name>
</author>
<author>
<name sortKey="Koh, Y H" uniqKey="Koh Y">Y.-H. Koh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wildemann, B" uniqKey="Wildemann B">B. Wildemann</name>
</author>
<author>
<name sortKey="Bamdad, P" uniqKey="Bamdad P">P. Bamdad</name>
</author>
<author>
<name sortKey="Holmer, C" uniqKey="Holmer C">C. Holmer</name>
</author>
<author>
<name sortKey="Haas, N P" uniqKey="Haas N">N. P. Haas</name>
</author>
<author>
<name sortKey="Raschke, M" uniqKey="Raschke M">M. Raschke</name>
</author>
<author>
<name sortKey="Schmidmaier, G" uniqKey="Schmidmaier G">G. Schmidmaier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macdonald, M L" uniqKey="Macdonald M">M. L. Macdonald</name>
</author>
<author>
<name sortKey="Samuel, R E" uniqKey="Samuel R">R. E. Samuel</name>
</author>
<author>
<name sortKey="Shah, N J" uniqKey="Shah N">N. J. Shah</name>
</author>
<author>
<name sortKey="Padera, R F" uniqKey="Padera R">R. F. Padera</name>
</author>
<author>
<name sortKey="Beben, Y M" uniqKey="Beben Y">Y. M. Beben</name>
</author>
<author>
<name sortKey="Hammond, P T" uniqKey="Hammond P">P. T. Hammond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mantese, J V" uniqKey="Mantese J">J. V. Mantese</name>
</author>
<author>
<name sortKey="Brown, I G" uniqKey="Brown I">I. G. Brown</name>
</author>
<author>
<name sortKey="Cheung, N W" uniqKey="Cheung N">N. W. Cheung</name>
</author>
<author>
<name sortKey="Collins, G A" uniqKey="Collins G">G. A. Collins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lieberman, M A" uniqKey="Lieberman M">M. A. Lieberman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, T" uniqKey="Lu T">T. Lu</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Qian, S" uniqKey="Qian S">S. Qian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Xu, M" uniqKey="Xu M">M. Xu</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, A" uniqKey="Xu A">A. Xu</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
<author>
<name sortKey="Deng, F" uniqKey="Deng F">F. Deng</name>
</author>
<author>
<name sortKey="Deng, Y" uniqKey="Deng Y">Y. Deng</name>
</author>
<author>
<name sortKey="Wei, S" uniqKey="Wei S">S. Wei</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Dent</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Dent</journal-id>
<journal-id journal-id-type="publisher-id">IJD</journal-id>
<journal-title-group>
<journal-title>International Journal of Dentistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">1687-8728</issn>
<issn pub-type="epub">1687-8736</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26495000</article-id>
<article-id pub-id-type="pmc">4606406</article-id>
<article-id pub-id-type="doi">10.1155/2015/381759</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification—A Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Najeeb</surname>
<given-names>Shariq</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Khurshid</surname>
<given-names>Zohaib</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matinlinna</surname>
<given-names>Jukka Pekka</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Siddiqui</surname>
<given-names>Fahad</given-names>
</name>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0003-0927-895X</contrib-id>
<name>
<surname>Nassani</surname>
<given-names>Mohammad Zakaria</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baroudi</surname>
<given-names>Kusai</given-names>
</name>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Restorative Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</aff>
<aff id="I2">
<sup>2</sup>
School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK</aff>
<aff id="I3">
<sup>3</sup>
Dental Materials Science, Faculty of Dentistry, The University of Hong Kong, 4/F, The Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong</aff>
<aff id="I4">
<sup>4</sup>
Division of Oral Health & Society, 2001 McGill College, Suite 500, Montreal, QC, Canada H3A 1G1</aff>
<aff id="I5">
<sup>5</sup>
Preventive Dental Sciences, Al-Farabi Colleges, King Abdullah Road, P.O. Box 85184, Riyadh 11891, Saudi Arabia</aff>
<author-notes>
<corresp id="cor1">*Shariq Najeeb:
<email>shariqnajeeb@gmail.com</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Dan Boston</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>10</month>
<year>2015</year>
</pub-date>
<volume>2015</volume>
<elocation-id>381759</elocation-id>
<history>
<date date-type="received">
<day>29</day>
<month>5</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>6</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 Shariq Najeeb et al.</copyright-statement>
<copyright-year>2015</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>
<italic>Purpose</italic>
. The aim of this review is to summarize and evaluate the relevant literature regarding the different ways how polyetheretherketone (PEEK) can be modified to overcome its limited bioactivity, and thereby making it suitable as a dental implant material.
<italic>Study Selection</italic>
. An electronic literature search was conducted via the PubMed and Google Scholar databases using the keywords “PEEK dental implants,” “nano,” “osseointegration,” “surface treatment,” and “modification.” A total of 16
<italic>in vivo</italic>
and
<italic>in vitro</italic>
studies were found suitable to be included in this review.
<italic>Results</italic>
. There are many viable methods to increase the bioactivity of PEEK. Most methods focus on increasing the surface roughness, increasing the hydrophilicity and coating osseoconductive materials.
<italic>Conclusion</italic>
. There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Melt-blending with bioactive nanoparticles can be used to produce bioactive nanocomposites, while spin-coating, gas plasma etching, electron beam, and plasma-ion immersion implantation can be used to modify the surface of PEEK implants in order to make them more bioactive. However, more animal studies are needed before these implants can be deemed suitable to be used as dental implants.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>A dental subgingival implant is a fixture, surgically placed into the alveolar bone, which functions as an artificial root that can stabilize and support a fixed or removable prosthesis [
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
]. In general, after implantation of a biomaterial, two possible tissue responses can take place. If a fibrous tissue forms between the implant and the bone, the implant fails. However, if a direct intimate bone-implant contact forms, the implant is said to be osseointegrated (a.k.a. osteointegrated) into the alveolar bone [
<xref rid="B3" ref-type="bibr">3</xref>
]. Osseointegration depends on a number of factors. As described by Brånemark [
<xref rid="B4" ref-type="bibr">4</xref>
] and Albrektsson et al. [
<xref rid="B3" ref-type="bibr">3</xref>
], implant material, surgical technique, and healing period are the main factors which govern the success of dental implants. The implant material, usually titanium and its alloys [
<xref rid="B5" ref-type="bibr">5</xref>
], zirconia [
<xref rid="B6" ref-type="bibr">6</xref>
], or, as a potential future material, fiber reinforced composite (FRC) [
<xref rid="B7" ref-type="bibr">7</xref>
] should be biocompatible [
<xref rid="B8" ref-type="bibr">8</xref>
] and should possess suitable surface properties that induce bone formation around the implant. The implant material should have a suitable design [
<xref rid="B9" ref-type="bibr">9</xref>
], high hydrophilicity [
<xref rid="B10" ref-type="bibr">10</xref>
], and an appropriate surface roughness [
<xref rid="B11" ref-type="bibr">11</xref>
]. Coating the implant surface with osteoconductive coatings such as calcium phosphate [
<xref rid="B12" ref-type="bibr">12</xref>
] has been shown to increase the rate of osseointegration of dental implants [
<xref rid="B11" ref-type="bibr">11</xref>
]. Over the last several decades, commercially pure grade 2 or 4 titanium and its alloys have been the material of choice for endosseous implants [
<xref rid="B13" ref-type="bibr">13</xref>
]. However, titanium has been shown to exhibit a variety of problems. Because of the high modulus of elasticity of the titanium alloys, dental implants made from the material can cause stress-shielding [
<xref rid="B14" ref-type="bibr">14</xref>
] which may lead to periodontal bone loss [
<xref rid="B15" ref-type="bibr">15</xref>
]. Moreover, studies have documented very rare cases of patients developing hypersensitivity to titanium dental implants [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B17" ref-type="bibr">17</xref>
