Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002C82 ( Pmc/Corpus ); précédent : 002C819; suivant : 002C830 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Force Transfer and Stress Distribution in an Implant-Supported Overdenture Retained with a Hader Bar Attachment: A Finite Element Analysis</title>
<author>
<name sortKey="Satheesh Kumar, Preeti" sort="Satheesh Kumar, Preeti" uniqKey="Satheesh Kumar P" first="Preeti" last="Satheesh Kumar">Preeti Satheesh Kumar</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Satheesh, Kumar K S" sort="Satheesh, Kumar K S" uniqKey="Satheesh K" first="Kumar K. S." last="Satheesh">Kumar K. S. Satheesh</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="John, Jins" sort="John, Jins" uniqKey="John J" first="Jins" last="John">Jins John</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patil, Geetha" sort="Patil, Geetha" uniqKey="Patil G" first="Geetha" last="Patil">Geetha Patil</name>
<affiliation>
<nlm:aff id="I2">Department of Prosthodontics, Rajiv Gandhi College of Dental Sciences, Bangalore, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patel, Ruchi" sort="Patel, Ruchi" uniqKey="Patel R" first="Ruchi" last="Patel">Ruchi Patel</name>
<affiliation>
<nlm:aff id="I3">Department of Prosthodontics, Ahmedabad Dental College, India</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24459589</idno>
<idno type="pmc">3888690</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3888690</idno>
<idno type="RBID">PMC:3888690</idno>
<idno type="doi">10.1155/2013/369147</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002C82</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002C82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Force Transfer and Stress Distribution in an Implant-Supported Overdenture Retained with a Hader Bar Attachment: A Finite Element Analysis</title>
<author>
<name sortKey="Satheesh Kumar, Preeti" sort="Satheesh Kumar, Preeti" uniqKey="Satheesh Kumar P" first="Preeti" last="Satheesh Kumar">Preeti Satheesh Kumar</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Satheesh, Kumar K S" sort="Satheesh, Kumar K S" uniqKey="Satheesh K" first="Kumar K. S." last="Satheesh">Kumar K. S. Satheesh</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="John, Jins" sort="John, Jins" uniqKey="John J" first="Jins" last="John">Jins John</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patil, Geetha" sort="Patil, Geetha" uniqKey="Patil G" first="Geetha" last="Patil">Geetha Patil</name>
<affiliation>
<nlm:aff id="I2">Department of Prosthodontics, Rajiv Gandhi College of Dental Sciences, Bangalore, India</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Patel, Ruchi" sort="Patel, Ruchi" uniqKey="Patel R" first="Ruchi" last="Patel">Ruchi Patel</name>
<affiliation>
<nlm:aff id="I3">Department of Prosthodontics, Ahmedabad Dental College, India</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ISRN Dentistry</title>
<idno type="ISSN">2090-4371</idno>
<idno type="eISSN">2090-438X</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Background and Objectives.</italic>
A key factor for the long-term function of a dental implant is the manner in which stresses are transferred to the surrounding bone. The effect of adding a stiffener to the tissue side of the Hader bar helps to reduce the transmission of the stresses to the alveolar bone. But the ideal thickness of the stiffener to be attached to the bar is a subject of much debate. This study aims to analyze the force transfer and stress distribution of an implant-supported overdenture with a Hader bar attachment. The stiffener of the bar attachments was varied and the stress distribution to the bone around the implant was studied.
<italic>Methods.</italic>
A CT scan of edentulous mandible was used and three models with 1, 2, and 3 mm thick stiffeners were created and subjected to loads of emulating the masticatory forces. These different models were analyzed by the Finite Element Software (Ansys, Version 8.0) using von Mises stress analysis.
<italic>Results.</italic>
The results showed that the maximum stress concentration was seen in the neck of the implant for models A and B. In model C the maximum stress concentration was in the bar attachment making it the model with the best stress distribution, as far as implant failures are concerned.
<italic>Conclusion.</italic>
The implant with Hader bar attachment with a 3 mm stiffener is the best in terms of stress distribution, where the stress is concentrated at the bar and stiffener regions.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Assuncao, Wg" uniqKey="Assuncao W">WG Assunçao</name>
</author>
<author>
<name sortKey="Barao, Var" uniqKey="Barao V">VAR Barao</name>
</author>
<author>
<name sortKey="Tabata, Lf" uniqKey="Tabata L">LF Tabata</name>
</author>
<author>
<name sortKey="De Sousa, Eac" uniqKey="De Sousa E">EAC de Sousa</name>
</author>
<author>
<name sortKey="Gomes, Ea" uniqKey="Gomes E">EA Gomes</name>
</author>
<author>
<name sortKey="Delben, Ja" uniqKey="Delben J">JA Delben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Celik, G" uniqKey="Celik G">G Celik</name>
</author>
<author>
<name sortKey="Uludag, B" uniqKey="Uludag B">B Uludag</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mericske Stern, R" uniqKey="Mericske Stern R">R Mericske-Stern</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tokuhisa, M" uniqKey="Tokuhisa M">M Tokuhisa</name>
</author>
<author>
<name sortKey="Matsushita, Y" uniqKey="Matsushita Y">Y Matsushita</name>
</author>
<author>
<name sortKey="Koyano, K" uniqKey="Koyano K">K Koyano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wright, Ps" uniqKey="Wright P">PS Wright</name>
</author>
<author>
<name sortKey="Watson, Rm" uniqKey="Watson R">RM Watson</name>
</author>
<author>
<name sortKey="Heath, Mr" uniqKey="Heath M">MR Heath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meijer, Hja" uniqKey="Meijer H">HJA Meijer</name>
</author>
<author>
<name sortKey="Starmans, Fjm" uniqKey="Starmans F">FJM Starmans</name>
</author>
<author>
<name sortKey="Steen, Wha" uniqKey="Steen W">WHA Steen</name>
</author>
<author>
<name sortKey="Bosman, F" uniqKey="Bosman F">F Bosman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menicucci, G" uniqKey="Menicucci G">G Menicucci</name>
</author>
<author>
<name sortKey="Lorenzetti, M" uniqKey="Lorenzetti M">M Lorenzetti</name>
</author>
<author>
<name sortKey="Pera, P" uniqKey="Pera P">P Pera</name>
</author>
<author>
<name sortKey="Preti, G" uniqKey="Preti G">G Preti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meijer, Hja" uniqKey="Meijer H">HJA Meijer</name>
</author>
<author>
<name sortKey="Starmans, Fjm" uniqKey="Starmans F">FJM Starmans</name>
</author>
<author>
<name sortKey="Steen, Wha" uniqKey="Steen W">WHA Steen</name>
</author>
<author>
<name sortKey="Bosman, F" uniqKey="Bosman F">F Bosman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vollmer, D" uniqKey="Vollmer D">D Vollmer</name>
</author>
<author>
<name sortKey="Meyer, U" uniqKey="Meyer U">U Meyer</name>
</author>
<author>
<name sortKey="Joos, U" uniqKey="Joos U">U Joos</name>
</author>
<author>
<name sortKey="Vegh, A" uniqKey="Vegh A">A Vègh</name>
</author>
<author>
<name sortKey="Piffk, J" uniqKey="Piffk J">J Piffkò</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Kampen, F" uniqKey="Van Kampen F">F van Kampen</name>
</author>
<author>
<name sortKey="Cune, M" uniqKey="Cune M">M Cune</name>
</author>
<author>
<name sortKey="Van Der Bilt, A" uniqKey="Van Der Bilt A">A van der Bilt</name>
</author>
<author>
<name sortKey="Bosman, F" uniqKey="Bosman F">F Bosman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cruz, M" uniqKey="Cruz M">M Cruz</name>
</author>
<author>
<name sortKey="Wassall, T" uniqKey="Wassall T">T Wassall</name>
</author>
<author>
<name sortKey="Toledo, Em" uniqKey="Toledo E">EM Toledo</name>
</author>
<author>
<name sortKey="Da Silva Barra, Lp" uniqKey="Da Silva Barra L">LP da Silva Barra</name>
</author>
<author>
<name sortKey="De Castro Lemonge, Ac" uniqKey="De Castro Lemonge A">AC de Castro Lemonge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rieger, Mr" uniqKey="Rieger M">MR Rieger</name>
</author>
<author>
<name sortKey="Mayberry, M" uniqKey="Mayberry M">M Mayberry</name>
</author>
<author>
<name sortKey="Brose, Mo" uniqKey="Brose M">MO Brose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carl, E" uniqKey="Carl E">E Carl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinstein, Am" uniqKey="Weinstein A">AM Weinstein</name>
</author>
<author>
<name sortKey="Klawitter, Jj" uniqKey="Klawitter J">JJ Klawitter</name>
</author>
<author>
<name sortKey="Anand, Sc" uniqKey="Anand S">SC Anand</name>
</author>
<author>
<name sortKey="Schuessler, R" uniqKey="Schuessler R">R Schuessler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kordatzis, K" uniqKey="Kordatzis K">K Kordatzis</name>
</author>
<author>
<name sortKey="Wright, Ps" uniqKey="Wright P">PS Wright</name>
</author>
<author>
<name sortKey="Meijer, Hja" uniqKey="Meijer H">HJA Meijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meijer, Hj" uniqKey="Meijer H">HJ Meijer</name>
</author>
<author>
<name sortKey="Starmans, Fj" uniqKey="Starmans F">FJ Starmans</name>
</author>
<author>
<name sortKey="Steen, Wh" uniqKey="Steen W">WH Steen</name>
