Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants

Identifieur interne : 002C23 ( Pmc/Corpus ); précédent : 002C22; suivant : 002C24

A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants

Auteurs : Wagner Moreira ; Caio Hermann ; Jucélio Tomás Pereira ; Jean Anacleto Balbinoti ; Rodrigo Tiossi

Source :

RBID : PMC:4053675

Abstract

Objective:

The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA).

Materials and Methods:

Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan).

Results:

The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment.

Conclusions:

Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.


Url:
DOI: 10.4103/1305-7456.120642
PubMed: 24932125
PubMed Central: 4053675

Links to Exploration step

PMC:4053675

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants</title>
<author>
<name sortKey="Moreira, Wagner" sort="Moreira, Wagner" uniqKey="Moreira W" first="Wagner" last="Moreira">Wagner Moreira</name>
<affiliation>
<nlm:aff id="aff1">Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">PhD Student, São Leopoldo Mandic College, Campinas, São Paulo, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hermann, Caio" sort="Hermann, Caio" uniqKey="Hermann C" first="Caio" last="Hermann">Caio Hermann</name>
<affiliation>
<nlm:aff id="aff1">Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Jucelio Tomas" sort="Pereira, Jucelio Tomas" uniqKey="Pereira J" first="Jucélio Tomás" last="Pereira">Jucélio Tomás Pereira</name>
<affiliation>
<nlm:aff id="aff3">Department of Mechanical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balbinoti, Jean Anacleto" sort="Balbinoti, Jean Anacleto" uniqKey="Balbinoti J" first="Jean Anacleto" last="Balbinoti">Jean Anacleto Balbinoti</name>
<affiliation>
<nlm:aff id="aff3">Department of Mechanical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tiossi, Rodrigo" sort="Tiossi, Rodrigo" uniqKey="Tiossi R" first="Rodrigo" last="Tiossi">Rodrigo Tiossi</name>
<affiliation>
<nlm:aff id="aff1">Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Department of Odontotécnica, Niterói School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24932125</idno>
<idno type="pmc">4053675</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053675</idno>
<idno type="RBID">PMC:4053675</idno>
<idno type="doi">10.4103/1305-7456.120642</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">002C23</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002C23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants</title>
<author>
<name sortKey="Moreira, Wagner" sort="Moreira, Wagner" uniqKey="Moreira W" first="Wagner" last="Moreira">Wagner Moreira</name>
<affiliation>
<nlm:aff id="aff1">Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">PhD Student, São Leopoldo Mandic College, Campinas, São Paulo, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hermann, Caio" sort="Hermann, Caio" uniqKey="Hermann C" first="Caio" last="Hermann">Caio Hermann</name>
<affiliation>
<nlm:aff id="aff1">Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Pereira, Jucelio Tomas" sort="Pereira, Jucelio Tomas" uniqKey="Pereira J" first="Jucélio Tomás" last="Pereira">Jucélio Tomás Pereira</name>
<affiliation>
<nlm:aff id="aff3">Department of Mechanical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Balbinoti, Jean Anacleto" sort="Balbinoti, Jean Anacleto" uniqKey="Balbinoti J" first="Jean Anacleto" last="Balbinoti">Jean Anacleto Balbinoti</name>
<affiliation>
<nlm:aff id="aff3">Department of Mechanical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tiossi, Rodrigo" sort="Tiossi, Rodrigo" uniqKey="Tiossi R" first="Rodrigo" last="Tiossi">Rodrigo Tiossi</name>
<affiliation>
<nlm:aff id="aff1">Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">Department of Odontotécnica, Niterói School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">European Journal of Dentistry</title>
<idno type="ISSN">1305-7456</idno>
<idno type="eISSN">1305-7464</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Objective:</title>
<p>The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA).</p>
</sec>
<sec id="st2">
<title>Materials and Methods:</title>
<p>Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan).</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment.</p>
</sec>
<sec id="st4">
<title>Conclusions:</title>
<p>Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adell, R" uniqKey="Adell R">R Adell</name>
</author>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U Lekholm</name>
</author>
<author>
<name sortKey="Rockler, B" uniqKey="Rockler B">B Rockler</name>
</author>
<author>
<name sortKey="Br Nemark, Pi" uniqKey="Br Nemark P">PI Brånemark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balshi, Tj" uniqKey="Balshi T">TJ Balshi</name>
</author>
<author>
<name sortKey="Hernandez, Re" uniqKey="Hernandez R">RE Hernandez</name>
</author>
<author>
<name sortKey="Pryszlak, Mc" uniqKey="Pryszlak M">MC Pryszlak</name>
</author>
<author>
<name sortKey="Rangert, B" uniqKey="Rangert B">B Rangert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buser, D" uniqKey="Buser D">D Buser</name>
</author>
<author>
<name sortKey="Belser, Uc" uniqKey="Belser U">UC Belser</name>
</author>
<author>
<name sortKey="Lang, Np" uniqKey="Lang N">NP Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cehreli, M" uniqKey="Cehreli M">M Cehreli</name>
</author>
<author>
<name sortKey="Duyck, J" uniqKey="Duyck J">J Duyck</name>
</author>
<author>
<name sortKey="De Cooman, M" uniqKey="De Cooman M">M De Cooman</name>
</author>
<author>
<name sortKey="Puers, R" uniqKey="Puers R">R Puers</name>
</author>
<author>
<name sortKey="Naert, I" uniqKey="Naert I">I Naert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brunski, Jb" uniqKey="Brunski J">JB Brunski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geng, Jp" uniqKey="Geng J">JP Geng</name>
</author>
<author>
<name sortKey="Tan, Kb" uniqKey="Tan K">KB Tan</name>
</author>
<author>
<name sortKey="Liu, Gr" uniqKey="Liu G">GR Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akca, K" uniqKey="Akca K">K Akça</name>
</author>
<author>
<name sortKey="Cehreli, Mc" uniqKey="Cehreli M">MC Cehreli</name>
</author>
<author>
<name sortKey="Iplikcio Lu, H" uniqKey="Iplikcio Lu H">H Iplikçioğlu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cehreli, Mc" uniqKey="Cehreli M">MC Cehreli</name>
</author>
<author>
<name sortKey="Akca, K" uniqKey="Akca K">K Akça</name>
</author>
<author>
<name sortKey="Iplikcio Lu, H" uniqKey="Iplikcio Lu H">H Iplikçioğlu</name>
</author>
<author>