]. Wear debris and ion leakage [
<xref rid="B18" ref-type="bibr">18</xref>
] can also be of concern with titanium dental implants. Aesthetics can be compromised if the dental implant is visible through a thin biotype gingiva because titanium is a dark material.</p>
<p>Polyetheretherketone (PEEK) is an organic synthetic polymeric tooth coloured material which has the potential to serve as an aesthetic dental implant material [
<xref rid="B19" ref-type="bibr">19</xref>
]. The structure of PEEK is given in
<xref ref-type="fig" rid="fig1">Figure 1</xref>
. It has excellent chemical resistance and biomechanical properties. In its pure form, Young's modulus of PEEK is around 3.6 GPa. Meanwhile, Young's modulus of carbon-reinforced PEEK (CFR-PEEK) is around 18 GPa [
<xref rid="B7" ref-type="bibr">7</xref>
] which is close to that of cortical bone [
<xref rid="B20" ref-type="bibr">20</xref>
,
<xref rid="B21" ref-type="bibr">21</xref>
]. Hence, it has been suggested that PEEK could exhibit lesser stress-shielding when compared to titanium [
<xref rid="B22" ref-type="bibr">22</xref>
]. However, PEEK has been shown to stimulate less osteoblast differentiation when compared to titanium [
<xref rid="B23" ref-type="bibr">23</xref>
]. This said, PEEK is a bioinert material and it does not possess any inherent osseoconductive properties [
<xref rid="B24" ref-type="bibr">24</xref>
]. PEEK can be coated and blended with bioactive particles to increase the osseoconductive properties and surface roughness. However, high temperatures involved in plasma-spraying can deteriorate PEEK. Furthermore, thick calcium phosphate coatings on PEEK can delaminate because of their limited bond strength when compared to coated titanium implants [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B26" ref-type="bibr">26</xref>
]. Additionally, combining PEEK with particles in the size range of micrometers leads to mechanical properties falling inferior to those of pure PEEK or CFR-PEEK [
<xref rid="B27" ref-type="bibr">27</xref>
]. Therefore, more recently, a significant amount of research has been conducted to modify PEEK by coating or blending it with nanosized particles and producing nanolevel surface topography. The aim of this review is to highlight recent advancements towards producing bioactive nanocomposites and nanolevel surface modifications to ascertain the feasibility of nanomodified PEEK to be used as dental implant material.</p>
</sec>
<sec id="sec2">
<title>2. Bioactive PEEK Nanocomposites</title>
<p>Bioactive particles can be incorporated into PEEK to produce bioactive implants [
<xref rid="B27" ref-type="bibr">27</xref>
]. Hydroxyapatite is a bioceramic with chemistry similar to bone and it is shown to induce bone formation around implants [
<xref rid="B11" ref-type="bibr">11</xref>
]. Hydroxyapatite particles (HAp) of the micrometer size range have been melt-blended with PEEK producing PEEK-HAp composites but these could be very difficult to be used as dental implants because of the poor mechanical properties produced due to the insufficient interfacial bonding between PEEK and hydroxyapatite particles [
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B28" ref-type="bibr">28</xref>
].</p>
<p>Melt-blending PEEK with nanoparticles can be achieved to produce bioactive composite PEEK composite implants and at the same time enhance their mechanical properties [
<xref rid="B29" ref-type="bibr">29</xref>
]. The schematic diagram of the melt-blending process is shown in
<xref ref-type="fig" rid="fig2">Figure 2</xref>
. Melt-blending of PEEK with bioactive nanofillers has been described by Wan et al. [
<xref rid="B29" ref-type="bibr">29</xref>
] and Wu et al. [
<xref rid="B30" ref-type="bibr">30</xref>
]. First, the PEEK powder and nanofillers are codispersed in a suitable solvent to form a uniform suspension. The solvent is then removed by drying in an oven and the powder mixture is placed in suitable moulds in the shape of the implants. The powder mixture and the moulds are preheated to a temperature of about 150°C at 35 MPa pressure. The temperature is then increased to 350°C–400°C at 15 MPa. When the melting point of PEEK is reached, the polymer melts but the bioactive filler particles remain solid. The temperature is maintained for 10 min after which the composite implants are air-cooled to 150°C. Upon cooling, the resultant material is a composite of solid PEEK matrix and the nanofillers dispersed within it (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
).</p>
<p>As shown in
<xref ref-type="table" rid="tab1">Table 1</xref>
, it can be observed that incorporating nanosized particles to PEEK can produce PEEK composites with enhanced mechanical properties and bioactivity. Wu et al. have suggested that incorporating nanosized TiO
<sub>2</sub>
particles to PEEK can increase osseointegration [
<xref rid="B30" ref-type="bibr">30</xref>
]. Three-dimensional computerized tomography has shown that a higher amount of bone forms around PEEK/nano-TiO
<sub>2</sub>
cylindrical implants and they have improved mechanical properties when compared to pure PEEK because of an increased number of nanofiller particles [
<xref rid="B30" ref-type="bibr">30</xref>
]. The effect of free TiO
<sub>2</sub>
particles on cellular activity has been debated in the literature. Some studies suggest that they can stimulate an inflammatory or carcinogenic response in cells [
<xref rid="B31" ref-type="bibr">31</xref>
] and damage nerve tissue [
<xref rid="B32" ref-type="bibr">32</xref>
]. On the other hand, some studies have suggested that, when used as coatings or solid cores, TiO
<sub>2</sub>
can increase the rate of cellular proliferation and differentiation [
<xref rid="B33" ref-type="bibr">33</xref>
<xref rid="B35" ref-type="bibr">35</xref>
]. However, to date, no studies have investigated the possible release of TiO
<sub>2</sub>
particles from PEEK/nano-TiO
<sub>2</sub>
composites after undergoing mechanical loading.</p>
<p>Fluorohydroxyapatite (HAF) has been shown to induce higher bone cell proliferation than conventional hydroxyapatite and it possesses antibacterial properties due to the presence of fluoride ions (F
<sup></sup>
) [
<xref rid="B36" ref-type="bibr">36</xref>
<xref rid="B40" ref-type="bibr">40</xref>
]. Wang et al. have shown that it can be possible to produce PEEK/nano-HAF implants using the process of melt-blending [
<xref rid="B29" ref-type="bibr">29</xref>
]. These implants possess antimicrobial properties against
<italic> Streptococcus mutans</italic>
, one of the main causative agents of periodontitis, and can exhibit Young's modulus almost 3 times of that of pure PEEK [
<xref rid="B29" ref-type="bibr">29</xref>
]. This increased modulus is still near to that of bone so PEEK/nano-HAF implants could still produce less stress-shielding than titanium implants. However, no studies have been attempted to investigate this.</p>
<p>Even with the incorporation of bioactive nanoparticles, the water-contact angle of PEEK nanocomposites does not decrease significantly when compared to pure PEEK [
<xref rid="B29" ref-type="bibr">29</xref>
,
<xref rid="B30" ref-type="bibr">30</xref>
]. Although gas plasma treatment of PEEK/nano-HAp composite implants does reduce the surface contact angle to as low as 10°, they have not been tested
<italic> in vitro</italic>
and the effects of plasma gas treatment have been seen to be temporary [
<xref rid="B41" ref-type="bibr">41</xref>
]. As an increased contact angle is an indication of a more hydrophobic implant surface [
<xref rid="B11" ref-type="bibr">11</xref>
], it is still uncertain whether a high contact angle can undermine the long-term biocompatibility of these implants and more research is warranted to investigate this concern.</p>
</sec>
<sec id="sec3">
<title>3. Surface Modifications of PEEK Implants</title>
<p>Different types of surface modifications geared towards making PEEK more bioactive are summarized in
<xref ref-type="table" rid="tab2">Table 2</xref>
. In contrast to production of nanocomposites of PEEK, surface modification aims to alter the surface of PEEK with little or no effect on the core. To date, four processes have been used to nanomodify the surface of PEEK implants: spin-coating [
<xref rid="B42" ref-type="bibr">42</xref>
<xref rid="B44" ref-type="bibr">44</xref>
], gas plasma etching [
<xref rid="B45" ref-type="bibr">45</xref>
<xref rid="B52" ref-type="bibr">52</xref>
], electron beam deposition [
<xref rid="B53" ref-type="bibr">53</xref>