</author>
<author>
<name sortKey="Bosman, F" uniqKey="Bosman F">F Bosman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borchers, L" uniqKey="Borchers L">L Borchers</name>
</author>
<author>
<name sortKey="Reichart, P" uniqKey="Reichart P">P Reichart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, Sd" uniqKey="Cook S">SD Cook</name>
</author>
<author>
<name sortKey="Klawitter, Jj" uniqKey="Klawitter J">JJ Klawitter</name>
</author>
<author>
<name sortKey="Weinstein, Am" uniqKey="Weinstein A">AM Weinstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cook, Sd" uniqKey="Cook S">SD Cook</name>
</author>
<author>
<name sortKey="Weinstein, Am" uniqKey="Weinstein A">AM Weinstein</name>
</author>
<author>
<name sortKey="Klawitter, Jj" uniqKey="Klawitter J">JJ Klawitter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Mahony, Am" uniqKey="O Mahony A">AM O'Mahony</name>
</author>
<author>
<name sortKey="Williams, Jl" uniqKey="Williams J">JL Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teixeira, Er" uniqKey="Teixeira E">ER Teixeira</name>
</author>
<author>
<name sortKey="Sato, Y" uniqKey="Sato Y">Y Sato</name>
</author>
<author>
<name sortKey="Akagawa, Y" uniqKey="Akagawa Y">Y Akagawa</name>
</author>
<author>
<name sortKey="Shindoi, N" uniqKey="Shindoi N">N Shindoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tada, S" uniqKey="Tada S">S Tada</name>
</author>
<author>
<name sortKey="Stegaroiu, R" uniqKey="Stegaroiu R">R Stegaroiu</name>
</author>
<author>
<name sortKey="Kitamura, E" uniqKey="Kitamura E">E Kitamura</name>
</author>
<author>
<name sortKey="Miyakawa, O" uniqKey="Miyakawa O">O Miyakawa</name>
</author>
<author>
<name sortKey="Kusakari, H" uniqKey="Kusakari H">H Kusakari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fontijn Tekamp, Fa" uniqKey="Fontijn Tekamp F">FA Fontijn-Tekamp</name>
</author>
<author>
<name sortKey="Slagter, Ap" uniqKey="Slagter A">AP Slagter</name>
</author>
<author>
<name sortKey="Van Hof, Ma" uniqKey="Van Hof M">MA van’t Hof</name>
</author>
<author>
<name sortKey="Geertman, Me" uniqKey="Geertman M">ME Geertman</name>
</author>
<author>
<name sortKey="Kalk, W" uniqKey="Kalk W">W Kalk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koolstra, Jh" uniqKey="Koolstra J">JH Koolstra</name>
</author>
<author>
<name sortKey="Van Eijden, Tmgj" uniqKey="Van Eijden T">TMGJ van Eijden</name>
</author>
<author>
<name sortKey="Weijs, Wa" uniqKey="Weijs W">WA Weijs</name>
</author>
<author>
<name sortKey="Naeije, M" uniqKey="Naeije M">M Naeije</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Kampen, Fmc" uniqKey="Van Kampen F">FMC van Kampen</name>
</author>
<author>
<name sortKey="Van Der Bilt, A" uniqKey="Van Der Bilt A">A van der Bilt</name>
</author>
<author>
<name sortKey="Cune, Ms" uniqKey="Cune M">MS Cune</name>
</author>
<author>
<name sortKey="Bosman, F" uniqKey="Bosman F">F Bosman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geng, J Pa" uniqKey="Geng J">J-PA Geng</name>
</author>
<author>
<name sortKey="Tan, Kbc" uniqKey="Tan K">KBC Tan</name>
</author>
<author>
<name sortKey="Liu, G R" uniqKey="Liu G">G-R Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eskitascioglu, G" uniqKey="Eskitascioglu G">G Eskitascioglu</name>
</author>
<author>
<name sortKey="Usumez, A" uniqKey="Usumez A">A Usumez</name>
</author>
<author>
<name sortKey="Sevimay, M" uniqKey="Sevimay M">M Sevimay</name>
</author>
<author>
<name sortKey="Soykan, E" uniqKey="Soykan E">E Soykan</name>
</author>
<author>
<name sortKey="Unsal, E" uniqKey="Unsal E">E Unsal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assuncao, Wg" uniqKey="Assuncao W">WG Assunção</name>
</author>
<author>
<name sortKey="Tabata, Lf" uniqKey="Tabata L">LF Tabata</name>
</author>
<author>
<name sortKey="Barao, Var" uniqKey="Barao V">VAR Barão</name>
</author>
<author>
<name sortKey="Rocha, Ep" uniqKey="Rocha E">EP Rocha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haraldson, T" uniqKey="Haraldson T">T Haraldson</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T Jemt</name>
</author>
<author>
<name sortKey="St Lblad, Pa" uniqKey="St Lblad P">PA Stålblad</name>
</author>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U Lekholm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Levy, D" uniqKey="Levy D">D Levy</name>
</author>
<author>
<name sortKey="Deporter, Da" uniqKey="Deporter D">DA Deporter</name>
</author>
<author>
<name sortKey="Watson, Pa" uniqKey="Watson P">PA Watson</name>
</author>
<author>
<name sortKey="Pilliar, Rm" uniqKey="Pilliar R">RM Pilliar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papavasiliou, G" uniqKey="Papavasiliou G">G Papavasiliou</name>
</author>
<author>
<name sortKey="Kamposiora, P" uniqKey="Kamposiora P">P Kamposiora</name>
</author>
<author>
<name sortKey="Bayne, Sc" uniqKey="Bayne S">SC Bayne</name>
</author>
<author>
<name sortKey="Felton, Da" uniqKey="Felton D">DA Felton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yokoyama, S" uniqKey="Yokoyama S">S Yokoyama</name>
</author>
<author>
<name sortKey="Wakabayashi, N" uniqKey="Wakabayashi N">N Wakabayashi</name>
</author>
<author>
<name sortKey="Shiota, M" uniqKey="Shiota M">M Shiota</name>
</author>
<author>
<name sortKey="Ohyama, T" uniqKey="Ohyama T">T Ohyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koca, Ol" uniqKey="Koca O">OL Koca</name>
</author>
<author>
<name sortKey="Eskitascioglu, G" uniqKey="Eskitascioglu G">G Eskitascioglu</name>
</author>
<author>
<name sortKey="Usumez, A" uniqKey="Usumez A">A Usumez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowdhary, R" uniqKey="Chowdhary R">R Chowdhary</name>
</author>
<author>
<name sortKey="Lekha, K" uniqKey="Lekha K">K Lekha</name>
</author>
<author>
<name sortKey="Patil, Np" uniqKey="Patil N">NP Patil</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ISRN Dent</journal-id>
<journal-id journal-id-type="iso-abbrev">ISRN Dent</journal-id>
<journal-id journal-id-type="publisher-id">ISRN.DENTISTRY</journal-id>
<journal-title-group>
<journal-title>ISRN Dentistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">2090-4371</issn>
<issn pub-type="epub">2090-438X</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24459589</article-id>
<article-id pub-id-type="pmc">3888690</article-id>
<article-id pub-id-type="doi">10.1155/2013/369147</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Force Transfer and Stress Distribution in an Implant-Supported Overdenture Retained with a Hader Bar Attachment: A Finite Element Analysis</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Satheesh Kumar</surname>
<given-names>Preeti</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Satheesh</surname>
<given-names>Kumar K. S.</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>John</surname>
<given-names>Jins</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Patil</surname>
<given-names>Geetha</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Patel</surname>
<given-names>Ruchi</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Department of Prosthodontics, The Oxford Dental College & Research Hospital, Bommanhalli, Hosur Road, Bangalore 68, India</aff>
<aff id="I2">
<sup>2</sup>
Department of Prosthodontics, Rajiv Gandhi College of Dental Sciences, Bangalore, India</aff>
<aff id="I3">
<sup>3</sup>
Department of Prosthodontics, Ahmedabad Dental College, India</aff>
<author-notes>
<corresp id="cor1">*Preeti Satheesh Kumar:
<email>to_preeti@yahoo.co.uk</email>
</corresp>
<fn fn-type="other">
<p>Academic Editors: M. Behr and L. Levin</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>26</day>
<month>12</month>
<year>2013</year>
</pub-date>
<volume>2013</volume>
<elocation-id>369147</elocation-id>
<history>
<date date-type="received">
<day>29</day>
<month>8</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>9</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2013 Preeti Satheesh Kumar et al.</copyright-statement>
<copyright-year>2013</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>
<italic>Background and Objectives.</italic>
A key factor for the long-term function of a dental implant is the manner in which stresses are transferred to the surrounding bone. The effect of adding a stiffener to the tissue side of the Hader bar helps to reduce the transmission of the stresses to the alveolar bone. But the ideal thickness of the stiffener to be attached to the bar is a subject of much debate. This study aims to analyze the force transfer and stress distribution of an implant-supported overdenture with a Hader bar attachment. The stiffener of the bar attachments was varied and the stress distribution to the bone around the implant was studied.
<italic>Methods.</italic>
A CT scan of edentulous mandible was used and three models with 1, 2, and 3 mm thick stiffeners were created and subjected to loads of emulating the masticatory forces. These different models were analyzed by the Finite Element Software (Ansys, Version 8.0) using von Mises stress analysis.
<italic>Results.</italic>
The results showed that the maximum stress concentration was seen in the neck of the implant for models A and B. In model C the maximum stress concentration was in the bar attachment making it the model with the best stress distribution, as far as implant failures are concerned.