<name sortKey="Sahin, S" uniqKey="Sahin S">S Sahin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lazzara, Rj" uniqKey="Lazzara R">RJ Lazzara</name>
</author>
<author>
<name sortKey="Porter, Ss" uniqKey="Porter S">SS Porter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teixeira, Er" uniqKey="Teixeira E">ER Teixeira</name>
</author>
<author>
<name sortKey="Sato, Y" uniqKey="Sato Y">Y Sato</name>
</author>
<author>
<name sortKey="Akagawa, Y" uniqKey="Akagawa Y">Y Akagawa</name>
</author>
<author>
<name sortKey="Shindoi, N" uniqKey="Shindoi N">N Shindoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kao, Hc" uniqKey="Kao H">HC Kao</name>
</author>
<author>
<name sortKey="Gung, Yw" uniqKey="Gung Y">YW Gung</name>
</author>
<author>
<name sortKey="Chung, Tf" uniqKey="Chung T">TF Chung</name>
</author>
<author>
<name sortKey="Hsu, Ml" uniqKey="Hsu M">ML Hsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zachrisson, H" uniqKey="Zachrisson H">H Zachrisson</name>
</author>
<author>
<name sortKey="Engstrom, E" uniqKey="Engstrom E">E Engström</name>
</author>
<author>
<name sortKey="Engvall, J" uniqKey="Engvall J">J Engvall</name>
</author>
<author>
<name sortKey="Wigstrom, L" uniqKey="Wigstrom L">L Wigström</name>
</author>
<author>
<name sortKey="Smedby, O" uniqKey="Smedby O">O Smedby</name>
</author>
<author>
<name sortKey="Persson, A" uniqKey="Persson A">A Persson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alkan, I" uniqKey="Alkan I">I Alkan</name>
</author>
<author>
<name sortKey="Sertgoz, A" uniqKey="Sertgoz A">A Sertgöz</name>
</author>
<author>
<name sortKey="Ekici, B" uniqKey="Ekici B">B Ekici</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parmley, Ro" uniqKey="Parmley R">RO Parmley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bozkaya, D" uniqKey="Bozkaya D">D Bozkaya</name>
</author>
<author>
<name sortKey="Muftu, S" uniqKey="Muftu S">S Muftu</name>
</author>
<author>
<name sortKey="Muftu, A" uniqKey="Muftu A">A Muftu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niinomi, M" uniqKey="Niinomi M">M Niinomi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geetha, M" uniqKey="Geetha M">M Geetha</name>
</author>
<author>
<name sortKey="Singh, Ak" uniqKey="Singh A">AK Singh</name>
</author>
<author>
<name sortKey="Asokamani, R" uniqKey="Asokamani R">R Asokamani</name>
</author>
<author>
<name sortKey="Gogia, Ak" uniqKey="Gogia A">AK Gogia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chun, Hj" uniqKey="Chun H">HJ Chun</name>
</author>
<author>
<name sortKey="Shin, Hs" uniqKey="Shin H">HS Shin</name>
</author>
<author>
<name sortKey="Han, Ch" uniqKey="Han C">CH Han</name>
</author>
<author>
<name sortKey="Lee, Sh" uniqKey="Lee S">SH Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Himmlova, L" uniqKey="Himmlova L">L Himmlová</name>
</author>
<author>
<name sortKey="Dostalova, T" uniqKey="Dostalova T">T Dostálová</name>
</author>
<author>
<name sortKey="Kacovsk, A" uniqKey="Kacovsk A">A Kácovskı</name>
</author>
<author>
<name sortKey="Konvickova, S" uniqKey="Konvickova S">S Konvicková</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, L" uniqKey="Kong L">L Kong</name>
</author>
<author>
<name sortKey="Hu, K" uniqKey="Hu K">K Hu</name>
</author>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Song, Y" uniqKey="Song Y">Y Song</name>
</author>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J Yang</name>
</author>
<author>
<name sortKey="Wu, Z" uniqKey="Wu Z">Z Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quaresma, Se" uniqKey="Quaresma S">SE Quaresma</name>
</author>
<author>
<name sortKey="Cury, Pr" uniqKey="Cury P">PR Cury</name>
</author>
<author>
<name sortKey="Sendyk, Wr" uniqKey="Sendyk W">WR Sendyk</name>
</author>
<author>
<name sortKey="Sendyk, C" uniqKey="Sendyk C">C Sendyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pessoa, Rs" uniqKey="Pessoa R">RS Pessoa</name>
</author>
<author>
<name sortKey="Muraru, L" uniqKey="Muraru L">L Muraru</name>
</author>
<author>
<name sortKey="Junior, Em" uniqKey="Junior E">EM Júnior</name>
</author>
<author>
<name sortKey="Vaz, Lg" uniqKey="Vaz L">LG Vaz</name>
</author>
<author>
<name sortKey="Sloten, Jv" uniqKey="Sloten J">JV Sloten</name>
</author>
<author>
<name sortKey="Duyck, J" uniqKey="Duyck J">J Duyck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Rf" uniqKey="Wang R">RF Wang</name>
</author>
<author>
<name sortKey="Kang, B" uniqKey="Kang B">B Kang</name>
</author>
<author>
<name sortKey="Lang, La" uniqKey="Lang L">LA Lang</name>
</author>
<author>
<name sortKey="Razzoog, Me" uniqKey="Razzoog M">ME Razzoog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cehreli, Mc" uniqKey="Cehreli M">MC Cehreli</name>
</author>
<author>
<name sortKey="Akca, K" uniqKey="Akca K">K Akça</name>
</author>
<author>
<name sortKey="Iplikcio Lu, H" uniqKey="Iplikcio Lu H">H Iplikçioğlu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lan, Th" uniqKey="Lan T">TH Lan</name>
</author>
<author>
<name sortKey="Huang, Hl" uniqKey="Huang H">HL Huang</name>
</author>
<author>
<name sortKey="Wu, Jh" uniqKey="Wu J">JH Wu</name>
</author>
<author>
<name sortKey="Lee, He" uniqKey="Lee H">HE Lee</name>
</author>
<author>
<name sortKey="Wang, Ch" uniqKey="Wang C">CH Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saidin, S" uniqKey="Saidin S">S Saidin</name>
</author>
<author>
<name sortKey="Abdul, Kadir Mr" uniqKey="Abdul K">Kadir MR Abdul</name>
</author>
<author>
<name sortKey="Sulaiman, E" uniqKey="Sulaiman E">E Sulaiman</name>
</author>
<author>
<name sortKey="Abu Kasim, Nh" uniqKey="Abu Kasim N">NH Abu Kasim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eskitascioglu, G" uniqKey="Eskitascioglu G">G Eskitascioglu</name>
</author>
<author>
<name sortKey="Usumez, A" uniqKey="Usumez A">A Usumez</name>
</author>
<author>
<name sortKey="Sevimay, M" uniqKey="Sevimay M">M Sevimay</name>
</author>
<author>
<name sortKey="Soykan, E" uniqKey="Soykan E">E Soykan</name>
</author>
<author>
<name sortKey="Unsal, E" uniqKey="Unsal E">E Unsal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saab, Xe" uniqKey="Saab X">XE Saab</name>
</author>
<author>
<name sortKey="Griggs, Ja" uniqKey="Griggs J">JA Griggs</name>
</author>
<author>
<name sortKey="Powers, Jm" uniqKey="Powers J">JM Powers</name>
</author>
<author>
<name sortKey="Engelmeier, Rl" uniqKey="Engelmeier R">RL Engelmeier</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Eur J Dent</journal-id>
<journal-id journal-id-type="iso-abbrev">Eur J Dent</journal-id>
<journal-id journal-id-type="publisher-id">EJD</journal-id>
<journal-title-group>