<xref rid="B57" ref-type="bibr">57</xref>
], and plasma-ion immersion implantation (PIII) [
<xref rid="B58" ref-type="bibr">58</xref>
<xref rid="B62" ref-type="bibr">62</xref>
].</p>
<sec id="sec3.1">
<title>3.1. Spin-Coating with Nanohydroxyapatite</title>
<p>Due to the drawbacks of thick hydroxyapatite coatings, research has been conducted and directed to coat implants with thinner coatings [
<xref rid="B11" ref-type="bibr">11</xref>
]. Spin-coating involves the deposition of a thin layer of nano-HA, precipitated in surfactants, organic solvents, and aqueous solution of Ca(NO
<sub>3</sub>
)
<sub>2</sub>
and H
<sub>3</sub>
PO
<sub>4</sub>
, on the implants. During the deposition, the implants are spun at high speeds and are then heat-treated to form the coating [
<xref rid="B42" ref-type="bibr">42</xref>
]. The first study evaluating spin-coated PEEK implants by Barkarmo et al. [
<xref rid="B42" ref-type="bibr">42</xref>
] showed that the mean removal torque of spin-coated implanted discs was not significantly greater than that of uncoated implants and during the study, several implants failed. However, subsequent studies by Barkarmo et al. [
<xref rid="B43" ref-type="bibr">43</xref>
] and Johansson et al. [
<xref rid="B44" ref-type="bibr">44</xref>
] found higher removal torques compared to uncoated PEEK when the implant design had been modified by adding a threaded, cylindrical design. The findings suggested that an appropriate implant design is a very important factor as well as a suitable bioactive coating for successful PEEK dental subgingival implants. Nevertheless, there have been no studies conducted testing the bond strength of the nanohydroxyapatite coatings and all the current studies on spin-coated nanohydroxyapatite implants have not found any significant differences in the bone-implant contact of the modified and unmodified PEEK.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Gas Plasma Nanoetching</title>
<p>Nanoetching of PEEK implants can be achieved by exposing them to low power plasma gases like water vapour [
<xref rid="B45" ref-type="bibr">45</xref>
], oxygen/argon, and ammonia [
<xref rid="B46" ref-type="bibr">46</xref>
,
<xref rid="B47" ref-type="bibr">47</xref>
]. It has been suggested that plasma treatment of PEEK introduces various functional groups on its surface which makes its surface more hydrophilic [
<xref rid="B48" ref-type="bibr">48</xref>
]. The main advantage of using plasma treatment is the ability to produce nanolevel roughness on the implant surface and the extremely low water-contact angle on PEEK surface [
<xref rid="B46" ref-type="bibr">46</xref>
]. Indeed,
<italic> in vitro</italic>
testing of plasma-etched PEEK implants has been shown to accelerate human mesenchymal cell proliferation [
<xref rid="B46" ref-type="bibr">46</xref>
]. This has been thought to occur because of the increased hydrophilicity [
<xref rid="B49" ref-type="bibr">49</xref>
] and protein adsorption due to nanoroughness [
<xref rid="B50" ref-type="bibr">50</xref>
]. Because there is no coating involved in plasma-etched implants, there is no risk of a coating being delaminated. Poulsson et al. [
<xref rid="B47" ref-type="bibr">47</xref>
] have produced nanometer level surface roughness on the surface of machined rod shaped PEEK implants using low-pressure oxygen plasma and tested them in sheep. Although the plasma-modified machined implants had a higher surface roughness than uncoated machined and conventional PEEK implants, no significant differences were observed in the bone-implant contact of these implants after being implanted in sheep femurs and tibia after 26 weeks [
<xref rid="B47" ref-type="bibr">47</xref>
]. A recent study by Rochford et al. suggests that oxygen plasma-treated PEEK implants promote adherence of osteoblasts even in the presence of
<italic> Staphylococcus epidermidis</italic>
[
<xref rid="B51" ref-type="bibr">51</xref>
] but the cellular interaction of these surfaces in the presence of periodontal pathogens is still unknown. It has been observed that the surface properties of plasma-treated PEEK diminish over time [
<xref rid="B41" ref-type="bibr">41</xref>
]. However, it has also been observed and reported that treating PEEK with a pulsed Nd:YAG laser before plasma treating can prolong the effects of plasma [
<xref rid="B52" ref-type="bibr">52</xref>
].</p>
</sec>
<sec id="sec3.3">
<title>3.3. Electron Beam Deposition</title>
<p>Electron beam deposition is a process used to decompose and deposit nonvolatile fragments on a substrate [
<xref rid="B53" ref-type="bibr">53</xref>
]. A thin titanium coating deposited on PEEK using electron beam deposition has been shown to increase the wettability and promote cellular adhesion [
<xref rid="B54" ref-type="bibr">54</xref>
]. When a titanium coating on PEEK produced by electron beam deposition is anodized, it is converted into a uniformly thick (2 
<italic>μ</italic>
m), crack-free, and highly nanoporous layer of titanium oxide (nTiO
<sub>2</sub>
) which can be used to carry BMP-2 [
<xref rid="B55" ref-type="bibr">55</xref>
]. Many published
<italic> in vitro</italic>
and
<italic> in vivo</italic>
studies show that BMP-2 is a growth factor which plays a major role in differentiation of stem cells to osteoblasts [
<xref rid="B56" ref-type="bibr">56</xref>
,
<xref rid="B57" ref-type="bibr">57</xref>
]. Given this, an immobilized growth factor on the surface of the implant could increase the rate of osseointegration around it.</p>
</sec>
<sec id="sec3.4">
<title>3.4. Plasma Immersion Ion Implantation</title>
<p>A substrate can be coated by a thin film of diverse particles placing the substrate in a plasma of the particles, repeatedly pulsed with high negative voltages which causes the plasma ions to be accelerated and then implanted onto the surface of the substrate [
<xref rid="B58" ref-type="bibr">58</xref>
,
<xref rid="B59" ref-type="bibr">59</xref>
]. This process is known as plasma immersion ion implantation (PIII). PEEK can be coated by nano-TiO
<sub>2</sub>
particles using plasma immersion ion implantation [
<xref rid="B60" ref-type="bibr">60</xref>
]. A study by Lu et al. shows that PIII-coated PEEK implants could exhibit partial antimicrobial activity against
<italic> Staphylococcus aureus</italic>
and
<italic> Escherichia coli</italic>
[
<xref rid="B60" ref-type="bibr">60</xref>
]. However, it is not known if these types of surfaces could exhibit similar activity against pathogens more common in the periodontium. Furthermore, these implants have not been tested
<italic> in vivo</italic>
. Diamond-like carbon coated on PEEK has also been shown to exhibit increased bioactivity
<italic> in vitro</italic>
but the
<italic> in vivo</italic>
effects of the surface modification are yet to be evaluated [
<xref rid="B61" ref-type="bibr">61</xref>
].</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Summary and Conclusion</title>
<p>There are many ways in which PEEK can be modified at a nanometer level to overcome its limited bioactivity. Nanoparticles such as TiO
<sub>2</sub>
, HAF, and HAp can be combined with PEEK through the process of melt-blending to produce bioactive nanocomposites. Moreover, these composites exhibit significantly superior tensile properties when compared to pure PEEK. Additionally, HAF has antibacterial properties which could prevent peri-implantitis and early implant failures. Spin-coating, gas plasma etching, electron beam deposition, and plasma-ion immersion can be used to modify or coat the surface of PEEK implants at a nanometer level. Nanocoatings of materials such as HAp and TiO
<sub>2</sub>
produced by spin-coating and PIII can impart bioactive properties to the surface. Also, an anodized electron beam-coated TiO
<sub>2</sub>
nanolayer on PEEK can carry immobilized BMP-2 growth factor which can further enhance cellular activity. However, many of the aforementioned studies have been limited to
<italic> in vitro</italic>
testing. Using PEEK implants, which have not undergone extensive animal and human testing, yet carries a risk of failing early. Hence, more
<italic> in vivo</italic>
studies are required before nanomodified PEEK implants can be used broadly in the clinical setting.</p>
</sec>
</body>
<back>
<sec sec-type="conflict">
<title>Conflict of Interests</title>
<p>The authors have no conflict of interests to declare.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Awad</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Rashid</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Feine</surname>
