Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis

Identifieur interne : 002B89 ( Pmc/Corpus ); précédent : 002B88; suivant : 002B90

Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis

Auteurs : Ehsan Ghasemi ; Alireza Abedian ; Pedram Iranmanesh ; Saber Khazaei

Source :

RBID : PMC:4336973

Abstract

Background:

Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis.

Materials and Methods:

A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic.

Results:

For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part.

Conclusion:

Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer.


Url:
PubMed: 25709676
PubMed Central: 4336973

Links to Exploration step

PMC:4336973

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis</title>
<author>
<name sortKey="Ghasemi, Ehsan" sort="Ghasemi, Ehsan" uniqKey="Ghasemi E" first="Ehsan" last="Ghasemi">Ehsan Ghasemi</name>
<affiliation>
<nlm:aff id="aff1">Dental Materials Research Center, Department of Prosthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Abedian, Alireza" sort="Abedian, Alireza" uniqKey="Abedian A" first="Alireza" last="Abedian">Alireza Abedian</name>
<affiliation>
<nlm:aff id="aff2">Department of Mechanical Engineering, Daneshpajoohan Higher Education Institiue, Isfahan, Iran</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iranmanesh, Pedram" sort="Iranmanesh, Pedram" uniqKey="Iranmanesh P" first="Pedram" last="Iranmanesh">Pedram Iranmanesh</name>
<affiliation>
<nlm:aff id="aff3">Dental Students’ Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khazaei, Saber" sort="Khazaei, Saber" uniqKey="Khazaei S" first="Saber" last="Khazaei">Saber Khazaei</name>
<affiliation>
<nlm:aff id="aff4">School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25709676</idno>
<idno type="pmc">4336973</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336973</idno>
<idno type="RBID">PMC:4336973</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">002B89</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002B89</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis</title>
<author>
<name sortKey="Ghasemi, Ehsan" sort="Ghasemi, Ehsan" uniqKey="Ghasemi E" first="Ehsan" last="Ghasemi">Ehsan Ghasemi</name>
<affiliation>
<nlm:aff id="aff1">Dental Materials Research Center, Department of Prosthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Abedian, Alireza" sort="Abedian, Alireza" uniqKey="Abedian A" first="Alireza" last="Abedian">Alireza Abedian</name>
<affiliation>
<nlm:aff id="aff2">Department of Mechanical Engineering, Daneshpajoohan Higher Education Institiue, Isfahan, Iran</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Iranmanesh, Pedram" sort="Iranmanesh, Pedram" uniqKey="Iranmanesh P" first="Pedram" last="Iranmanesh">Pedram Iranmanesh</name>
<affiliation>
<nlm:aff id="aff3">Dental Students’ Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Khazaei, Saber" sort="Khazaei, Saber" uniqKey="Khazaei S" first="Saber" last="Khazaei">Saber Khazaei</name>
<affiliation>
<nlm:aff id="aff4">School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Dental Research Journal</title>
<idno type="ISSN">1735-3327</idno>
<idno type="eISSN">2008-0255</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="st1">
<title>Background:</title>
<p>Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis.</p>
</sec>
<sec id="st2">
<title>Materials and Methods:</title>
<p>A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic.</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part.</p>
</sec>
<sec id="st4">
<title>Conclusion:</title>
<p>Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Sc" uniqKey="Huang S">SC Huang</name>
</author>
<author>
<name sortKey="Tsai, Cf" uniqKey="Tsai C">CF Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karoussis, Ik" uniqKey="Karoussis I">IK Karoussis</name>
</author>
<author>
<name sortKey="Br Gger, U" uniqKey="Br Gger U">U Brägger</name>
</author>
<author>
<name sortKey="Salvi, Ge" uniqKey="Salvi G">GE Salvi</name>
</author>
<author>
<name sortKey="Burgin, W" uniqKey="Burgin W">W Bürgin</name>
</author>
<author>