<journal-title>European Journal of Dentistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">1305-7456</issn>
<issn pub-type="epub">1305-7464</issn>
<publisher>
<publisher-name>Medknow Publications & Media Pvt Ltd</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24932125</article-id>
<article-id pub-id-type="pmc">4053675</article-id>
<article-id pub-id-type="publisher-id">EJD-7-484</article-id>
<article-id pub-id-type="doi">10.4103/1305-7456.120642</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Moreira</surname>
<given-names>Wagner</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hermann</surname>
<given-names>Caio</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pereira</surname>
<given-names>Jucélio Tomás</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Balbinoti</surname>
<given-names>Jean Anacleto</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tiossi</surname>
<given-names>Rodrigo</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Department of Prosthodontics, Latin American Institute of Dental Research and Education, ILAPEO, Curitiba, Paraná, Brazil</aff>
<aff id="aff2">
<label>2</label>
PhD Student, São Leopoldo Mandic College, Campinas, São Paulo, Brazil</aff>
<aff id="aff3">
<label>3</label>
Department of Mechanical Engineering, Federal University of Paraná, Curitiba, Paraná, Brazil</aff>
<aff id="aff4">
<label>4</label>
Department of Odontotécnica, Niterói School of Dentistry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil</aff>
<author-notes>
<corresp id="cor1">
<bold>Correspondence:</bold>
Dr. Rodrigo Tiossi Email:
<email xlink:href="rtiossi@yahoo.com">rtiossi@yahoo.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Oct-Dec</season>
<year>2013</year>
</pub-date>
<volume>7</volume>
<issue>4</issue>
<fpage>484</fpage>
<lpage>491</lpage>
<permissions>
<copyright-statement>Copyright: © European Journal of Dentistry</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec id="st1">
<title>Objective:</title>
<p>The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA).</p>
</sec>
<sec id="st2">
<title>Materials and Methods:</title>
<p>Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan).</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment.</p>
</sec>
<sec id="st4">
<title>Conclusions:</title>
<p>Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Dental implant-abutment interface</kwd>
<kwd>dental implants</kwd>
<kwd>finite element analysis</kwd>
<kwd>platform switching</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-1">
<title>INTRODUCTION</title>
<p>Implant dentistry initially aimed to restore fully edentulous arches using implant-fixed complete dentures.[
<xref rid="ref1" ref-type="bibr">1</xref>
] With the high success rates that followed, the principles of the implant treatment were applied in the restoration of partially edentulous patients.[
<xref rid="ref2" ref-type="bibr">2</xref>
] The primary treatment objective is the re-establishment of function.[
<xref rid="ref3" ref-type="bibr">3</xref>
] Further, objectives include the long-term functional stability of the implants, reduced surgical and prosthetic procedures, high predictability of the treatment outcomes, and optimal framework design.[
<xref rid="ref3" ref-type="bibr">3</xref>
]</p>
<p>The transference of the occlusal forces to the bone-implant interface is a crucial factor to determine the outcome of the implant treatment.[
<xref rid="ref4" ref-type="bibr">4</xref>
] It is therefore essential an implant design capable to distribute the functional forces to the supporting structures within physiological values.[
<xref rid="ref4" ref-type="bibr">4</xref>
] The design of the interface connection between the implant head and the prosthetic abutment is one of the differences between the commercially available implant-systems that can affect the biomechanical behavior of the implants.[
<xref rid="ref4" ref-type="bibr">4</xref>
<xref rid="ref5" ref-type="bibr">5</xref>
] Among the popular designs for abutment connections are the internal and external hexagons and the internal conical.[
<xref rid="ref4" ref-type="bibr">4</xref>
<xref rid="ref5" ref-type="bibr">5</xref>
<xref rid="ref6" ref-type="bibr">6</xref>
<xref rid="ref7" ref-type="bibr">7</xref>
] The implant abutment connection can influence the loosening and/or the fracture of the abutment screw as well as how the forces are transferred to the implant-bone interface[
<xref rid="ref6" ref-type="bibr">6</xref>
] and to the implant-prosthetic abutment interface.[
<xref rid="ref7" ref-type="bibr">7</xref>
] Joint strength and stability, the mechanical integrity of the implant-abutment complex, and the force magnitudes near the implants are determined by the design of the implant-abutment interface.[
<xref rid="ref5" ref-type="bibr">5</xref>
<xref rid="ref7" ref-type="bibr">7</xref>
<xref rid="ref8" ref-type="bibr">8</xref>
]</p>
<p>The preservation of crestal bone levels around the cervical region of implants using the concept of platform switching has been previously described and found satisfactory results.[
<xref rid="ref9" ref-type="bibr">9</xref>
] The installation of smaller diameter prosthetic abutments in implants with 5.0 and 6.0 diameter has demonstrated a smaller than expected vertical change in the crestal bone height around implants with external hex butt-joint connections.[
<xref rid="ref9" ref-type="bibr">9</xref>
] However, when 4.1 mm diameter external hex implants are used, a prosthetic component of matching diameter is needed. This has led to the development of a prosthetic component for external hex implants with 4.1 mm in diameter but with a narrow emergence profile.</p>
<p>There are therefore two straight prosthetic abutments for screw-retained prosthesis supported by implants with an external hex connection: The standard solid abutment with its retaining screw as an extension of the abutment itself that can also be defined as a one-piece abutment; the other is a two-piece abutment, with a separate independent screw that matches its counterpart in the implant body.[
<xref rid="ref8" ref-type="bibr">8</xref>
] Another design feature of the one-piece abutment is the narrower emergence profile when compared to the two-piece abutment.</p>
<p>The preload levels achieved by the abutments play a crucial role in the maintenance of the implant-abutment interface.[
<xref rid="ref8" ref-type="bibr">8</xref>