<italic>Conclusion.</italic>
The implant with Hader bar attachment with a 3 mm stiffener is the best in terms of stress distribution, where the stress is concentrated at the bar and stiffener regions.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>As life spans lengthen, a significant number of people outlive their teeth. Treating older patients, especially those with disabilities, may be a demanding challenge. Lack of retention and stability is one of the major complaints of edentulous patients [
<xref rid="B1" ref-type="bibr">1</xref>
]. The introduction of osseointegrated implants into dentistry has provided new alternatives for the rehabilitation of edentulous patients. Mandibular implant retained overdentures can provide an effective treatment modality for these patients and, in particular, those who have persistent problems with a conventional mandibular prosthesis [
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B3" ref-type="bibr">3</xref>
]. Implant-supported overdentures have gained acceptance over the complete denture because of its relative simplicity, increased comfort and chewing efficiency, greater satisfaction, preservation of residual ridge, retention, stability, and improved patient quality of life [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B4" ref-type="bibr">4</xref>
].</p>
<p>Retention for the mandibular implant-supported overdentures is commonly achieved by ball attachments, clip on bar connecting the implants, or magnetic attachments [
<xref rid="B4" ref-type="bibr">4</xref>
]. These retentive attachments generate forces and stresses that differ from those seen with natural teeth supported by periodontal ligament. If these stresses exceed the physiological limit they may lead to several undesirable results [
<xref rid="B3" ref-type="bibr">3</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
]. Also the long-term function of a dental implant system will depend on the biomechanical interaction between bone and implant [
<xref rid="B6" ref-type="bibr">6</xref>
]. The masticatory forces induce axial forces and bending moments, which could result in stress on the implant as well as the surrounding bone. Bone tissue is known to remodel its structure in response to mechanical stress. Variations in the internal state of stress in the bone determine whether constructive or destructive remodeling will take place. Low stress levels around a dental implant system may result in disuse atrophy similar to the loss of alveolar crest after the removal of the natural tooth. On the other hand abnormally high stress concentrations in the supporting tissues can result in pressure necrosis and subsequently in the failure of the implant. Studies have demonstrated that implants retaining overdentures are subject to both axial and transverse forces, the latter being smaller but potentially more harmful [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
]. Thus it is desirable to study stress distribution through the prosthesis and implants to the supporting bone.</p>
<p>Considering bar attachment implants and the stress distribution around them, it was seen that when a bar fixed to two implants is used, different shapes provide different results. A Hader bar, which is round in cross section, may be preferred over a rigid oval bar attachment system [
<xref rid="B3" ref-type="bibr">3</xref>
] as it helps in better stress distribution around the implants. But it is not clearly known whether it is the rigid implant body or the cervical region of the implant or the Hader bar that is subjected to the most stress concentration and hence subject to fracture and subsequent failure. The effect of adding a stiffener to the tissue side of the Hader bar reduces the transmission of the stresses to the alveolar bone. But the ideal thickness of the stiffener to be attached to the bar is a subject of much debate. Also limited literature exists as to the exact mechanism of force transfer and stress distribution along the Hader bar and the implants. Hence this study aims to analyse the force transfer and stress distribution of an implant-supported overdenture with a Hader bar attachment. The stiffener of the bar attachments was varied and the stress distribution to the bone around the implant was studied.</p>
<p>Methods for the evaluation of stress around dental implant systems include mechanical stress analysis, Photo elasticity, and strain measurement on bone surfaces. These techniques have certain limitations such as difficulties in modifications after modeling. In the past two decades, finite element analysis has become an increasingly useful tool for predicting the effects of stress on implant and surrounding bone thus making it an effective computational tool that has been adapted from the engineering arena to dental implant biomechanics [
<xref rid="B8" ref-type="bibr">8</xref>
]. Hence the finite element analysis was used to analyse the force transfer and stress distribution of an implant-supported overdenture with a hader bar attachment.</p>
</sec>
<sec id="sec2">
<title>2. Materials and Method</title>
<sec id="sec2.1">
<title>2.1. Construction of Geometric Model</title>
<sec id="sec2.1.1">
<title>2.1.1. Modeling of the Bone</title>
<p>The algorithm in this study was to generate finite element models from computerized tomography scan (CT scan) data, which was based on the study [
<xref rid="B5" ref-type="bibr">5</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
], wherein a CT scan of human mandible was taken and each section from middle to mental foramen was projected on a graph paper. The bone contour and the border between cortical and cancellous bone were traced. The contour data of the profiles were transformed into the
<italic>x</italic>
,
<italic>y</italic>
, and
<italic>z</italic>
coordinate points and read by Finite element program (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
). Connecting these coordinate points gave line geometry also called wire frame modeling. Connecting the lines of each section gave surface geometry also called surface modeling (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
).</p>
<p>Three-dimensional volumes were created from connected successive profiles to define the final solid geometry of cortical bone. The modeling of the cancellous bone was done separately in the same way to get the solid geometry (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
). The final anatomical model was obtained by superimposing both models over each other. This sequence done on one side was repeated to obtain the opposite side (
<xref ref-type="fig" rid="fig4">Figure 4</xref>
).</p>
<p>Through this process, the CT scan data was converted into Three-dimensional solid model of the interforaminal region of edentulous mandible [
<xref rid="B11" ref-type="bibr">11</xref>
].</p>
</sec>
<sec id="sec2.1.2">
<title>2.1.2. Modeling of Implant and Superstructure</title>
<p>The titanium-aluminium-vanadium (Ti 6A1-4V) implant used in this study was of a tapered truncated cone design, 12 mm in length and 3.75 mm in diameter with 5° taper [
<xref rid="B12" ref-type="bibr">12</xref>
]. The implant body is covered with a porous coating, titanium plasma spray [
<xref rid="B13" ref-type="bibr">13</xref>
]. The ideal distance between the implants is in the 20–22 mm range [
<xref rid="B13" ref-type="bibr">13</xref>
]. Two solitary implants were placed at 10 mm distance from the midline. The bar attachment has a round superior aspect and an apron below. The apron acts as a stiffener to improve the strength of the bar and limit its flexibility [
<xref rid="B13" ref-type="bibr">13</xref>
]. For this study three thicknesses of the stiffener were modeled leading to three-different models: model A with a 1 mm stiffener, model B with 2 mm stiffener, and model C with 3 mm stiffener.</p>
</sec>
<sec id="sec2.1.3">
<title>2.1.3. Modeling of Interface</title>
<p>The implants were designed with a solid machined core of tapered truncated cone and a porous coating [
<xref rid="B14" ref-type="bibr">14</xref>
,
<xref rid="B15" ref-type="bibr">15</xref>
] consisting of two to three layers of micro spheres. These spherical particles have an average diameter of 100 
<italic>μ</italic>
m and a porous coating of 300 
<italic>μ</italic>
m thickness [
<xref rid="B12" ref-type="bibr">12</xref>
,
<xref rid="B16" ref-type="bibr">16</xref>
]. The powder particle was chosen so that the resulting pore size would be amendable to bone tissue ingrowth [
<xref rid="B17" ref-type="bibr">17</xref>
]. Since this geometry was impossible to implement in light of the grid size used in the model, an analogous set of interface properties was developed. A row of thin interface elements was placed between the porous root and the bone to provide a means of modeling the interface region associated with tissue ingrowth. According to studies [
<xref rid="B14" ref-type="bibr">14</xref>
] done by Cook et al. [
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
], it was assumed that the bone could be approximated by small cantilever beams in the porous section of the implant at the interface. To relate this to the finite element model, the interface element was assumed to be rectangular cantilever beam of uniform dimension [
<xref rid="B18" ref-type="bibr">18</xref>
].</p>
</sec>
<sec id="sec2.1.4">
<title>2.1.4. Modeling of Mucosa</title>
<p>The mucosa was modeled over the cortical bone of uniform thickness of 2 mm on the simplified 3D model. The mucosa was not incorporated in the final anatomical 3D model as it was not significant from the stress analysis point of view and its modulus of elasticity is 1 Mpa that is several orders less than that of the surrounding structures (Implant—110000 Mpa, cancellous bone—9500 Mpa, and cortical bone—26600 Mpa) [
<xref rid="B7" ref-type="bibr">7</xref>
].</p>
</sec>
<sec id="sec2.1.5">
<title>2.1.5. Modeling of Overdenture (Acrylic Resin)</title>
<p>The mandibular overdenture was designed to fit the model of the implant and its superstructures. This could not be incorporated in the final anatomical Three-dimensional model due to limitations of the Ansys level 8.0 version.</p>
</sec>
</sec>
<sec id="sec2.2">
<title>2.2. Preparing of Finite Element Mesh</title>
<p>The Three-dimensional finite element model corresponding to the geometric model was generated using ANSYS's Pre-Processor. Care was taken during meshing to concentrate elements in the region of greatest interest of stress distribution pattern. Therefore, Default element size with SOLID 187 element was selected. It is a higher order three-dimensional 10-node element with quadratic displacement behaviour, which is well suited for modeling irregular meshes (such as those produced from various CAD/CAM Systems). The element was defined as 10 nodes having three degrees of freedom at each node: translations in the nodal
<italic>x</italic>
,
<italic>y</italic>
and
<italic>z</italic>
directions (
<xref ref-type="table" rid="tab1">Table 1</xref>
). The elements were constructed so that their size aspect ratio would yield reasonable solution accuracy. The completed anatomical model consisted of a total number of 45061 nodes and 63193 elements with 1,35,183 degrees of freedom (
<xref ref-type="table" rid="tab2">Table 2</xref>
and
<xref ref-type="fig" rid="fig5">Figure 5</xref>
).</p>
</sec>
<sec id="sec2.3">
<title>2.3. Material Properties</title>
<p>All the vital tissues (cortical bone, cancellous bone, and mucosa), implant with superstructure, and acrylic resin were presumed to be linearly elastic, homogenous, and isotropic [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B20" ref-type="bibr">21</xref>
,
<xref rid="B21" ref-type="bibr">22</xref>
]. Although cortical bone has anisotropy [
<xref rid="B20" ref-type="bibr">21</xref>
] material characteristics and possesses regional stiffness variation, they were modeled isotropically [
<xref rid="B19" ref-type="bibr">19</xref>