<given-names>J. S.</given-names>
</name>
</person-group>
<article-title>The effect of mandibular 2-implant overdentures on oral health-related quality of life: an international multicentre study</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2014</year>
<volume>25</volume>
<issue>1</issue>
<fpage>46</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1111/clr.12205</pub-id>
<pub-id pub-id-type="pmid">23735197</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Turkyilmaz</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Company</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>McGlumphy</surname>
<given-names>E. A.</given-names>
</name>
</person-group>
<article-title>Should edentulous patients be constrained to removable complete dentures? The use of dental implants to improve the quality of life for edentulous patients</article-title>
<source>
<italic>Gerodontology</italic>
</source>
<year>2010</year>
<volume>27</volume>
<issue>1</issue>
<fpage>3</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1111/j.1741-2358.2009.00294.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-77149155949</pub-id>
<pub-id pub-id-type="pmid">19291086</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrektsson</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Brånemark</surname>
<given-names>P.-I.</given-names>
</name>
<name>
<surname>Hansson</surname>
<given-names>H.-A.</given-names>
</name>
<name>
<surname>Lindström</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man</article-title>
<source>
<italic>Acta Orthopaedica</italic>
</source>
<year>1981</year>
<volume>52</volume>
<issue>2</issue>
<fpage>155</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="doi">10.3109/17453678108991776</pub-id>
<pub-id pub-id-type="other">2-s2.0-0019435541</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brånemark</surname>
<given-names>P.-I.</given-names>
</name>
</person-group>
<article-title>Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period</article-title>
<source>
<italic>Scandinavian Journal of Plastic and Reconstructive Surgery</italic>
</source>
<year>1977</year>
<volume>16</volume>
<fpage>1</fpage>
<lpage>132</lpage>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>C. Y.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>A. T. H.</given-names>
</name>
<name>
<surname>Matinlinna</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
<article-title>Insights into surface treatment methods of titanium dental implants</article-title>
<source>
<italic>Journal of Adhesion Science and Technology</italic>
</source>
<year>2012</year>
<volume>26</volume>
<issue>1–3</issue>
<fpage>189</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="doi">10.1163/016942411x569390</pub-id>
<pub-id pub-id-type="other">2-s2.0-84862020150</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Matinlinna</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Pow</surname>
<given-names>E. H. N.</given-names>
</name>
</person-group>
<article-title>Insights into porcelain to zirconia bonding</article-title>
<source>
<italic>Journal of Adhesion Science and Technology</italic>
</source>
<year>2012</year>
<volume>26</volume>
<issue>8-9</issue>
<fpage>1249</fpage>
<lpage>1265</lpage>
<pub-id pub-id-type="doi">10.1163/156856111X593586</pub-id>
<pub-id pub-id-type="other">2-s2.0-84864695331</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Matinlinna</surname>
<given-names>J. P.</given-names>
</name>
</person-group>
<article-title>E-glass fiber reinforced composites in dental applications</article-title>
<source>
<italic>Silicon</italic>
</source>
<year>2012</year>
<volume>4</volume>
<issue>1</issue>
<fpage>73</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1007/s12633-011-9075-x</pub-id>
<pub-id pub-id-type="other">2-s2.0-84859158277</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mallineni</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Nuvvula</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matinlinna</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Yiu</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>King</surname>
<given-names>N. M.</given-names>
</name>
</person-group>
<article-title>Biocompatibility of various dental materials in contemporary dentistry: a narrative insight</article-title>
<source>
<italic>Journal of Investigative and Clinical Dentistry</italic>
</source>
<year>2013</year>
<volume>4</volume>
<issue>1</issue>
<fpage>9</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1111/j.2041-1626.2012.00140.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-84882989267</pub-id>
<pub-id pub-id-type="pmid">23255468</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esposito</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>J.-M.</given-names>
</name>
<name>
<surname>Lekholm</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Thomsen</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology</article-title>
<source>
<italic>European Journal of Oral Sciences</italic>
</source>
<year>1998</year>
<volume>106</volume>
<issue>1</issue>
<fpage>527</fpage>
<lpage>551</lpage>
<pub-id pub-id-type="doi">10.1046/j.0909-8836..t01-2-.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-0031989768</pub-id>
<pub-id pub-id-type="pmid">9527353</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rupp</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Scheideler</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Olshanska</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>de Wild</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wieland</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Geis-Gerstorfer</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces</article-title>
<source>
<italic>Journal of Biomedical Materials Research Part A</italic>
</source>
<year>2006</year>
<volume>76</volume>
<issue>2</issue>
<fpage>323</fpage>
<lpage>334</lpage>
<pub-id pub-id-type="pmid">16270344</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le Guéhennec</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Soueidan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Layrolle</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Amouriq</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Surface treatments of titanium dental implants for rapid osseointegration</article-title>
<source>
<italic>Dental Materials</italic>
</source>
<year>2007</year>
<volume>23</volume>
<issue>7</issue>
<fpage>844</fpage>
<lpage>854</lpage>
<pub-id pub-id-type="doi">10.1016/j.dental.2006.06.025</pub-id>
<pub-id pub-id-type="other">2-s2.0-34248356846</pub-id>
<pub-id pub-id-type="pmid">16904738</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Choi</surname>
<given-names>A. H.</given-names>
</name>
<name>
<surname>Ben-Nissan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Matinlinna</surname>
<given-names>J. P.</given-names>
</name>
<name>
<surname>Conway</surname>
<given-names>R. C.</given-names>
</name>
</person-group>
<article-title>Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>2013</year>
<volume>92</volume>
<issue>10</issue>
<fpage>853</fpage>
<lpage>859</lpage>
<pub-id pub-id-type="doi">10.1177/0022034513497754</pub-id>
<pub-id pub-id-type="other">2-s2.0-84884229967</pub-id>
<pub-id pub-id-type="pmid">23857642</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brånemark</surname>
<given-names>P.-I.</given-names>
</name>
<name>
<surname>Breine</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Adell</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hansson</surname>
<given-names>B. O.</given-names>
</name>
<name>
<surname>Lindström</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ohlsson</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Intra-osseous anchorage of dental prostheses: I. Experimental studies</article-title>
<source>
<italic>Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery</italic>
</source>
<year>1969</year>
<volume>3</volume>
<issue>2</issue>
<fpage>81</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.3109/02844316909036699</pub-id>
<pub-id pub-id-type="other">2-s2.0-0014636440</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sarot</surname>
<given-names>J. R.</given-names>
</name>
<name>
<surname>Contar</surname>
<given-names>C. M. M.</given-names>
</name>
<name>
<surname>Cruz</surname>
<given-names>A. C. C. D.</given-names>
</name>
<name>
<surname>De Souza Magini</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method</article-title>
<source>
<italic>Journal of Materials Science: Materials in Medicine</italic>
</source>