] The pattern of stress distribution and the biomechanical behavior of the different prosthetic abutments that were previously described and are currently available for external hex implant connections is yet not well-documented. Finite element analysis is a largely used and efficient technique for the evaluation of stress distribution patterns at the bone-implant interface as well as at the implant-abutment interface. With the use of finite element modeling, this study aims to compare the preload levels after torque application for the installation of the two different straight prosthetic abutments (one- and two-piece) and the pattern of stress distribution after simulating an occlusal load on the same abutments. The null hypothesis was that no differences would be found between the two tested prosthetic abutments and that the biomechanical behavior of the two prosthetic abutments would be similar.</p>
</sec>
<sec sec-type="materials|methods" id="sec1-2">
<title>MATERIALS AND METHODS</title>
<p>A cross-section of a volumetric cone-beam computed tomography (CT) (Galileos, SIRONA Dental Systems GmbH, Bensheim, Hesse, Germany) of the first premolar region was used to create a computer-aided design (CAD) model of an edentulous mandible. Specialized computer software (Dental Slice 2.7.2, Bioparts, Brasília, DF, Brazil) was used to design the model of the mandible using the coordinates from the CT images of the mandible of the patient (DYCON), allowing adequate shape, thickness, and amount of cortical and cancellous bone.</p>
<p>The outlined model was transferred to a CAD software (SolidWorks 2007, SolidWorks Corporation, Santa Monica, CA, USA) to simulate a three-dimensional model of a dry human skull with 8 mm in mesio-distal length for each side of the section, exceeding the minimum length of 4.2 mm as previously recommended,[
<xref rid="ref10" ref-type="bibr">10</xref>
] and radius of curvature of 33.5 mm. The alveolar ridge was 6.5 mm long labiolingually and a uniform 1-mm-thick layer of cortical bone was modeled on the buccal and lingual aspects.[
<xref rid="ref11" ref-type="bibr">11</xref>
] Soft- tissues such as the inferior alveolar nerve, periodontal ligament, and pulp were not modeled due to their limited visibility in CT images.[
<xref rid="ref12" ref-type="bibr">12</xref>
] Certain assumptions regarding material properties and boundary conditions were needed to make the modeling and solving process possible.[
<xref rid="ref13" ref-type="bibr">13</xref>
] A distance of 0.005 mm between the contacting elements in finite element models was assumed.[
<xref rid="ref13" ref-type="bibr">13</xref>
] In addition, a coefficient of friction of 0.3 between the contacted surfaces was used based on values from the literature.[
<xref rid="ref13" ref-type="bibr">13</xref>
<xref rid="ref14" ref-type="bibr">14</xref>
]</p>
<p>A cylindric external hex implant (3.75 mm in diameter and 13 mm in length, Titamax Ti Cortical, Neodent, Curitiba, PR, Brazil) was placed in the middle of the simulated mandible. For this study, two similar 3D finite element (FE) models were simulated, one with the two-piece straight prosthetic abutment (4.1 mm in diameter and 2 mm in height, mini conical abutment, Neodent) (M1), and another one with the one-piece straight prosthetic abutment (4.1 mm in diameter and 2 mm in height, Slim Fit
<sup>®</sup>
mini conical abutment, Neodent) (M2). The company that manufacturers the implants and implant-components provided the CAD images of the materials used in this comparative study (Neodent).</p>
<p>To simplify the computation processes, all materials were considered as isotropic, homogeneous, and linearly elastic. Material properties were collected from relevant literature [
<xref ref-type="table" rid="T1">Table 1</xref>
].[
<xref rid="ref10" ref-type="bibr">10</xref>
<xref rid="ref11" ref-type="bibr">11</xref>
] The 3D-FE models and the properties of the bone structure and materials were exported to the FE software (Ansys Workbench 10, Swanson Analysis Systems Inc., Houston, PA, USA) to run the simulations. The characteristics of the constructed models were: M1, 234,688 elements and 383,547 nodes; M2, 233,754 elements and 379,949 nodes [Figure
<xref ref-type="fig" rid="F1">1a</xref>
and
<xref ref-type="fig" rid="F1">b</xref>
].</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Mechanical properties for the materials used in the present study</p>
</caption>
<graphic xlink:href="EJD-7-484-g001"></graphic>
</table-wrap>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>(a) Finite element-mesh generated for M1. (b) FE-mesh generated for M2</p>
</caption>
<graphic xlink:href="EJD-7-484-g002"></graphic>
</fig>
<p>The loadings for this study were applied in two steps: Preload after torque application for installation of the abutment (
<italic>t</italic>
= 1 s) and occlusal loading (
<italic>t</italic>
= 2 s). The preload condition was achieved by the use of contact analysis in the FE models.[
<xref rid="ref13" ref-type="bibr">13</xref>
] To simulate the preload condition, the target and contact surfaces between the individual parts of the model were defined by not merging the nodes between the components.[
<xref rid="ref13" ref-type="bibr">13</xref>
] According to settings from a previous study,[
<xref rid="ref13" ref-type="bibr">13</xref>
] contact analysis assured the union and the transfer of the loads and deformation between the different components, featuring a coefficient of friction of 0.3. A 20 N-cm torque was used for the installation of the prosthetic abutments as recommended by the manufacturer.</p>
<p>The occlusal loading force applied to the prosthetic abutments was a combination of 114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of about 75° to the occlusal plan.[
<xref rid="ref15" ref-type="bibr">15</xref>
] The mandible was considered a fixed structure without freedom of movement and completely bonded to the implants (osseointegrated in perfect condition).[
<xref rid="ref6" ref-type="bibr">6</xref>
] All movements were restricted in all directions during load application and the boundary conditions considered the outer surfaces of the geometric model in the mesio-distal direction as fixed. The von Mises stress values were used to compare the two models analyzed in this study.</p>
</sec>
<sec sec-type="results" id="sec1-3">
<title>RESULTS</title>
<p>When the preload on the abutment screws was simulated, no stresses were transferred to the bone tissues surrounding the implants in both groups. After load application, both groups transferred von Mises stress values of 80 MPa to the surrounding bone structures. The von Mises stress results found for the two prosthetic abutments tested in this study are presented in Tables
<xref ref-type="table" rid="T2">2</xref>
and
<xref ref-type="table" rid="T3">3</xref>