] due to the unavailability of sufficient data and difficulty in establishing the principal axis of anisotropy. The corresponding elastic properties such as Young's modulus © and Poisson's ratio (
<italic>δ</italic>
) of cortical bone, implant, and the bar attachment with stiffener were determined according to literature survey [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B22" ref-type="bibr">20</xref>
].</p>
<p>The model was assigned material properties shown in
<xref ref-type="table" rid="tab3">Table 3</xref>
.</p>
</sec>
<sec id="sec2.4">
<title>2.4. Application of Boundary Conditions</title>
<p>For the boundary condition of the model, a supporting system was set up. Symmetrical boundary conditions were imposed at the mid symphyseal region [
<xref rid="B8" ref-type="bibr">8</xref>
]. On the distal side all the three translations were fixed indicated by light blue color triangles (
<xref ref-type="fig" rid="fig6">Figure 6</xref>
).</p>
</sec>
<sec id="sec2.5">
<title>2.5. Application of Different Loads</title>
<p>The magnitude and the direction of the loading forces were derived from the studies [
<xref rid="B23" ref-type="bibr">23</xref>
<xref rid="B25" ref-type="bibr">25</xref>
]. The loads applied were 35 N vertical load applied at 90° to the abutment in a occlusogingival direction [
<xref rid="B6" ref-type="bibr">6</xref>
], 10 N horizontal load applied at 0° over the abutment in a labiolingual direction [
<xref rid="B6" ref-type="bibr">6</xref>
], and 70 N oblique load applied at 120° to the occlusal plane on the abutment in a labiolingual direction, simulating the load from the muscles of mastication [
<xref rid="B6" ref-type="bibr">6</xref>
].</p>
</sec>
<sec id="sec2.6">
<title>2.6. Analysis of Stress Pattern</title>
<p>Three models A, B, and C, each with 1, 2, and 3 mm thick stiffeners, respectively, were used for the load application and analysis. A vertical (35 N), horizontal (10 N) and oblique (70 N), emulating the masticatory load, periodontal force and the muscle force respectively were in turn applied to each of the above models.</p>
<p>These different models were analyzed by the Processor and displayed by
<italic>PostProcessor of the Finite Element Software </italic>
using von Mises stress analysis. von Mises stress values are defined as the beginning of deformation for ductile materials such as metallic implants. Failure occurs when von Mises stress values exceed the yield strength of an implant material. Therefore they are important for interpreting the stresses occurring within the implant material.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<p>The stress analysis executed by ANSYS provided results that enabled the tracing of von Mises stress field in the form of color-coded bands. The stress distribution was represented with different color-coding. Red being the highest was followed by orange, yellow light green, green, light blue, blue, and dark blue colors representing the stresses in the descending order. With these different colors the stress distribution pattern can be analyzed in the different models. The corresponding stress values for that particular color are also given at the bottom end of the photographs.</p>
<sec id="sec3.1">
<title>3.1. Distribution of the Stresses in the Implant for the Horizontal Load of 10 N (
<xref ref-type="table" rid="tab4">Table 4</xref>
)</title>
<p>Under the horizontal load application of 10 N, the maximum stress was found to be congregated at the Cervical region for Models A and B, the values being, 6.092 MPa and 9.634 MPa respectively. Only in Model C, 3 mm stiffener, the maximum stress concentration was in the body of the implant, 10.092 MPa. The least stress was seen in the Abutment for all three models, the values being 0.091 MPa, 0.087 MPa and 0.083 MPa for models A, B and C, respectively (
<xref ref-type="table" rid="tab4">Table 4</xref>
) (Figures
<xref ref-type="fig" rid="fig7">7(a)</xref>
,
<xref ref-type="fig" rid="fig7">7(b)</xref>
, and
<xref ref-type="fig" rid="fig7">7(c)</xref>
).</p>
</sec>
<sec id="sec3.2">
<title>3.2. Distribution of the Stresses in the Implant for the Vertical Load of 35 N (
<xref ref-type="table" rid="tab5">Table 5</xref>
)</title>
<p>Under the vertical load application of 35 N, the maximum stress was found to be concentrated at the Hader bar for all three models, the values being, 62.838 MPa, 33.271 MPa, and 15.515 MPa for models A, B and C respectively. The least stress was seen in the abutment and body of the implant for all three models, the values being, 0.590 MPa, 0.615 MPa, and 0.325 MPa for models A, B, and C, respectively (
<xref ref-type="table" rid="tab5">Table 5</xref>
) (Figures
<xref ref-type="fig" rid="fig8">8(a)</xref>
,
<xref ref-type="fig" rid="fig8">8(b)</xref>
, and
<xref ref-type="fig" rid="fig8">8(c)</xref>
).</p>
</sec>
<sec id="sec3.3">
<title>3.3. Distribution of the Stresses in the Implant for the Oblique Load of 70 N (
<xref ref-type="table" rid="tab6">Table 6</xref>
)</title>
<p>Under the oblique load application of 70 N, the maximum stress was found to be concentrated at the Hader bar for all three models, the values being 156.385 MPa, 45.959 MPa and 50.107 MPa followed by the cervical region (78.479, 23.261, and 33.637 MPa) for models A, B, and C, respectively. The least stress was seen in the Abutment and the implant body for all three models, the values being 0.573 MPa, 0.564 MPa, and 0.695 MPa for models A, B, and C respectively (
<xref ref-type="table" rid="tab6">Table 6</xref>
) (Figures
<xref ref-type="fig" rid="fig9">9(a)</xref>
,
<xref ref-type="fig" rid="fig9">9(b)</xref>
, and
<xref ref-type="fig" rid="fig9">9(c)</xref>
).</p>
<p>For a better understanding the above results were formulated into tabular columns and a bar graph was plotted to study the stress patterns generated in the cortical and trabecular bone with the different models at different loadings (Figures
<xref ref-type="fig" rid="fig10">10</xref>
,
<xref ref-type="fig" rid="fig11">11</xref>
, and
<xref ref-type="fig" rid="fig12">12</xref>
).</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>Implant dentistry has helped greatly in improving the treatment options that are available for the edentulous patient. The ability to replace lost teeth with osseointegrated implants has improved the quality of life especially for edentulous patients [
<xref rid="B2" ref-type="bibr">2</xref>
]. The primary reason for restoration of the edentulous mandible with implant-stabilized prosthesis is the improved function and comfort associated with minimizing or eliminating movement of the mandibular overdenture. Such an implant-supported overdenture, using the two implant treatment modality, is subjected to various types of axial and non-axial stresses, including the masticatory forces. The result of these forces is, obviously, resorption of the surrounding alveolar bone and more importantly concentration of stresses in the different parts of the implants, leading to implant failure. In fact, improper loading of an implant has been demonstrated to be the most common cause of failure of implant therapy.</p>
<p>This has led to many innovations in the implant designs, which attempt to minimize these detrimental effects of the normal masticatory loads, and hence function to increase the longevity of the implant-supported overdenture. Among these modernizations is the use of a stress-breaker-like attachment between the two implants, like a Hader bar (instead of rigid bar, like the Dolder bar), with connecting clips which help in better distribution of the stresses around the implants. But it is not clearly known whether it is the rigid implant body or the cervical region of the implant or the Hader bar that is subjected to the most stress concentration and hence subject to fracture and subsequent failure. The effect of adding a stiffener to the tissue side of the Hader bar has been to reduce the transmission of the stresses to the alveolar bone. But the ideal thickness of the stiffener to be attached to the bar is a subject of much debate.</p>
<p>A dodging problem that has been seen with using osseointegrated dental implants are the amount of stress that is transferred from the implant to the surrounding bone. Studies [
<xref rid="B3" ref-type="bibr">3</xref>
] have shown that clear differences exist in the way stresses are transferred to the bone in a tooth-supported overdenture and an implant-supported overdenture. The main difference cited was the absence of relative movement in response to load transfer from root analog to bone in osseointegrated implants. Titanium implants are stiffer than natural teeth and tend to transmit and distribute greater stresses to adjacent bone. Excessive stresses developed at bone-implant interface could cause the degradation of osseointegration and the failure of the treatment.</p>
<p>Hence there is a need to know and properly understand the biomechanics of the stress transfer from the prosthesis to the implant unit (attachment, implant, and surrounding bone) in two-implant-supported overdenture.</p>
<p>This study is for the most part directed to determining the stress patterns generated around implants with bar attachments. The factors which influence the distribution of stresses around the implant-supported overdenture and the alveolar bone include the implant design, surface topography, type of bar attachment, the type of load, and the thickness of the stiffener among others. This study also undertakes to explore the effect of these factors on the stress distribution and endeavors to rationalize the cause-effect relationship between them.</p>
<p>In a two-dimensional method it is not possible to study horizontal or oblique bite forces. Therefore it is not a valid representation of a clinical situation [
<xref rid="B8" ref-type="bibr">8</xref>
]. To suit the aims of this study, a Three-dimensional finite element model was generated, which is well suited to study the true biomechanical behavior in localized regions of major supporting hard tissues of the mandible. Certain assumptions were made in geometric considerations, material properties, boundary conditions and bone implant interface to make modeling and solving process possible [
<xref rid="B26" ref-type="bibr">26</xref>
,
<xref rid="B27" ref-type="bibr">27</xref>
]. It is apparent that the presented model was only an approximation of the clinical situation therefore, it is advisable to focus on qualitative comparison rather than quantitative data from these analyses.</p>
</sec>
<sec id="sec5">
<title>5. Model Considerations</title>
<p>A mechanical model of an edentulous mandible was generated from computerized tomography (CT scan) as it can give exact bony contours of cancellous and cortical bones [
<xref rid="B27" ref-type="bibr">27</xref>
,
<xref rid="B33" ref-type="bibr">28</xref>
].</p>
<p>Some parameters were not considered in this study; with complexity of the geometry during meshing the number of elements may exceed the operating capacity of the software and hence may require sub structuring or other alternatives to conduct an analysis. Therefore these parameters were evaluated on a comparatively simple Three-dimensional model. The stress found on mucosa and overdenture was not found to be significant and neither did it affect the purpose of this study. The ramus and condyles of the mandible were also not modeled to save the modeling time, computer memory, processing time, and ease for analysis. To simulate muscle forces, the boundary conditions were applied at the distal end of the mandible. Meijer et al. [
<xref rid="B6" ref-type="bibr">6</xref>
] reported in a Three-dimensional study that similar results were obtained when the entire mandible was modeled with loading and boundary conditions approximating the physiologic ones and with simulation of only interforaminal region.</p>