<year>2010</year>
<volume>21</volume>
<issue>7</issue>
<fpage>2079</fpage>
<lpage>2085</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-010-4084-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-77954541849</pub-id>
<pub-id pub-id-type="pmid">20464460</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huiskes</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Weinans</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Van Rietbergen</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials</article-title>
<source>
<italic>Clinical Orthopaedics and Related Research</italic>
</source>
<year>1992</year>
<volume>274</volume>
<fpage>124</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="other">2-s2.0-0026604141</pub-id>
<pub-id pub-id-type="pmid">1728998</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sicilia</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cuesta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Coma</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2008</year>
<volume>19</volume>
<issue>8</issue>
<fpage>823</fpage>
<lpage>835</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0501.2008.01544.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-47149106401</pub-id>
<pub-id pub-id-type="pmid">18705814</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siddiqi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>A. G. T.</given-names>
</name>
<name>
<surname>de Silva</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>W. J.</given-names>
</name>
</person-group>
<article-title>Titanium allergy: could it affect dental implant integration?</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2011</year>
<volume>22</volume>
<issue>7</issue>
<fpage>673</fpage>
<lpage>680</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0501.2010.02081.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-79959210164</pub-id>
<pub-id pub-id-type="pmid">21251079</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Ricci</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A prospective multicenter clinical trial comparing one- and two-stage titanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures</article-title>
<source>
<italic>Clinical implant dentistry and related research</italic>
</source>
<year>2000</year>
<volume>2</volume>
<issue>3</issue>
<fpage>159</fpage>
<lpage>165</lpage>
<pub-id pub-id-type="doi">10.1111/j.1708-8208.2000.tb00007.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-0034574917</pub-id>
<pub-id pub-id-type="pmid">11359261</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwitalla</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>W.-D.</given-names>
</name>
</person-group>
<article-title>PEEK dental implants: a review of the literature</article-title>
<source>
<italic>Journal of Oral Implantology</italic>
</source>
<year>2013</year>
<volume>39</volume>
<issue>6</issue>
<fpage>743</fpage>
<lpage>749</lpage>
<pub-id pub-id-type="doi">10.1563/aaid-joi-d-11-00002</pub-id>
<pub-id pub-id-type="other">2-s2.0-84892378405</pub-id>
<pub-id pub-id-type="pmid">21905892</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Skinner</surname>
<given-names>H. B.</given-names>
</name>
</person-group>
<article-title>Composite technology for total hip arthroplasty</article-title>
<source>
<italic>Clinical Orthopaedics and Related Research</italic>
</source>
<year>1988</year>
<issue>235</issue>
<fpage>224</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="other">2-s2.0-0023741286</pub-id>
<pub-id pub-id-type="pmid">3416528</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rho</surname>
<given-names>J. Y.</given-names>
</name>
<name>
<surname>Ashman</surname>
<given-names>R. B.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
<article-title>Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1993</year>
<volume>26</volume>
<issue>2</issue>
<fpage>111</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(93)90042-d</pub-id>
<pub-id pub-id-type="other">2-s2.0-0027551874</pub-id>
<pub-id pub-id-type="pmid">8429054</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yildiz</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>F.-K.</given-names>
</name>
<name>
<surname>Goodman</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Composite hip prosthesis design. II. Simulation</article-title>
<source>
<italic>Journal of Biomedical Materials Research</italic>
</source>
<year>1997</year>
<volume>39</volume>
<issue>1</issue>
<fpage>102</fpage>
<lpage>119</lpage>
<pub-id pub-id-type="other">2-s2.0-0030631585</pub-id>
<pub-id pub-id-type="pmid">9429102</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olivares-Navarrete</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gittens</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>Schneider</surname>
<given-names>J. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone</article-title>
<source>
<italic>Spine Journal</italic>
</source>
<year>2012</year>
<volume>12</volume>
<issue>3</issue>
<fpage>265</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="doi">10.1016/j.spinee.2012.02.002</pub-id>
<pub-id pub-id-type="other">2-s2.0-84859436768</pub-id>
<pub-id pub-id-type="pmid">22424980</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rabiei</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sandukas</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Processing and evaluation of bioactive coatings on polymeric implants</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2013</year>
<volume>101</volume>
<issue>9</issue>
<fpage>2621</fpage>
<lpage>2629</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.34557</pub-id>
<pub-id pub-id-type="other">2-s2.0-84880609351</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ha</surname>
<given-names>S.-W.</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Koch</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wintermantel</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Plasma-sprayed hydroxylapatite coating on carbon fibre reinforced thermoplastic composite materials</article-title>
<source>
<italic>Journal of Materials Science: Materials in Medicine</italic>
</source>
<year>1994</year>
<volume>5</volume>
<issue>6-7</issue>
<fpage>481</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="doi">10.1007/bf00058987</pub-id>
<pub-id pub-id-type="other">2-s2.0-0028449121</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suska</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Omar</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Emanuelsson</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhancement of CRF-PEEK osseointegration by plasma-sprayed hydroxyapatite: a rabbit model</article-title>
<source>
<italic>Journal of Biomaterials Applications</italic>
</source>
<year>2014</year>
<volume>29</volume>
<issue>2</issue>
<fpage>234</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="doi">10.1177/0885328214521669</pub-id>
<pub-id pub-id-type="other">2-s2.0-84904321474</pub-id>
<pub-id pub-id-type="pmid">24496230</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abu Bakar</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>M. H. W.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>S. M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2003</year>
<volume>24</volume>
<issue>13</issue>
<fpage>2245</fpage>
<lpage>2250</lpage>
<pub-id pub-id-type="doi">10.1016/s0142-9612(03)00028-0</pub-id>
<pub-id pub-id-type="other">2-s2.0-12444328365</pub-id>
<pub-id pub-id-type="pmid">12699660</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>K. L.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>C. T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2009</year>
<volume>30</volume>
<issue>23-24</issue>
<fpage>3810</fpage>
<lpage>3817</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2009.04.016</pub-id>
<pub-id pub-id-type="other">2-s2.0-67349241319</pub-id>
<pub-id pub-id-type="pmid">19427032</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2014</year>
<volume>35</volume>
<issue>25</issue>
<fpage>6758</fpage>
<lpage>6775</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2014.04.085</pub-id>
<pub-id pub-id-type="other">2-s2.0-84902121116</pub-id>
<pub-id pub-id-type="pmid">24835045</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Nano-TiO
<sub>2</sub>
/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies</article-title>
<source>
<italic>International Journal of Nanomedicine</italic>
</source>
<year>2012</year>
<volume>7</volume>
<fpage>1215</fpage>
<lpage>1225</lpage>
<pub-id pub-id-type="doi">10.2147/ijn.s28101</pub-id>