. Figures
<xref ref-type="fig" rid="F2">2</xref>
<xref ref-type="fig" rid="F8">8</xref>
show the stress pattern distribution for the groups that were analyzed.</p>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>von Mises stress values (MPa) found the two-piece abutment</p>
</caption>
<graphic xlink:href="EJD-7-484-g003"></graphic>
</table-wrap>
<table-wrap id="T3" position="float">
<label>Table 3</label>
<caption>
<p>von Mises stress values (MPa) found the one-piece abutment</p>
</caption>
<graphic xlink:href="EJD-7-484-g004"></graphic>
</table-wrap>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>Preload stresses after torque application (A: M1, B: M2)</p>
</caption>
<graphic xlink:href="EJD-7-484-g005"></graphic>
</fig>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>Stresses on the initial threads of the screws for both models after preload (A: M1, B: M2)</p>
</caption>
<graphic xlink:href="EJD-7-484-g006"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>Stresses on the initial threads of the screws for both models after occlusal loading of the models (A: M1, B: M2)</p>
</caption>
<graphic xlink:href="EJD-7-484-g007"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>Two-piece prosthetic abutment (regions: Body and body-head screw transition). (a) Stresses found after simulation of the preload. (b) Stresses found after simulation of the occlusal loadings</p>
</caption>
<graphic xlink:href="EJD-7-484-g008"></graphic>
</fig>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>One-piece prosthetic abutment (regions: Body and body-head screw transition). (a) Stresses found after simulation of the preload. (b) Stresses found after simulation of the occlusal loadings</p>
</caption>
<graphic xlink:href="EJD-7-484-g009"></graphic>
</fig>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>Stresses found on the implant wall and on the implant/abutment interface for the two-piece abutment. (a) Simulation of preload. (b) After occlusal loading</p>
</caption>
<graphic xlink:href="EJD-7-484-g010"></graphic>
</fig>
<fig id="F8" position="float">
<label>Figure 8</label>
<caption>
<p>Stresses found on the implant wall and on the implant/abutment interface for the one-piece abutment. (a) Simulation of preload. (b) After occlusal loading</p>
</caption>
<graphic xlink:href="EJD-7-484-g011"></graphic>
</fig>
<p>When the two-piece prosthetic abutment (M1) was screwed to the implant, an 874 MPa stress on the head of the screw was found [
<xref ref-type="fig" rid="F2">Figure 2a</xref>
] caused by the preload of the screw. Conversely, when preload was applied to the screw of the one-piece abutment (M2), no stresses were found at the head of the screw [
<xref ref-type="fig" rid="F2">Figure 2b</xref>
]. The highest von Mises stress values (280 MPa) found on the screw of the two-piece abutment were at the first two threads [
<xref ref-type="fig" rid="F3">Figure 3a</xref>
], indicating that this could be the best region of the screw to evaluate the influence of the preload on the screws. The stresses in the first two threads of the screw in the one-piece abutment (220 MPa) were lower than that in the same region of the two-piece abutment (280 MPa) [
<xref ref-type="fig" rid="F3">Figure 3b</xref>
]. Under occlusal loading, the two-piece abutment presented increased von Mises stress values (315 MPa) at the first two threads of the abutment screw [
<xref ref-type="fig" rid="F4">Figure 4a</xref>
]. The one-piece abutment also had increased stresses in the same region (230 MPa) [
<xref ref-type="fig" rid="F4">Figure 4b</xref>
].</p>
<p>The preload stresses in the region of the screw body were similar for both prosthetic abutments analyzed (M1: 100 MPa; M2: 105 MPa). For the two-piece abutment, the stresses in the transition between the body and the head of the screw (210 MPa) were higher than in the one-piece abutment (150 MPa). Under occlusal load, the two tested abutments presented a reduction of the stresses at the body of the screw (M1, 80 MPa, and M2, 70 MPa) and at the transition between the body and the head of the screw (M1, 160 MPa, and M2, 125 MPa) [Figures
<xref ref-type="fig" rid="F5">5</xref>
and
<xref ref-type="fig" rid="F6">6</xref>
].</p>
<p>When compared to the preload in the two-piece abutment, the occlusal loading increased the stresses at the implant/abutment interface from 135 MPa to 170 MPa at the implant wall and from 110 MPa to 125 MPa at the abutment [Figure
<xref ref-type="fig" rid="F7">7a</xref>
and
<xref ref-type="fig" rid="F7">b</xref>
]. Similar results and stress distribution were found for the one-piece abutment, with the difference that the stresses at the implant wall for this abutment were higher after preload application (150 MPa) [Figure
<xref ref-type="fig" rid="F8">8a</xref>
and
<xref ref-type="fig" rid="F8">b</xref>
].</p>
<p>The tensile strength values for each material were collected from the literature[
<xref rid="ref16" ref-type="bibr">16</xref>
<xref rid="ref17" ref-type="bibr">17</xref>
] and compared to the highest von Mises stresses that were found for each FE model, aiming to understand whether the prosthetic components could tolerate the mechanical stresses during functional loading. The results are presented in
<xref ref-type="table" rid="T4">Table 4</xref>
.</p>
<table-wrap id="T4" position="float">
<label>Table 4</label>
<caption>
<p>Highest von Mises stress values (MPa) and tensile strength (MPa) for each component evaluated</p>
</caption>
<graphic xlink:href="EJD-7-484-g012"></graphic>
</table-wrap>
</sec>
<sec sec-type="discussion" id="sec1-4">
<title>DISCUSSION</title>
<p>This study evaluated the stress distribution in one- and two-piece straight prosthetic abutments for implant-supported prosthesis. The influence of the preload caused by tightening the screws for abutment installation and the stresses transferred to the implants and implant components after load application were evaluated. The results support acceptance of the tested null hypothesis as there were no differences between the two tested prosthetic abutments. However, the one-piece mini-conical abutment (M2) presented a more homogeneous behavior of stress distribution [Figures
<xref ref-type="fig" rid="F5">5</xref>
and
<xref ref-type="fig" rid="F6">6</xref>
].</p>
<p>The amount of stresses (80 MPa) transferred to the surrounding bone structures after applying the loads on the models are in agreement with previous studies.[
<xref rid="ref18" ref-type="bibr">18</xref>
<xref rid="ref19" ref-type="bibr">19</xref>
<xref rid="ref20" ref-type="bibr">20</xref>