<p>The accuracy of the results decreases with the increase in elements size. However, for this study, the gradual increase in element size protected the area of interest from being affected by the inaccuracies of the stresses in large elements. The acceptable percentage of error for FEA model should be less than 3% and here it is 0.3%. The results of this analysis concur with the findings of other studies that have used different investigation methods. Therefore the model employed in this study is considered to satisfactorily simulate reality.</p>
</sec>
<sec id="sec6">
<title>6. Material Properties</title>
<p>Material properties and their structural basis help us to understand the bone quality type. Material properties greatly influence the stress and strain distribution in the structure. All the vital tissues (cortical bone, cancellous bone and mucosa) implant with superstructure and acrylic resin were presumed to be linearly elastic, homogenous, and isotropic [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B20" ref-type="bibr">21</xref>
,
<xref rid="B21" ref-type="bibr">22</xref>
].</p>
</sec>
<sec id="sec7">
<title>7. Type of Loading</title>
<p>The magnitude of the bite force is dependent on the force direction. In the present study three forces from different directions were selected: a horizontal bite force, a vertical bite force, and an oblique bite force. The proportion of the force magnitude was 1 : 3.5 : 7, respectively [
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B24" ref-type="bibr">24</xref>
].</p>
<p>The vertical bite force was determined to be 35 N from studies which measured the bite force of edentulous patients with overdentures supported by implants in the mandible [
<xref rid="B25" ref-type="bibr">25</xref>
,
<xref rid="B28" ref-type="bibr">29</xref>
]. This value was substituted in the above equation to derive the forces in the other directions. The loading force for the horizontal direction is 10 N, for the vertical direction it is 35 N, and for the oblique direction it is 70 N. The horizontal force is applied in the lingual direction to simulate the constant force applied by the tongue. The oblique force is applied on the buccal surface to simulate the chewing forces.</p>
</sec>
<sec id="sec8">
<title>8. Stress Distribution</title>
<p>The von Mises stresses are most commonly reported in finite element analysis studies to summarize the overall stress at a point. Both compressive and tensile stresses, if in excess, can lead to bone resorption and necrosis. Thus, the factors that may lower the overall amount of potentially harmful stress to the bone were investigated by comparing the equivalent stress in models.</p>
</sec>
<sec id="sec9">
<title>9. Implants</title>
<p>The titanium-aluminium-vanadium (Ti 6A1-4V) implants used in this study was of a tapered truncated cone design, 12 mm in length and 3.75 mm in diameter with 5° taper [
<xref rid="B29" ref-type="bibr">30</xref>
]. Rieger concluded that a cylindrical implant design directed most of the applied axial load to the apical bone while the tapered design provided better stress distribution [
<xref rid="B12" ref-type="bibr">12</xref>
]. Therefore a tapered design was designed for this study. The implant body is covered with a porous coating, titanium plasma spray [
<xref rid="B13" ref-type="bibr">13</xref>
]. The ideal distance between the implants is in the 20–22 mm range [
<xref rid="B13" ref-type="bibr">13</xref>
]. Two solitary implants were placed at 10 mm distance from the midline. The bar attachment, has a round superior aspect and an apron below. The apron acts as a stiffener to improve the strength of the bar and limit its flexibility [
<xref rid="B13" ref-type="bibr">13</xref>
].</p>
<p>The findings of the present study are discussed under the following headings.</p>
<sec id="sec9.1">
<title>9.1. Distribution of the Stresses in the Implant for the Horizontal Load of 10 N</title>
<p>Under the horizontal load application of 10 N, the maximum stress was found to be congregated at the neck of the implant for Models A and B. Only in Model C, 3 mm stiffener, the maximum stress concentration was in the body of the implant. The least stress was seen in the abutment for all three models (Figures
<xref ref-type="fig" rid="fig7">7(a)</xref>
,
<xref ref-type="fig" rid="fig7">7(b)</xref>
, and
<xref ref-type="fig" rid="fig7">7(c)</xref>
).</p>
</sec>
<sec id="sec9.2">
<title>9.2. Distribution of the Stresses in the Implant for the Vertical Load of 35 N</title>
<p>Under the vertical load application of 35 N, the maximum stress was found to be concentrated at the Hader Bar for all three models. The least stress was seen in the abutment and Body of the implant for all three models (Figures
<xref ref-type="fig" rid="fig8">8(a)</xref>
,
<xref ref-type="fig" rid="fig8">8(b)</xref>
, and
<xref ref-type="fig" rid="fig8">8(c)</xref>
).</p>
</sec>
<sec id="sec9.3">
<title>9.3. Distribution of the Stresses in the Implant for the Oblique Load of 70 N</title>
<p>Under the oblique load application of 70 N, the maximum stress was found to be concentrated at the Hader Bar for all three models, followed by the neck of the implant for models A, B, and C, respectively. The least stress was seen in the Abutment and the implant body for all three models. (Figures
<xref ref-type="fig" rid="fig9">9(a)</xref>
,
<xref ref-type="fig" rid="fig9">9(b)</xref>
, and
<xref ref-type="fig" rid="fig9">9(c)</xref>
).</p>
<p>This is in accordance with the study by Papavasiliou et al. [
<xref rid="B30" ref-type="bibr">31</xref>
] and Yokoyama et al. [
<xref rid="B31" ref-type="bibr">32</xref>
], where a consistent observation from all models was concentration of maximum stress at the bone-implant interface at the level of cortical bone. It also concurs with Meijer et al. [
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
] who reported that the most extreme stress values in all models were located around the neck of the implant. This might be explained as a result of the stress transferring mechanism that occurs in the implant bone complex [
<xref rid="B31" ref-type="bibr">32</xref>
]. High stresses transmitted through the implant concentrate at the level of the cortical bone along the facial surface of the implant. The stresses decrease on encountering cancellous bone [
<xref rid="B32" ref-type="bibr">33</xref>
].</p>
</sec>
<sec id="sec9.4">
<title>9.4. Stress Distribution in the Implant Abutment under Loading Conditions</title>
<p>The maximum stress was found concentrated in models B and C, the ones with 2 mm and 3 mm stiffener, under the horizontal and oblique loading, respectively, whereas when a vertical load of 35 N was applied the model A, with 1 mm thick stiffener showed the maximum stress. The least stress concentration around the abutment of the implant was in model C, in model B, and in model A, all for the horizontal load in ascending order.</p>
</sec>
<sec id="sec9.5">
<title>9.5. Stress Distribution in the Cervical Region of the Implant under Loading Conditions</title>
<p>The maximum stress was found concentrated in model A, model B, and model C, the one with 1 mm and 3 mm stiffener, under the oblique loading. The least stress concentration around the neck of the implant was in model C, model A, and in model B, respectively, in ascending order for the horizontal load.</p>
</sec>
<sec id="sec9.6">
<title>9.6. Stress Distribution in the Implant Body under Loading Conditions</title>
<p>The maximum stress was found concentrated in Model C, the one with 3 mm stiffener, under the horizontal and oblique loading, respectively, whereas when a vertical load of 35 N was applied the Model B, with 2 mm thick stiffener showed the maximum stress. The least stress concentration around the body of the implant was in model B and model A, for the horizontal load. In model C, the least stress concentration in the body was seen for the vertical load.</p>
</sec>
<sec id="sec9.7">
<title>9.7. Stress Distribution in the Hader Bar under Loading Conditions</title>
<p>The maximum stress was found concentrated in model A, the one with 1 mm stiffener, under the oblique and vertical loading. The maximum stress concentration in models C and B were seen for the Oblique loading. The least stress concentration around the Hader bar was in models B, C, and A, in that order, for the horizontal load.</p>
</sec>
<sec id="sec9.8">
<title>9.8. Stress Distribution at the Cortical Bone Interface under Loading</title>
<p>The maximum stress was found concentrated in model A, the one with 1 mm stiffener, under the oblique loading. The maximum stress concentration in models B and C were seen for the Oblique loading respectively. The least stress concentration around the Hader bar was in models A, B, and C for the vertical load in ascending order.</p>
</sec>
<sec id="sec9.9">
<title>9.9. Stress Distribution at the Cancellous Bone Interface under Loading Conditions</title>
<p>The maximum stress was found concentrated in model C, the one with 3 mm stiffener, under oblique loading. The maximum stress concentration in models A and B were seen for the vertical and oblique loading, respectively. The least stress concentration around the Hader bar was in models B, A, and C, for the horizontal load in ascending order.</p>
<p>Stresses induced by occlusal loads are initially transferred from the implant to the cortical bone, while a small amount of remaining stress is spread to the cancellous bone. It is also possible that higher strain values are observed in cortical bone as it presents a higher elastic modulus when compared with trabecular bone [
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B31" ref-type="bibr">32</xref>
] and thus has a greater ability to transfer stress [
<xref rid="B31" ref-type="bibr">32</xref>
]. These findings are in accordance with other in vitro studies [
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B33" ref-type="bibr">28</xref>
].</p>
<p>This finite element study demonstrated that axial loading shows the least stress, better stress homogenization and gives a favorable prognosis for an implant. Therefore the forces should be directed along the long axis of the tooth. This can be achieved by carefully planning the occlusion and type of superstructure to be used.</p>
<p>Nonaxial loading has been related to marginal bone loss, failure of osseointegration, and failure of implant and/or prosthetic superstructure component. It is clear that during normal chewing the highest stress occurred due to oblique bite forces. To reduce high stress levels efforts must be made to reduce large bite forces from oblique directions. The direction of the bite force cannot be changed in patients, but the magnitude can be influenced by the design of the prosthesis.</p>
<p>Understanding of the forces and patterns of stress distribution in the bone underneath the denture is a major factor during the planning of denture fabrication. Neglect of these factors may result in unnecessary discomfort to the denture wearer and cause alveolar ridge resorption [
<xref rid="B34" ref-type="bibr">34</xref>
].</p>
</sec>
</sec>
<sec id="sec10">
<title>10. Limitations of Finite Element Modeling</title>
<p>The present study has certain limitations; firstly the vital anisotropic tissues were considered isotropic. Next the loads applied were static loads that were different from dynamic loading seen during function. This study has limitations when predicting the response of biological systems to applied loads, as do all modeling systems, including photoelastic analysis and strain gauge measurements. Hence even though finite element analysis provides a sound theoretical basis of understanding the behavior of a structure in a given environment, it should not be considered alone. Actual experimental techniques and clinical trials should follow finite element analysis to establish the influence of observed stress levels on the tissue and prosthesis function.</p>
</sec>
<sec id="sec11">
<title>11. Conclusion</title>
<p>Within the limitations of the study, the following conclusion can be drawn.