<pub-id pub-id-type="other">2-s2.0-84862337821</pub-id>
<pub-id pub-id-type="pmid">22419869</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chueh</surname>
<given-names>P. J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>Shih</surname>
<given-names>T.-S.</given-names>
</name>
<name>
<surname>Chuang</surname>
<given-names>S.-M.</given-names>
</name>
</person-group>
<article-title>Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO
<sub>2</sub>
long-term exposure</article-title>
<source>
<italic>Toxicology and Applied Pharmacology</italic>
</source>
<year>2009</year>
<volume>241</volume>
<issue>2</issue>
<fpage>182</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1016/j.taap.2009.08.013</pub-id>
<pub-id pub-id-type="other">2-s2.0-70350241480</pub-id>
<pub-id pub-id-type="pmid">19695278</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO
<sub>2</sub>
nanoparticles</article-title>
<source>
<italic>Toxicology</italic>
</source>
<year>2008</year>
<volume>254</volume>
<issue>1-2</issue>
<fpage>82</fpage>
<lpage>90</lpage>
<pub-id pub-id-type="doi">10.1016/j.tox.2008.09.014</pub-id>
<pub-id pub-id-type="other">2-s2.0-56049102066</pub-id>
<pub-id pub-id-type="pmid">18929619</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ishizaki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Iwasa</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of pico-to-nanometer-thin TiO
<sub>2</sub>
coating on the biological properties of microroughened titanium</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2011</year>
<volume>32</volume>
<issue>33</issue>
<fpage>8374</fpage>
<lpage>8384</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2011.07.077</pub-id>
<pub-id pub-id-type="other">2-s2.0-80052964686</pub-id>
<pub-id pub-id-type="pmid">21840046</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gittens</surname>
<given-names>R. A.</given-names>
</name>
<name>
<surname>McLachlan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Olivares-Navarrete</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2011</year>
<volume>32</volume>
<issue>13</issue>
<fpage>3395</fpage>
<lpage>3403</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2011.01.029</pub-id>
<pub-id pub-id-type="pmid">21310480</pub-id>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
<name>
<surname></surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effects of TiO
<sub>2</sub>
nanotubes with different diameters on gene expression and osseointegration of implants in minipigs</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2011</year>
<volume>32</volume>
<issue>29</issue>
<fpage>6900</fpage>
<lpage>6911</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2011.06.023</pub-id>
<pub-id pub-id-type="other">2-s2.0-79960840505</pub-id>
<pub-id pub-id-type="pmid">21733571</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wiegand</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Buchalla</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Attin</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation</article-title>
<source>
<italic>Dental Materials</italic>
</source>
<year>2007</year>
<volume>23</volume>
<issue>3</issue>
<fpage>343</fpage>
<lpage>362</lpage>
<pub-id pub-id-type="doi">10.1016/j.dental.2006.01.022</pub-id>
<pub-id pub-id-type="other">2-s2.0-33846378898</pub-id>
<pub-id pub-id-type="pmid">16616773</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hamilton</surname>
<given-names>I. R.</given-names>
</name>
</person-group>
<article-title>Biochemical effects of fluoride on oral bacteria</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>1990</year>
<volume>69</volume>
<fpage>660</fpage>
<lpage>667</lpage>
<pub-id pub-id-type="other">2-s2.0-0025358729</pub-id>
<pub-id pub-id-type="pmid">2179327</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tahriri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moztarzadeh</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications</article-title>
<source>
<italic>Applied Biochemistry and Biotechnology</italic>
</source>
<year>2014</year>
<volume>172</volume>
<issue>5</issue>
<fpage>2465</fpage>
<lpage>2479</lpage>
<pub-id pub-id-type="doi">10.1007/s12010-013-0696-y</pub-id>
<pub-id pub-id-type="other">2-s2.0-84899438386</pub-id>
<pub-id pub-id-type="pmid">24395697</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gineste</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Gineste</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ranz</surname>
<given-names>X.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs</article-title>
<source>
<italic>Journal of Biomedical Materials Research</italic>
</source>
<year>1999</year>
<volume>48</volume>
<issue>3</issue>
<fpage>224</fpage>
<lpage>234</lpage>
<pub-id pub-id-type="other">2-s2.0-0033014324</pub-id>
<pub-id pub-id-type="pmid">10398025</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanić</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Dimitrijević</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Antonović</surname>
<given-names>D. G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis of fluorine substituted hydroxyapatite nanopowders and application of the central composite design for determination of its antimicrobial effects</article-title>
<source>
<italic>Applied Surface Science</italic>
</source>
<year>2014</year>
<volume>290</volume>
<fpage>346</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="doi">10.1016/j.apsusc.2013.11.081</pub-id>
<pub-id pub-id-type="other">2-s2.0-84891028891</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Canal</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Molina</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bertran</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Erra</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Wettability, ageing and recovery process of plasma-treated polyamide 6</article-title>
<source>
<italic>Journal of Adhesion Science and Technology</italic>
</source>
<year>2004</year>
<volume>18</volume>
<issue>9</issue>
<fpage>1077</fpage>
<lpage>1089</lpage>
<pub-id pub-id-type="doi">10.1163/1568561041257487</pub-id>
<pub-id pub-id-type="other">2-s2.0-3142674824</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barkarmo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Nano-hydroxyapatite-coated PEEK implants: a pilot study in rabbit bone</article-title>
<source>
<italic>Journal of Biomedical Materials Research Part A</italic>
</source>
<year>2013</year>
<volume>101</volume>
<issue>2</issue>
<fpage>465</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.34358</pub-id>
<pub-id pub-id-type="other">2-s2.0-84872680339</pub-id>
<pub-id pub-id-type="pmid">22865597</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barkarmo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Currie</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enhanced bone healing around nanohydroxyapatite-coated polyetheretherketone implants: an experimental study in rabbit bone</article-title>
<source>
<italic>Journal of Biomaterials Applications</italic>
</source>
<year>2014</year>
<volume>29</volume>
<issue>5</issue>
<fpage>737</fpage>
<lpage>747</lpage>
<pub-id pub-id-type="doi">10.1177/0885328214542854</pub-id>
<pub-id pub-id-type="other">2-s2.0-84908887416</pub-id>
<pub-id pub-id-type="pmid">25015653</pub-id>
</element-citation>
</ref>
<ref id="B44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Johansson</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jimbo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kjellin</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Chrcanovic</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Currie</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Biomechanical evaluation and surface characterization of a nano-modified surface on PEEK implants: a study in the rabbit tibia</article-title>
<source>
<italic>International Journal of Nanomedicine</italic>
</source>
<year>2014</year>
<volume>9</volume>
<fpage>3903</fpage>
<lpage>3911</lpage>
<pub-id pub-id-type="doi">10.2147/ijn.s60387</pub-id>
<pub-id pub-id-type="pmid">25152620</pub-id>
</element-citation>
</ref>
<ref id="B45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation</article-title>
<source>
<italic>Colloids and Surfaces B: Biointerfaces</italic>
</source>
<year>2014</year>
<volume>117</volume>
<fpage>89</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2014.02.019</pub-id>
<pub-id pub-id-type="other">2-s2.0-84896053521</pub-id>
<pub-id pub-id-type="pmid">24632035</pub-id>