] The lower stress values found in the screw threads for the one-piece abutment can be due to the higher stresses in the abutment body; this thus relieves the stresses in the screws. Previous studies that compared one- and two-piece prosthetic abutments also found minimized stresses in the screws of one-piece abutments.[
<xref rid="ref21" ref-type="bibr">21</xref>
<xref rid="ref22" ref-type="bibr">22</xref>
] However, the afore-mentioned studies evaluated internal Morse-taper connections instead of external hex butt-joint configurations.[
<xref rid="ref21" ref-type="bibr">21</xref>
<xref rid="ref22" ref-type="bibr">22</xref>
]</p>
<p>For the two-piece abutment, the stresses in the transition between the body and the head of the screw (210 MPa) were higher than in the one-piece abutment (150 MPa). It can be speculated that a decrease in the diameter of the screw in the body-to-head of the screw transition might concentrate the stresses in this small region. A previously published FE study found that for every 1.0 μm elongation of the screw would be equivalent to a 47.9 N increase of the preload in the implant complex.[
<xref rid="ref23" ref-type="bibr">23</xref>
] Under occlusal load, the two tested abutments presented a reduction of the stresses at the body of the screw (M1, 80 MPa, and M2, 70 MPa) and at the transition between the body and the head of the screw (M1, 160 MPa, and M2, 125 MPa).</p>
<p>In the implants and in the implant/abutment interface, both groups presented the same von Mises stresses after the simulated occlusal loads, suggesting that regardless of the abutment type, the stresses in the implants are the same. In addition, higher mechanical stresses are expected near the screw head of two-piece prosthetic abutments[
<xref rid="ref24" ref-type="bibr">24</xref>
] and implants[
<xref rid="ref18" ref-type="bibr">18</xref>
<xref rid="ref25" ref-type="bibr">25</xref>
] under occlusal loading. The von Mises stresses under the simulated chewing loads were all within the tensile strength of the materials analyzed, which thus validates the clinical use of both prosthetic abutments. The narrower emergence profile of the one-piece abutment [
<xref ref-type="fig" rid="F1">Figure 1b</xref>
] compared to the two-piece abutment could allow a more subcrestal placement of external-hex implants. However, it cannot be stated that the new design applies the concept of platform switching. Instead of having a smaller diameter than the implant, the abutment presents a narrower emergence profile than the conventional abutments for external hex implants. The latter usually presents a more convex and wider emergence profile [
<xref ref-type="fig" rid="F1">Figure 1a</xref>
].</p>
<p>The FE method has been widely used for biomechanical analysis of human joints and implants.[
<xref rid="ref26" ref-type="bibr">26</xref>
<xref rid="ref27" ref-type="bibr">27</xref>
] Due to limited computing power and resources, a specific region of interest is normally selected for 3D analysis to allow analysis to be performed on a more detailed and complex structure.[
<xref rid="ref26" ref-type="bibr">26</xref>
] According to settings from a previous study,[
<xref rid="ref28" ref-type="bibr">28</xref>
] three consecutive iterations of mesh refinement were performed in each model to observe the convergence of the results. The assumptions regarding material properties and boundary conditions that were needed for this study should be taken into account when analyzing the results that were found. The effects of dynamic loading and the clinical behavior of the tested prosthetic abutments therefore require further investigation.</p>
</sec>
<sec sec-type="conclusions" id="sec1-5">
<title>CONCLUSIONS</title>
<p>Based on the results found in this study and within the limitations of the methodology that was used, it can be concluded that:</p>
<p>
<list list-type="bullet">
<list-item>
<p>The one-piece mini-conical abutment (M2) presented a more homogeneous behavior of stress distribution</p>
</list-item>
<list-item>
<p>Within the testing conditions used in this study, no plastic deformation of the implants or implant-components is expected for both prosthetic abutments that were tested.</p>
</list-item>
</list>
</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGMENTS</title>
<p>The authors wish to thank NEODENT for supplying the computer-aided design images for the implants and prosthetic abutments.</p>
</ack>
<fn-group>
<fn fn-type="supported-by">
<p>
<bold>Source of Support:</bold>
Nil.</p>
</fn>
<fn fn-type="conflict">
<p>
<bold>Conflict of Interest:</bold>
None declared</p>
</fn>
</fn-group>
<ref-list>
<title>REFERENCES</title>
<ref id="ref1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adell</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lekholm</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Rockler</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Brånemark</surname>
<given-names>PI</given-names>
</name>
</person-group>
<article-title>A 15-year study of osseointegrated implants in the treatment of the edentulous jaw</article-title>
<source>Int J Oral Surg</source>
<year>1981</year>
<volume>10</volume>
<fpage>387</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="pmid">6809663</pub-id>
</element-citation>
</ref>
<ref id="ref2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balshi</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Hernandez</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Pryszlak</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Rangert</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>A comparative study of one implant versus two replacing a single molar</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1996</year>
<volume>11</volume>
<fpage>372</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">8752558</pub-id>
</element-citation>
</ref>
<ref id="ref3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buser</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Belser</surname>
<given-names>UC</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>NP</given-names>
</name>
</person-group>
<article-title>The original one-stage dental implant system and its clinical application</article-title>
<source>Periodontol 2000</source>
<year>1998</year>
<volume>17</volume>
<fpage>106</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="pmid">10337318</pub-id>
</element-citation>
</ref>
<ref id="ref4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cehreli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Duyck</surname>
<given-names>J</given-names>
</name>
<name>