<list list-type="order">
<list-item>
<p>The region which displayed the maximum stress concentration in the models A and B was the neck of the implant, when compared to the bar attachment of the same models.</p>
</list-item>
<list-item>
<p>In model C the maximum stress concentration was in the bar attachment making it the model with the best stress distribution, as far as implant failures are concerned.</p>
</list-item>
<list-item>
<p>The stress in the implant decreased as the thickness of the stiffener in the bar attachment increased.</p>
</list-item>
<list-item>
<p>Regarding supporting tissues, the maximum stress values were concentrated in the cortical bone and were observed mainly around the neck of the implant.</p>
</list-item>
</list>
</p>
</sec>
</body>
<back>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assunçao</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Barao</surname>
<given-names>VAR</given-names>
</name>
<name>
<surname>Tabata</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>de Sousa</surname>
<given-names>EAC</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Delben</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Comparison between complete denture and implant-retained overdenture: effect of different mucosa thickness and resiliency on stress distribution</article-title>
<source>
<italic>Gerodontology</italic>
</source>
<year>2009</year>
<volume>26</volume>
<issue>4</issue>
<fpage>273</fpage>
<lpage>281</lpage>
<pub-id pub-id-type="other">2-s2.0-70450161372</pub-id>
<pub-id pub-id-type="pmid">19076244</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Celik</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Uludag</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Photoelastic stress analysis of various retention mechanisms on 3-implant-retained mandibular overdentures</article-title>
<source>
<italic>Journal of Prosthetic Dentistry</italic>
</source>
<year>2007</year>
<volume>97</volume>
<issue>4</issue>
<fpage>229</fpage>
<lpage>235</lpage>
<pub-id pub-id-type="other">2-s2.0-34248186151</pub-id>
<pub-id pub-id-type="pmid">17499093</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mericske-Stern</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Treatment outcomes with implant-supported overdentures: clinical considerations</article-title>
<source>
<italic>Journal of Prosthetic Dentistry</italic>
</source>
<year>1998</year>
<volume>79</volume>
<issue>1</issue>
<fpage>66</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="other">2-s2.0-0031612703</pub-id>
<pub-id pub-id-type="pmid">9474544</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tokuhisa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matsushita</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Koyano</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>In vitro study of a mandibular implant overdenture retained with ball, magnet, or bar attachments: comparison of load transfer and denture stability</article-title>
<source>
<italic>International Journal of Prosthodontics</italic>
</source>
<year>2003</year>
<volume>16</volume>
<issue>2</issue>
<fpage>128</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="other">2-s2.0-0038488565</pub-id>
<pub-id pub-id-type="pmid">12737242</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wright</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Heath</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>The effects of prefabricated bar design on the success of overdentures stabilized by implants</article-title>
<source>
<italic>The International Journal of Oral & Maxillofacial Implants</italic>
</source>
<year>1995</year>
<volume>10</volume>
<issue>1</issue>
<fpage>79</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="other">2-s2.0-0029175466</pub-id>
<pub-id pub-id-type="pmid">7615321</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meijer</surname>
<given-names>HJA</given-names>
</name>
<name>
<surname>Starmans</surname>
<given-names>FJM</given-names>
</name>
<name>
<surname>Steen</surname>
<given-names>WHA</given-names>
</name>
<name>
<surname>Bosman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible</article-title>
<source>
<italic>Archives of Oral Biology</italic>
</source>
<year>1993</year>
<volume>38</volume>
<issue>6</issue>
<fpage>491</fpage>
<lpage>496</lpage>
<pub-id pub-id-type="other">2-s2.0-0027620595</pub-id>
<pub-id pub-id-type="pmid">8343071</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Menicucci</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lorenzetti</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Pera</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Preti</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Mandibular implant-retained overdenture: finite element analysis of two anchorage systems</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Implants</italic>
</source>
<year>1998</year>
<volume>13</volume>
<issue>3</issue>
<fpage>369</fpage>
<lpage>376</lpage>
<pub-id pub-id-type="other">2-s2.0-0032060144</pub-id>
<pub-id pub-id-type="pmid">9638007</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meijer</surname>
<given-names>HJA</given-names>
</name>
<name>
<surname>Starmans</surname>
<given-names>FJM</given-names>
</name>
<name>
<surname>Steen</surname>
<given-names>WHA</given-names>
</name>
<name>
<surname>Bosman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Loading conditions of endosseous implants in an edentulous human mandible: a three-dimensional, finite-element study</article-title>
<source>
<italic>Journal of Oral Rehabilitation</italic>
</source>
<year>1996</year>
<volume>23</volume>
<issue>11</issue>
<fpage>757</fpage>
<lpage>763</lpage>
<pub-id pub-id-type="other">2-s2.0-0030278657</pub-id>
<pub-id pub-id-type="pmid">8953480</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vollmer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Joos</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Vègh</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Piffkò</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Experimental and finite element study of a human mandible</article-title>
<source>
<italic>Journal of Cranio-Maxillofacial Surgery</italic>
</source>
<year>2000</year>
<volume>28</volume>
<issue>2</issue>
<fpage>91</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="other">2-s2.0-0033886485</pub-id>
<pub-id pub-id-type="pmid">10958421</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Kampen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Cune</surname>
<given-names>M</given-names>
</name>
<name>
<surname>van der Bilt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bosman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Retention and postinsertion maintenance of bar-clip, ball and magnet attachments in mandibular implant overdenture treatment: an in vivo comparison after 3 months of function</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2003</year>
<volume>14</volume>
<issue>6</issue>
<fpage>720</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="other">2-s2.0-0347481241</pub-id>
<pub-id pub-id-type="pmid">15015948</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cruz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wassall</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Toledo</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>da Silva Barra</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>de Castro Lemonge</surname>
<given-names>AC</given-names>
</name>
</person-group>
<article-title>Three-dimensional finite element stress analysis of a cuneiform-geometry implant</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Implants</italic>
</source>
<year>2003</year>
<volume>18</volume>
<issue>5</issue>
<fpage>675</fpage>
<lpage>684</lpage>
<pub-id pub-id-type="other">2-s2.0-0142120279</pub-id>
<pub-id pub-id-type="pmid">14579955</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rieger</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Mayberry</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brose</surname>
<given-names>MO</given-names>
</name>
</person-group>
<article-title>Finite element analysis of six endosseous implants</article-title>
<source>
<italic>The Journal of Prosthetic Dentistry</italic>
</source>
<year>1990</year>
<volume>63</volume>
<issue>6</issue>
<fpage>671</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="other">2-s2.0-0025441725</pub-id>
<pub-id pub-id-type="pmid">2362246</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Carl</surname>
<given-names>E</given-names>
</name>
</person-group>
<source>
<italic>Misch Contemporary Implant Dentistry</italic>
</source>
<year>1999</year>
<edition>2nd edition</edition>
<publisher-loc>Philadelphia, Pa, USA</publisher-loc>
<publisher-name>Mosby</publisher-name>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinstein</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Klawitter</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Anand</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Schuessler</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Stress analysis of porous rooted dental implants</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>1976</year>
<volume>55</volume>
<issue>5</issue>
<fpage>772</fpage>
<lpage>777</lpage>
<pub-id pub-id-type="other">2-s2.0-0017093130</pub-id>
<pub-id pub-id-type="pmid">1067291</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kordatzis</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>PS</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>HJA</given-names>
</name>
</person-group>
<article-title>Posterior mandibular residual ridge resorption in patients with conventional dentures and implant overdentures</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Implants</italic>
</source>
<year>2003</year>
<volume>18</volume>
<issue>3</issue>
<fpage>447</fpage>
<lpage>452</lpage>
<pub-id pub-id-type="other">2-s2.0-0042921416</pub-id>
<pub-id pub-id-type="pmid">12814322</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meijer</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Starmans</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Steen</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Bosman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>A comparison of three finite element models of an edentulous mandible provided with implants</article-title>
<source>
<italic>Journal of Oral Rehabilitation</italic>
</source>
<year>1993</year>
<volume>20</volume>
<issue>2</issue>
<fpage>147</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="other">2-s2.0-0027571102</pub-id>
<pub-id pub-id-type="pmid">8468626</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borchers</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Reichart</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Three dimensional stress distribution around an implant at different stages of interface development</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>1983</year>
<volume>62</volume>
<issue>2</issue>
<fpage>155</fpage>
<lpage>159</lpage>
<pub-id pub-id-type="pmid">6571869</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cook</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Klawitter</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Weinstein</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>A model for the implant-bone interface characteristics of porous dental implants</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>1982</year>