</element-citation>
</ref>
<ref id="B46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waser-Althaus</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Salamon</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Waser</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone</article-title>
<source>
<italic>Journal of Materials Science: Materials in Medicine</italic>
</source>
<year>2014</year>
<volume>25</volume>
<issue>2</issue>
<fpage>515</fpage>
<lpage>525</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-013-5072-5</pub-id>
<pub-id pub-id-type="other">2-s2.0-84894493882</pub-id>
<pub-id pub-id-type="pmid">24202913</pub-id>
</element-citation>
</ref>
<ref id="B47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poulsson</surname>
<given-names>A. H. C.</given-names>
</name>
<name>
<surname>Eglin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zeiter</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Osseointegration of machined, injection moulded and oxygen plasma modified PEEK implants in a sheep model</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2014</year>
<volume>35</volume>
<issue>12</issue>
<fpage>3717</fpage>
<lpage>3728</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2013.12.056</pub-id>
<pub-id pub-id-type="other">2-s2.0-84893814712</pub-id>
<pub-id pub-id-type="pmid">24485795</pub-id>
</element-citation>
</ref>
<ref id="B48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>C.-M.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>T.-M.</given-names>
</name>
<name>
<surname>Hiraoka</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Polymer surface modification by plasmas and photons</article-title>
<source>
<italic>Surface Science Reports</italic>
</source>
<year>1996</year>
<volume>24</volume>
<issue>1-2</issue>
<fpage>1</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/0167-5729(96)80003-3</pub-id>
<pub-id pub-id-type="other">2-s2.0-0030143664</pub-id>
</element-citation>
</ref>
<ref id="B49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsougeni</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Vourdas</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Tserepi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gogolides</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cardinaud</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces</article-title>
<source>
<italic>Langmuir</italic>
</source>
<year>2009</year>
<volume>25</volume>
<issue>19</issue>
<fpage>11748</fpage>
<lpage>11759</lpage>
<pub-id pub-id-type="doi">10.1021/la901072z</pub-id>
<pub-id pub-id-type="other">2-s2.0-70349910095</pub-id>
<pub-id pub-id-type="pmid">19788226</pub-id>
</element-citation>
</ref>
<ref id="B50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rechendorff</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hovgaard</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Foss</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhdanov</surname>
<given-names>V. P.</given-names>
</name>
<name>
<surname>Besenbacher</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Enhancement of protein adsorption induced by surface roughness</article-title>
<source>
<italic>Langmuir</italic>
</source>
<year>2006</year>
<volume>22</volume>
<issue>26</issue>
<fpage>10885</fpage>
<lpage>10888</lpage>
<pub-id pub-id-type="doi">10.1021/la0621923</pub-id>
<pub-id pub-id-type="other">2-s2.0-33846392619</pub-id>
<pub-id pub-id-type="pmid">17154557</pub-id>
</element-citation>
</ref>
<ref id="B51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rochford</surname>
<given-names>E. T. J.</given-names>
</name>
<name>
<surname>Subbiahdoss</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Moriarty</surname>
<given-names>T. F.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An in vitro investigation of bacteria-osteoblast competition on oxygen plasma-modified PEEK</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2014</year>
<volume>102</volume>
<issue>12</issue>
<fpage>4427</fpage>
<lpage>4434</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.35130</pub-id>
<pub-id pub-id-type="other">2-s2.0-84911805967</pub-id>
</element-citation>
</ref>
<ref id="B52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akkan</surname>
<given-names>C. K.</given-names>
</name>
<name>
<surname>Hammadeh</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>May</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Surface topography and wetting modifications of PEEK for implant applications</article-title>
<source>
<italic>Lasers in Medical Science</italic>
</source>
<year>2014</year>
<volume>29</volume>
<issue>5</issue>
<fpage>1633</fpage>
<lpage>1639</lpage>
<pub-id pub-id-type="doi">10.1007/s10103-014-1567-7</pub-id>
<pub-id pub-id-type="other">2-s2.0-84897119567</pub-id>
<pub-id pub-id-type="pmid">24691717</pub-id>
</element-citation>
</ref>
<ref id="B53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Randolph</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>Fowlkes</surname>
<given-names>J. D.</given-names>
</name>
<name>
<surname>Rack</surname>
<given-names>P. D.</given-names>
</name>
</person-group>
<article-title>Focused, nanoscale electron-beam-induced deposition and etching</article-title>
<source>
<italic>Critical Reviews in Solid State and Materials Sciences</italic>
</source>
<year>2006</year>
<volume>31</volume>
<issue>3</issue>
<fpage>55</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1080/10408430600930438</pub-id>
<pub-id pub-id-type="other">2-s2.0-33750206624</pub-id>
</element-citation>
</ref>
<ref id="B54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>C.-M.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>E.-J.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-E.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2010</year>
<volume>31</volume>
<issue>13</issue>
<fpage>3465</fpage>
<lpage>3470</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2009.12.030</pub-id>
<pub-id pub-id-type="other">2-s2.0-77249117286</pub-id>
<pub-id pub-id-type="pmid">20153890</pub-id>
</element-citation>
</ref>
<ref id="B55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>C.-M.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>T.-S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-E.</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>Y.-H.</given-names>
</name>
</person-group>
<article-title>Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein</article-title>
<source>
<italic>Journal of Biomedical Materials Research—Part A</italic>
</source>
<year>2014</year>
<volume>102</volume>
<issue>3</issue>
<fpage>793</fpage>
<lpage>800</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.34748</pub-id>
<pub-id pub-id-type="other">2-s2.0-84892618310</pub-id>
<pub-id pub-id-type="pmid">23589347</pub-id>
</element-citation>
</ref>
<ref id="B56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wildemann</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bamdad</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Holmer</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Haas</surname>
<given-names>N. P.</given-names>
</name>
<name>
<surname>Raschke</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schmidmaier</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Local delivery of growth factors from coated titanium plates increases osteotomy healing in rats</article-title>
<source>
<italic>Bone</italic>
</source>
<year>2004</year>
<volume>34</volume>
<issue>5</issue>
<fpage>862</fpage>
<lpage>868</lpage>
<pub-id pub-id-type="doi">10.1016/j.bone.2004.01.015</pub-id>
<pub-id pub-id-type="other">2-s2.0-2342589478</pub-id>
<pub-id pub-id-type="pmid">15121018</pub-id>
</element-citation>
</ref>
<ref id="B57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macdonald</surname>
<given-names>M. L.</given-names>
</name>
<name>
<surname>Samuel</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Shah</surname>
<given-names>N. J.</given-names>
</name>
<name>
<surname>Padera</surname>
<given-names>R. F.</given-names>
</name>
<name>
<surname>Beben</surname>
<given-names>Y. M.</given-names>
</name>
<name>
<surname>Hammond</surname>
<given-names>P. T.</given-names>
</name>
</person-group>
<article-title>Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2011</year>
<volume>32</volume>
<issue>5</issue>
<fpage>1446</fpage>
<lpage>1453</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2010.10.052</pub-id>
<pub-id pub-id-type="other">2-s2.0-78649724173</pub-id>
<pub-id pub-id-type="pmid">21084117</pub-id>
</element-citation>
</ref>