<surname>De Cooman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Puers</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Naert</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Implant design and interface force transfer. A photoelastic and strain-gauge analysis</article-title>
<source>Clin Oral Implants Res</source>
<year>2004</year>
<volume>15</volume>
<fpage>249</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">15008938</pub-id>
</element-citation>
</ref>
<ref id="ref5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brunski</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Biomaterials and biomechanics in dental implant design</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1988</year>
<volume>3</volume>
<fpage>85</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="pmid">3075195</pub-id>
</element-citation>
</ref>
<ref id="ref6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geng</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Application of finite element analysis in implant dentistry: A review of the literature</article-title>
<source>J Prosthet Dent</source>
<year>2001</year>
<volume>85</volume>
<fpage>585</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">11404759</pub-id>
</element-citation>
</ref>
<ref id="ref7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akça</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Cehreli</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Iplikçioğlu</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter morse-taper implant. A nonlinear finite element stress analysis</article-title>
<source>Clin Oral Implants Res</source>
<year>2003</year>
<volume>14</volume>
<fpage>444</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">12869007</pub-id>
</element-citation>
</ref>
<ref id="ref8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cehreli</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Akça</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Iplikçioğlu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sahin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Dynamic fatigue resistance of implant-abutment junction in an internally notched morse-taper oral implant: Influence of abutment design</article-title>
<source>Clin Oral Implants Res</source>
<year>2004</year>
<volume>15</volume>
<fpage>459</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">15248881</pub-id>
</element-citation>
</ref>
<ref id="ref9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lazzara</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>SS</given-names>
</name>
</person-group>
<article-title>Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels</article-title>
<source>Int J Periodontics Restorative Dent</source>
<year>2006</year>
<volume>26</volume>
<fpage>9</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">16515092</pub-id>
</element-citation>
</ref>
<ref id="ref10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teixeira</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akagawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Shindoi</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics</article-title>
<source>J Oral Rehabil</source>
<year>1998</year>
<volume>25</volume>
<fpage>299</fpage>
<lpage>303</lpage>
<pub-id pub-id-type="pmid">9610858</pub-id>
</element-citation>
</ref>
<ref id="ref11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kao</surname>
<given-names>HC</given-names>
</name>
<name>
<surname>Gung</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Chung</surname>
<given-names>TF</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>The influence of abutment angulation on micromotion level for immediately loaded dental implants: A 3-D finite element analysis</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2008</year>
<volume>23</volume>
<fpage>623</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">18807557</pub-id>
</element-citation>
</ref>
<ref id="ref12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zachrisson</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Engström</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Engvall</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wigström</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Smedby</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Persson</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Soft tissue discrimination
<italic>ex vivo</italic>
by dual energy computed tomography</article-title>
<source>Eur J Radiol</source>
<year>2010</year>
<volume>75</volume>
<fpage>e124</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">20219308</pub-id>
</element-citation>
</ref>
<ref id="ref13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alkan</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Sertgöz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ekici</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Influence of occlusal forces on stress distribution in preloaded dental implant screws</article-title>
<source>J Prosthet Dent</source>
<year>2004</year>
<volume>91</volume>
<fpage>319</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">15116032</pub-id>
</element-citation>
</ref>
<ref id="ref14">
<label>14</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Parmley</surname>
<given-names>RO</given-names>
</name>
</person-group>
<article-title>Standard Handbook of Fastening and Joining</article-title>
<year>1997</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>McGraw-Hill</publisher-name>
</element-citation>
</ref>
<ref id="ref15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bozkaya</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Muftu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Muftu</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis</article-title>
<source>J Prosthet Dent</source>
<year>2004</year>
<volume>92</volume>
<fpage>523</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">15583556</pub-id>
</element-citation>
</ref>
<ref id="ref16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niinomi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Mechanical properties of biomedical titanium alloys</article-title>
<source>Mater Sci Eng A</source>
<year>1998</year>
<volume>243</volume>
<fpage>231</fpage>
<lpage>6</lpage>
</element-citation>
</ref>
<ref id="ref17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geetha</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Asokamani</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gogia</surname>
<given-names>AK</given-names>
</name>
</person-group>