<volume>61</volume>
<issue>8</issue>
<fpage>1006</fpage>
<lpage>1009</lpage>
<pub-id pub-id-type="other">2-s2.0-0020173242</pub-id>
<pub-id pub-id-type="pmid">6955334</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cook</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Weinstein</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Klawitter</surname>
<given-names>JJ</given-names>
</name>
</person-group>
<article-title>A three-dimensional finite element analysis of a porous rooted Co-Cr-Mo alloy dental implant</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>1982</year>
<volume>61</volume>
<issue>1</issue>
<fpage>25</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="other">2-s2.0-0020020445</pub-id>
<pub-id pub-id-type="pmid">6948012</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Mahony</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Anisotropic elastic properties of cancellous bone from a human edentulous mandible</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2000</year>
<volume>11</volume>
<fpage>415</fpage>
<lpage>421</lpage>
<pub-id pub-id-type="pmid">11168233</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teixeira</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akagawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shindoi</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics</article-title>
<source>
<italic>Journal of Oral Rehabilitation</italic>
</source>
<year>1998</year>
<volume>25</volume>
<issue>4</issue>
<fpage>299</fpage>
<lpage>303</lpage>
<pub-id pub-id-type="other">2-s2.0-0032038092</pub-id>
<pub-id pub-id-type="pmid">9610858</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tada</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stegaroiu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kitamura</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Miyakawa</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Kusakari</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Implants</italic>
</source>
<year>2003</year>
<volume>18</volume>
<issue>3</issue>
<fpage>357</fpage>
<lpage>368</lpage>
<pub-id pub-id-type="other">2-s2.0-0041418181</pub-id>
<pub-id pub-id-type="pmid">12814310</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fontijn-Tekamp</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Slagter</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>van’t Hof</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Geertman</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Kalk</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Bite forces with mandibular implant-retained overdentures</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>1998</year>
<volume>77</volume>
<issue>10</issue>
<fpage>1832</fpage>
<lpage>1839</lpage>
<pub-id pub-id-type="other">2-s2.0-0032223618</pub-id>
<pub-id pub-id-type="pmid">9786640</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koolstra</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>van Eijden</surname>
<given-names>TMGJ</given-names>
</name>
<name>
<surname>Weijs</surname>
<given-names>WA</given-names>
</name>
<name>
<surname>Naeije</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces</article-title>
<source>
<italic>Journal of Biomechanics</italic>
</source>
<year>1988</year>
<volume>21</volume>
<issue>7</issue>
<fpage>563</fpage>
<lpage>576</lpage>
<pub-id pub-id-type="other">2-s2.0-0023882786</pub-id>
<pub-id pub-id-type="pmid">3410859</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Kampen</surname>
<given-names>FMC</given-names>
</name>
<name>
<surname>van der Bilt</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cune</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Bosman</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>The influence of various attachment types in mandibular implant-retained overdentures on maximum bite force and EMG</article-title>
<source>
<italic>Journal of Dental Research</italic>
</source>
<year>2002</year>
<volume>81</volume>
<issue>3</issue>
<fpage>170</fpage>
<lpage>173</lpage>
<pub-id pub-id-type="other">2-s2.0-0036008952</pub-id>
<pub-id pub-id-type="pmid">11881630</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geng</surname>
<given-names>J-PA</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>KBC</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>G-R</given-names>
</name>
</person-group>
<article-title>Application of finite element analysis in implant dentistry: a review of the literature</article-title>
<source>
<italic>Journal of Prosthetic Dentistry</italic>
</source>
<year>2001</year>
<volume>85</volume>
<issue>6</issue>
<fpage>585</fpage>
<lpage>598</lpage>
<pub-id pub-id-type="other">2-s2.0-0035377329</pub-id>
<pub-id pub-id-type="pmid">11404759</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eskitascioglu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Usumez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sevimay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Soykan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Unsal</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study</article-title>
<source>
<italic>Journal of Prosthetic Dentistry</italic>
</source>
<year>2004</year>
<volume>91</volume>
<issue>2</issue>
<fpage>144</fpage>
<lpage>150</lpage>
<pub-id pub-id-type="other">2-s2.0-1242317770</pub-id>
<pub-id pub-id-type="pmid">14970760</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assunção</surname>
<given-names>WG</given-names>
</name>
<name>
<surname>Tabata</surname>
<given-names>LF</given-names>
</name>
<name>
<surname>Barão</surname>
<given-names>VAR</given-names>
</name>
<name>
<surname>Rocha</surname>
<given-names>EP</given-names>
</name>
</person-group>
<article-title>Comparison of stress distribution between complete denture and implant-retained overdenture-2D FEA</article-title>
<source>
<italic>Journal of Oral Rehabilitation</italic>
</source>
<year>2008</year>
<volume>35</volume>
<issue>10</issue>
<fpage>766</fpage>
<lpage>774</lpage>
<pub-id pub-id-type="other">2-s2.0-51149094348</pub-id>
<pub-id pub-id-type="pmid">18482352</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haraldson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Stålblad</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Lekholm</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Oral function in subjects with overdentures supported by osseointegrated implants</article-title>
<source>
<italic>Scandinavian Journal of Dental Research</italic>
</source>
<year>1988</year>
<volume>96</volume>
<issue>3</issue>
<fpage>235</fpage>
<lpage>242</lpage>
<pub-id pub-id-type="other">2-s2.0-0024023814</pub-id>
<pub-id pub-id-type="pmid">3293189</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Levy</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Deporter</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Pilliar</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Periodontal parameters around porous-coated dental implants after 3 to 4 years supporting overdentures</article-title>
<source>
<italic>Journal of Clinical Periodontology</italic>
</source>
<year>1996</year>
<volume>23</volume>
<issue>6</issue>
<fpage>517</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="other">2-s2.0-0030157695</pub-id>
<pub-id pub-id-type="pmid">8811470</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papavasiliou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kamposiora</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bayne</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Felton</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function</article-title>
<source>
<italic>Journal of Prosthetic Dentistry</italic>
</source>
<year>1996</year>
<volume>76</volume>
<issue>6</issue>
<fpage>633</fpage>
<lpage>640</lpage>
<pub-id pub-id-type="other">2-s2.0-0030338099</pub-id>
<pub-id pub-id-type="pmid">8957790</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yokoyama</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wakabayashi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Shiota</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ohyama</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Stress analysis in edentulous mandibular bone supporting implant-retained 1-piece or multiple superstructures</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Implants</italic>
</source>
<year>2005</year>
<volume>20</volume>
<issue>4</issue>
<fpage>578</fpage>
<lpage>583</lpage>
<pub-id pub-id-type="other">2-s2.0-25444432576</pub-id>
<pub-id pub-id-type="pmid">16161742</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koca</surname>
<given-names>OL</given-names>
</name>
<name>
<surname>Eskitascioglu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Usumez</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor</article-title>
<source>
<italic>Journal of Prosthetic Dentistry</italic>
</source>
<year>2005</year>
<volume>93</volume>
<issue>1</issue>
<fpage>38</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="other">2-s2.0-11144246320</pub-id>
<pub-id pub-id-type="pmid">15623996</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chowdhary</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lekha</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Patil</surname>
<given-names>NP</given-names>
</name>
</person-group>
<article-title>Two-dimensional finite element analysis of stresses developed in the supporting tissues under complete dentures using teeth with different cusp angulations</article-title>
<source>
<italic>Gerodontology</italic>
</source>
<year>2008</year>
<volume>25</volume>
<issue>3</issue>
<fpage>155</fpage>
<lpage>161</lpage>
<pub-id pub-id-type="other">2-s2.0-55549104395</pub-id>
<pub-id pub-id-type="pmid">18282146</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Transformation of profiles into
<italic>x</italic>
,
<italic>y</italic>
, and
<italic>z</italic>
points.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Line geometry and surface geometry of cortical bone.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Solid geometry of cortical and cancellous bone.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>Anatomical model of mandible after superimposition of the cortical and cancellous bone.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>Finite element plot of the completed model and nodal plot for the completed model.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.005"></graphic>
</fig>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Setting the boundary conditions (blue triangles).</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.006"></graphic>
</fig>
<fig id="fig7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>(a) Stress distribution in various parts of the implant and bone with a 1 mm stiffener on a horizontal load of 10 N. (b) Stress distribution in various parts of the implant and bone with a 2 mm stiffener on a horizontal load of 10 N. (c) Stress distribution in various parts of the implant with a 3 mm stiffener with a horizontal load of 10 N.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.007"></graphic>
</fig>
<fig id="fig8" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<p>(a) Stress distribution in various parts of the implant and bone with a 1 mm stiffener for a vertical load of 35 N. (b) Stress distribution in various parts of the implant and bone with a 2 mm stiffener for a vertical load of 35 N. (c) Stress distribution in various parts of the implant and bone with a 3 mm stiffener for a vertical load of 35 N.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.008"></graphic>