<ref id="B58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mantese</surname>
<given-names>J. V.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>I. G.</given-names>
</name>
<name>
<surname>Cheung</surname>
<given-names>N. W.</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>G. A.</given-names>
</name>
</person-group>
<article-title>Plasma-immersion ion implantation</article-title>
<source>
<italic>MRS Bulletin</italic>
</source>
<year>1996</year>
<volume>21</volume>
<issue>8</issue>
<fpage>52</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="other">2-s2.0-0004783686</pub-id>
</element-citation>
</ref>
<ref id="B59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lieberman</surname>
<given-names>M. A.</given-names>
</name>
</person-group>
<article-title>Model of plasma immersion ion implantation</article-title>
<source>
<italic>Journal of Applied Physics</italic>
</source>
<year>1989</year>
<volume>66</volume>
<issue>7</issue>
<fpage>2926</fpage>
<lpage>2929</lpage>
<pub-id pub-id-type="doi">10.1063/1.344172</pub-id>
<pub-id pub-id-type="other">2-s2.0-2142778955</pub-id>
</element-citation>
</ref>
<ref id="B60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Qian</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Multilevel surface engineering of nanostructured TiO
<sub>2</sub>
on carbon-fiber-reinforced polyetheretherketone</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2014</year>
<volume>35</volume>
<issue>22</issue>
<fpage>5731</fpage>
<lpage>5740</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2014.04.003</pub-id>
<pub-id pub-id-type="other">2-s2.0-84899975095</pub-id>
<pub-id pub-id-type="pmid">24767786</pub-id>
</element-citation>
</ref>
<ref id="B61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2010</year>
<volume>31</volume>
<issue>32</issue>
<fpage>8181</fpage>
<lpage>8187</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2010.07.054</pub-id>
<pub-id pub-id-type="other">2-s2.0-77956184769</pub-id>
<pub-id pub-id-type="pmid">20692699</pub-id>
</element-citation>
</ref>
<ref id="B62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite</article-title>
<source>
<italic>Materials Science and Engineering C</italic>
</source>
<year>2015</year>
<volume>48</volume>
<fpage>592</fpage>
<lpage>598</lpage>
<pub-id pub-id-type="doi">10.1016/j.msec.2014.12.061</pub-id>
<pub-id pub-id-type="other">2-s2.0-84919665445</pub-id>
<pub-id pub-id-type="pmid">25579962</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>The chemical structural formula of polyetheretherketone (PEEK). PEEK is a semicrystalline thermoplastic and it is synthesized via step-growth polymerization by the dialkylation of
<italic> bis</italic>
-phenolate salts.</p>
</caption>
<graphic xlink:href="IJD2015-381759.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>A schematic diagram of the process of melt-blending to produce bioactive PEEK composites. First, the PEEK powder and nanofillers are codispersed in a suitable solvent. The solvent is then removed and the mixture is placed in suitable moulds and heated to a temperature above the melting point PEEK under high pressure in a mould (so-called compression moulding). Upon cooling, the resultant material is composite of PEEK and the fillers. The solid composite is then machined to provide shape or surface characteristics suitable for a dental implant.</p>
</caption>
<graphic xlink:href="IJD2015-381759.002"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Bioactive PEEK nanocomposites and some biomechanical properties.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Material</th>
<th align="center" rowspan="1" colspan="1">Particle size</th>
<th align="center" rowspan="1" colspan="1">Modulus (GPa)</th>
<th align="center" rowspan="1" colspan="1">Tensile strength (MPa)</th>
<th align="center" rowspan="1" colspan="1">Contact angle (°)</th>
<th align="center" rowspan="1" colspan="1">Animal studies</th>
<th align="center" rowspan="1" colspan="1">Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">PEEK-nTiO
<sub>2</sub>
</td>
<td align="center" rowspan="1" colspan="1">Not stated</td>
<td align="center" rowspan="1" colspan="1">3.8</td>
<td align="center" rowspan="1" colspan="1">93</td>
<td align="center" rowspan="1" colspan="1">n.d.</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B30" ref-type="bibr">30</xref>
] </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PEEK-nHAF</td>
<td align="center" rowspan="1" colspan="1">Length = 85 ± 10 nm, width: 22 ± 4 nm</td>
<td align="center" rowspan="1" colspan="1">12.1 ± 0.4</td>
<td align="center" rowspan="1" colspan="1">137.6 ± 9.1</td>
<td align="center" rowspan="1" colspan="1">71.5</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B29" ref-type="bibr">29</xref>
] </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CFR-PEEK-nHAp</td>
<td align="center" rowspan="1" colspan="1"><200 nm</td>
<td align="center" rowspan="1" colspan="1">n.d.</td>
<td align="center" rowspan="1" colspan="1">n.d.</td>
<td align="center" rowspan="1" colspan="1">75 (without plasma), 10 (with plasma treatment)</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B62" ref-type="bibr">62</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Various surface modifications for PEEK and some reported properties. </p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Modification</th>
<th align="center" rowspan="1" colspan="1">Surface roughness/pore size</th>
<th align="center" rowspan="1" colspan="1">Contact angle (°)</th>
<th align="center" rowspan="1" colspan="1">Animal studies</th>
<th align="center" rowspan="1" colspan="1">References</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Spin-coating</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> nHAp</td>
<td align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
= 0.686 ± 0.14 
<italic>µ</italic>
m–0.93 ± 0.25 
<italic>µ</italic>
m</td>
<td align="center" rowspan="1" colspan="1">53 ± 4.4</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B42" ref-type="bibr">42</xref>
<xref rid="B44" ref-type="bibr">44</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Gas plasma etching</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> O
<sub>2</sub>
/Ar</td>
<td align="center" rowspan="1" colspan="1">RMS = 9–19 nm</td>
<td align="center" rowspan="1" colspan="1">5–40</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B46" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> NH
<sub>3</sub>
</td>
<td align="center" rowspan="1" colspan="1">RMS = 3–7 nm</td>
<td align="center" rowspan="1" colspan="1">45–90</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B46" ref-type="bibr">46</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> O
<sub>2</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<italic>R</italic>
<sub>
<italic>a</italic>
</sub>
= 75.33 ± 10.66 nm </td>
<td align="center" rowspan="1" colspan="1">52 </td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B47" ref-type="bibr">47</xref>
]</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">E-beam TiO
<sub>2</sub>
</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Conventional</td>
<td align="center" rowspan="1" colspan="1">n.d.</td>
<td align="center" rowspan="1" colspan="1">54</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B54" ref-type="bibr">54</xref>
] </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Anodized</td>
<td align="center" rowspan="1" colspan="1">Pore size: 70 nm</td>
<td align="center" rowspan="1" colspan="1">≈0</td>
<td align="center" rowspan="1" colspan="1">Yes</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B55" ref-type="bibr">55</xref>
] </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">PIII</td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
<td align="center" rowspan="1" colspan="1"></td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> TiO
<sub>2</sub>
</td>
<td align="center" rowspan="1" colspan="1">Pore size: 150–200 nm</td>
<td align="center" rowspan="1" colspan="1">n.d</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B45" ref-type="bibr">45</xref>
] </td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> Diamond-like carbon</td>
<td align="center" rowspan="1" colspan="1">RMS = 5.42 nm</td>
<td align="center" rowspan="1" colspan="1">≈55</td>
<td align="center" rowspan="1" colspan="1">No</td>
<td align="center" rowspan="1" colspan="1">[
<xref rid="B61" ref-type="bibr">61</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D96  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002D96  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022