<article-title>Ti based biomaterials, the ultimate choice for orthopaedic implants: A review</article-title>
<source>Prog Mater Sci</source>
<year>2009</year>
<volume>54</volume>
<fpage>397</fpage>
<lpage>425</lpage>
</element-citation>
</ref>
<ref id="ref18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chun</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Shin</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2006</year>
<volume>21</volume>
<fpage>195</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="pmid">16634489</pub-id>
</element-citation>
</ref>
<ref id="ref19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Himmlová</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dostálová</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kácovskı</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Konvicková</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Influence of implant length and diameter on stress distribution: A finite element analysis</article-title>
<source>J Prosthet Dent</source>
<year>2004</year>
<volume>91</volume>
<fpage>20</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="pmid">14739889</pub-id>
</element-citation>
</ref>
<ref id="ref20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of the cylinder implant thread height and width: A 3-dimensional finite element analysis</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2008</year>
<volume>23</volume>
<fpage>65</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">18416414</pub-id>
</element-citation>
</ref>
<ref id="ref21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quaresma</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Cury</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Sendyk</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Sendyk</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A finite element analysis of two different dental implants: Stress distribution in the prosthesis, abutment, implant, and supporting bone</article-title>
<source>J Oral Implantol</source>
<year>2008</year>
<volume>34</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">18390236</pub-id>
</element-citation>
</ref>
<ref id="ref22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pessoa</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Muraru</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Júnior</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Vaz</surname>
<given-names>LG</given-names>
</name>
<name>
<surname>Sloten</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Duyck</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influence of implant connection type on the biomechanical environment of immediately placed implants-CT-based nonlinear, three-dimensional finite element analysis</article-title>
<source>Clin Implant Dent Relat Res</source>
<year>2010</year>
<volume>12</volume>
<fpage>219</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">19438946</pub-id>
</element-citation>
</ref>
<ref id="ref23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Razzoog</surname>
<given-names>ME</given-names>
</name>
</person-group>
<article-title>The dynamic natures of implant loading</article-title>
<source>J Prosthet Dent</source>
<year>2009</year>
<volume>101</volume>
<fpage>359</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">19463663</pub-id>
</element-citation>
</ref>
<ref id="ref24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cehreli</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Akça</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Iplikçioğlu</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Force transmission of one-and two-piece morse-taper oral implants: A nonlinear finite element analysis</article-title>
<source>Clin Oral Implants Res</source>
<year>2004</year>
<volume>15</volume>
<fpage>481</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">15248884</pub-id>
</element-citation>
</ref>
<ref id="ref25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lan</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Stress analysis of different angulations of implant installation: The finite element method</article-title>
<source>Kaohsiung J Med Sci</source>
<year>2008</year>
<volume>24</volume>
<fpage>138</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">18364274</pub-id>
</element-citation>
</ref>
<ref id="ref26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saidin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Abdul</surname>
<given-names>Kadir MR</given-names>
</name>
<name>
<surname>Sulaiman</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Abu Kasim</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Effects of different implant-abutment connections on micromotion and stress distribution: Prediction of microgap formation</article-title>
<source>J Dent</source>
<year>2012</year>
<volume>40</volume>
<fpage>467</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">22366313</pub-id>
</element-citation>
</ref>
<ref id="ref27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eskitascioglu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Usumez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sevimay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Soykan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Unsal</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite element study</article-title>
<source>J Prosthet Dent</source>
<year>2004</year>
<volume>91</volume>
<fpage>144</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">14970760</pub-id>
</element-citation>
</ref>
<ref id="ref28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saab</surname>
<given-names>XE</given-names>
</name>
<name>
<surname>Griggs</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Powers</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Engelmeier</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Effect of abutment angulation on the strain on the bone around an implant in the anterior maxilla: A finite element study</article-title>
<source>J Prosthet Dent</source>
<year>2007</year>
<volume>97</volume>
<fpage>85</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">17341376</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C23 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002C23 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4053675
   |texte=   A three-dimensional finite element study on the stress distribution pattern of two prosthetic abutments for external hexagon implants
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24932125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022