</fig>
<fig id="fig9" orientation="portrait" position="float">
<label>Figure 9</label>
<caption>
<p>(a) Stress distribution in various parts of the implant and bone with a 1 mm stiffener for an oblique load of 70 N. (b) Stress distribution in various parts of the implant and bone with a 2 mm stiffener for an oblique load of 70 N. (c) Stress distribution in various parts of the implant and bone with a 3 mm stiffener for an oblique load of 70 N.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.009"></graphic>
</fig>
<fig id="fig10" orientation="portrait" position="float">
<label>Figure 10</label>
<caption>
<p>Comparison of stress distribution in various parts of the implant under a horizontal (10 N) load.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.010"></graphic>
</fig>
<fig id="fig11" orientation="portrait" position="float">
<label>Figure 11</label>
<caption>
<p>Comparison of stress distribution in various parts of the implant under a vertical (35 N) load.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.011"></graphic>
</fig>
<fig id="fig12" orientation="portrait" position="float">
<label>Figure 12</label>
<caption>
<p>Comparison of stress distribution in various parts of the implant under an oblique (70 N) load.</p>
</caption>
<graphic xlink:href="ISRN.DENTISTRY2013-369147.012"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Distance vector components used for the finite element modeling.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">
<italic>x</italic>
direction</th>
<th align="center" rowspan="1" colspan="1">
<italic>y</italic>
direction</th>
<th align="center" rowspan="1" colspan="1">
<italic>z</italic>
direction</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">28.07</td>
<td align="center" rowspan="1" colspan="1">33.01</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">30.61</td>
<td align="center" rowspan="1" colspan="1">5.27</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">9.56</td>
<td align="center" rowspan="1" colspan="1">6.31</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">27.67</td>
<td align="center" rowspan="1" colspan="1">38.97</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">0</td>
<td align="center" rowspan="1" colspan="1">80.63</td>
<td align="center" rowspan="1" colspan="1">23.89</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<p>Mesh data—number of elements, nodes, and degrees of freedom.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Region</th>
<th align="center" rowspan="1" colspan="1">Elements</th>
<th align="center" rowspan="1" colspan="1">Nodes</th>
<th align="center" rowspan="1" colspan="1">Degrees of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Implant</td>
<td align="center" rowspan="1" colspan="1">10418</td>
<td align="center" rowspan="1" colspan="1">15868</td>
<td align="center" rowspan="1" colspan="1">31.254</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Interface</td>
<td align="center" rowspan="1" colspan="1">3977</td>
<td align="center" rowspan="1" colspan="1">8263</td>
<td align="center" rowspan="1" colspan="1">11,931</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Outer (cortical) bone</td>
<td align="center" rowspan="1" colspan="1">15707</td>
<td align="center" rowspan="1" colspan="1">25248</td>
<td align="center" rowspan="1" colspan="1">47,121</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Inner (cancellous) bone</td>
<td align="center" rowspan="1" colspan="1">14964</td>
<td align="center" rowspan="1" colspan="1">25739</td>
<td align="center" rowspan="1" colspan="1">44,892</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Hader bar</td>
<td align="center" rowspan="1" colspan="1">1352</td>
<td align="center" rowspan="1" colspan="1">1996</td>
<td align="center" rowspan="1" colspan="1">4,506</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Complete model</td>
<td align="center" rowspan="1" colspan="1">45061</td>
<td align="center" rowspan="1" colspan="1">63193</td>
<td align="center" rowspan="1" colspan="1">1,35,183</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab3" orientation="portrait" position="float">
<label>Table 3</label>
<caption>
<p>Material properties [
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B22" ref-type="bibr">20</xref>
] assigned to the model.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Young's modulus (MPa)</th>
<th align="center" rowspan="1" colspan="1">Poison's ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Implant</td>
<td align="center" rowspan="1" colspan="1">103400</td>
<td align="center" rowspan="1" colspan="1">0.35</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Interface</td>
<td align="center" rowspan="1" colspan="1">54450</td>
<td align="center" rowspan="1" colspan="1">0.325</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cancellous bone</td>
<td align="center" rowspan="1" colspan="1">5500</td>
<td align="center" rowspan="1" colspan="1">0.3</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cortical bone</td>
<td align="center" rowspan="1" colspan="1">28500</td>
<td align="center" rowspan="1" colspan="1">0.3</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab4" orientation="portrait" position="float">
<label>Table 4</label>
<caption>
<p>Comparison of the stress distribution in the various parts of the implant under a horizontal (10 N) load.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Abutment</th>
<th align="center" rowspan="1" colspan="1">Cervical region</th>
<th align="center" rowspan="1" colspan="1">Body</th>
<th align="center" rowspan="1" colspan="1">Bar</th>
<th align="center" rowspan="1" colspan="1">Stiffener</th>
<th align="center" rowspan="1" colspan="1">Interface/cortical</th>
<th align="center" rowspan="1" colspan="1">Interface/cancellous</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Model A  
<break></break>
1 mm</td>
<td align="center" rowspan="1" colspan="1">0.090</td>
<td align="center" rowspan="1" colspan="1">6.092</td>
<td align="center" rowspan="1" colspan="1">0.090</td>
<td align="center" rowspan="1" colspan="1">6.092</td>
<td align="center" rowspan="1" colspan="1">12.093</td>
<td align="center" rowspan="1" colspan="1">3.403</td>
<td align="center" rowspan="1" colspan="1">0.236</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Model B  
<break></break>
2 mm</td>
<td align="center" rowspan="1" colspan="1">0.087</td>
<td align="center" rowspan="1" colspan="1">9.634</td>
<td align="center" rowspan="1" colspan="1">0.087</td>
<td align="center" rowspan="1" colspan="1">3.269</td>
<td align="center" rowspan="1" colspan="1">12.817</td>
<td align="center" rowspan="1" colspan="1">3.285</td>
<td align="center" rowspan="1" colspan="1">0.235</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Model C  
<break></break>
3 mm</td>
<td align="center" rowspan="1" colspan="1">0.083</td>
<td align="center" rowspan="1" colspan="1">2.586</td>
<td align="center" rowspan="1" colspan="1">10.092</td>
<td align="center" rowspan="1" colspan="1">5.088</td>
<td align="center" rowspan="1" colspan="1">5.088</td>
<td align="center" rowspan="1" colspan="1">3.735</td>
<td align="center" rowspan="1" colspan="1">0.495</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab5" orientation="portrait" position="float">
<label>Table 5</label>
<caption>
<p>Comparison of the stress distribution in the various parts of the implant under a vertical (35 N) load.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Abutment</th>
<th align="center" rowspan="1" colspan="1">Neck</th>
<th align="center" rowspan="1" colspan="1">Body</th>
<th align="center" rowspan="1" colspan="1">Bar</th>
<th align="center" rowspan="1" colspan="1">Stiffener</th>
<th align="center" rowspan="1" colspan="1">Interface/cortical</th>
<th align="center" rowspan="1" colspan="1">Interface/cancellous</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Model A  
<break></break>
1 mm</td>
<td align="center" rowspan="1" colspan="1">0.590</td>
<td align="center" rowspan="1" colspan="1">16.151</td>
<td align="center" rowspan="1" colspan="1">0.590</td>
<td align="center" rowspan="1" colspan="1">62.838</td>
<td align="center" rowspan="1" colspan="1">31.714</td>
<td align="center" rowspan="1" colspan="1">0.510</td>
<td align="center" rowspan="1" colspan="1">2.73</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Model B  
<break></break>
2 mm</td>
<td align="center" rowspan="1" colspan="1">0.615</td>
<td align="center" rowspan="1" colspan="1">16.943</td>
<td align="center" rowspan="1" colspan="1">0.615</td>
<td align="center" rowspan="1" colspan="1">33.271</td>
<td align="center" rowspan="1" colspan="1">16.943</td>
<td align="center" rowspan="1" colspan="1">2.725</td>
<td align="center" rowspan="1" colspan="1">0.698</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Model C  
<break></break>
3 mm</td>
<td align="center" rowspan="1" colspan="1">0.325</td>
<td align="center" rowspan="1" colspan="1">15.515</td>
<td align="center" rowspan="1" colspan="1">0.325</td>
<td align="center" rowspan="1" colspan="1">15.515</td>
<td align="center" rowspan="1" colspan="1">0.325</td>
<td align="center" rowspan="1" colspan="1">3.466</td>
<td align="center" rowspan="1" colspan="1">0.673</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="tab6" orientation="portrait" position="float">
<label>Table 6</label>
<caption>
<p>Comparison of the stress distribution in the various parts of the implant under an oblique (70 N) load.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">Abutment</th>
<th align="center" rowspan="1" colspan="1">Neck</th>
<th align="center" rowspan="1" colspan="1">Body</th>
<th align="center" rowspan="1" colspan="1">Bar</th>
<th align="center" rowspan="1" colspan="1">Stiffener</th>
<th align="center" rowspan="1" colspan="1">Interface/cortical</th>
<th align="center" rowspan="1" colspan="1">Interface/cancellous</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Model A  
<break></break>
1 mm</td>
<td align="center" rowspan="1" colspan="1">0.573</td>
<td align="center" rowspan="1" colspan="1">78.479</td>
<td align="center" rowspan="1" colspan="1">0.573</td>
<td align="center" rowspan="1" colspan="1">156.385</td>
<td align="center" rowspan="1" colspan="1">0.573</td>
<td align="center" rowspan="1" colspan="1">23.304</td>
<td align="center" rowspan="1" colspan="1">1.904</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Model B  
<break></break>
2 mm</td>
<td align="center" rowspan="1" colspan="1">0.564</td>
<td align="center" rowspan="1" colspan="1">23.261</td>
<td align="center" rowspan="1" colspan="1">0.564</td>
<td align="center" rowspan="1" colspan="1">45.959</td>
<td align="center" rowspan="1" colspan="1">0.564</td>
<td align="center" rowspan="1" colspan="1">14.373</td>
<td align="center" rowspan="1" colspan="1">3.006</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Model C  
<break></break>
3 mm</td>
<td align="center" rowspan="1" colspan="1">0.695</td>
<td align="center" rowspan="1" colspan="1">33.637</td>
<td align="center" rowspan="1" colspan="1">0.695</td>
<td align="center" rowspan="1" colspan="1">50.107</td>
<td align="center" rowspan="1" colspan="1">0.695</td>
<td align="center" rowspan="1" colspan="1">14.6</td>
<td align="center" rowspan="1" colspan="1">3.009</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C82  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002C82  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022