<name sortKey="Lang, Np" uniqKey="Lang N">NP Lang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Geng, Jp" uniqKey="Geng J">JP Geng</name>
</author>
<author>
<name sortKey="Tan, Kb" uniqKey="Tan K">KB Tan</name>
</author>
<author>
<name sortKey="Liu, Gr" uniqKey="Liu G">GR Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montes, Cc" uniqKey="Montes C">CC Montes</name>
</author>
<author>
<name sortKey="Pereira, Fa" uniqKey="Pereira F">FA Pereira</name>
</author>
<author>
<name sortKey="Thome, G" uniqKey="Thome G">G Thomé</name>
</author>
<author>
<name sortKey="Alves, Ed" uniqKey="Alves E">ED Alves</name>
</author>
<author>
<name sortKey="Acedo, Rv" uniqKey="Acedo R">RV Acedo</name>
</author>
<author>
<name sortKey="De Souza, Jr" uniqKey="De Souza J">JR de Souza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmgren, Ep" uniqKey="Holmgren E">EP Holmgren</name>
</author>
<author>
<name sortKey="Seckinger, Rj" uniqKey="Seckinger R">RJ Seckinger</name>
</author>
<author>
<name sortKey="Kilgren, Lm" uniqKey="Kilgren L">LM Kilgren</name>
</author>
<author>
<name sortKey="Mante, F" uniqKey="Mante F">F Mante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fangh Nel, J" uniqKey="Fangh Nel J">J Fanghänel</name>
</author>
<author>
<name sortKey="Gedrange, T" uniqKey="Gedrange T">T Gedrange</name>
</author>
<author>
<name sortKey="Proff, P" uniqKey="Proff P">P Proff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sevimay, M" uniqKey="Sevimay M">M Sevimay</name>
</author>
<author>
<name sortKey="Usumez, A" uniqKey="Usumez A">A Usumez</name>
</author>
<author>
<name sortKey="Eskitascioglu, G" uniqKey="Eskitascioglu G">G Eskitascioglu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Angelis, F" uniqKey="De Angelis F">F De Angelis</name>
</author>
<author>
<name sortKey="Minnoni, A" uniqKey="Minnoni A">A Minnoni</name>
</author>
<author>
<name sortKey="Vitalone, Lm" uniqKey="Vitalone L">LM Vitalone</name>
</author>
<author>
<name sortKey="Carluccio, F" uniqKey="Carluccio F">F Carluccio</name>
</author>
<author>
<name sortKey="Vadini, M" uniqKey="Vadini M">M Vadini</name>
</author>
<author>
<name sortKey="Paolantonio, M" uniqKey="Paolantonio M">M Paolantonio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Escribano, N" uniqKey="Escribano N">N Escribano</name>
</author>
<author>
<name sortKey="De La Macorra, Jc" uniqKey="De La Macorra J">JC de la Macorra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jager, N" uniqKey="De Jager N">N De Jager</name>
</author>
<author>
<name sortKey="Pallav, P" uniqKey="Pallav P">P Pallav</name>
</author>
<author>
<name sortKey="Feilzer, Aj" uniqKey="Feilzer A">AJ Feilzer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sannino, G" uniqKey="Sannino G">G Sannino</name>
</author>
<author>
<name sortKey="Pozzi, A" uniqKey="Pozzi A">A Pozzi</name>
</author>
<author>
<name sortKey="Schiavetti, R" uniqKey="Schiavetti R">R Schiavetti</name>
</author>
<author>
<name sortKey="Barlattani, A" uniqKey="Barlattani A">A Barlattani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, B" uniqKey="Liu B">B Liu</name>
</author>
<author>
<name sortKey="Lu, C" uniqKey="Lu C">C Lu</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y Wu</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Arola, D" uniqKey="Arola D">D Arola</name>
</author>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz Arnold, Am" uniqKey="Diaz Arnold A">AM Diaz-Arnold</name>
</author>
<author>
<name sortKey="Vargas, Ma" uniqKey="Vargas M">MA Vargas</name>
</author>
<author>
<name sortKey="Haselton, Dr" uniqKey="Haselton D">DR Haselton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Zc" uniqKey="Li Z">ZC Li</name>
</author>
<author>
<name sortKey="White, Sn" uniqKey="White S">SN White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iranmanesh, P" uniqKey="Iranmanesh P">P Iranmanesh</name>
</author>
<author>
<name sortKey="Abedian, A" uniqKey="Abedian A">A Abedian</name>
</author>
<author>
<name sortKey="Nasri, N" uniqKey="Nasri N">N Nasri</name>
</author>
<author>
<name sortKey="Ghasemi, E" uniqKey="Ghasemi E">E Ghasemi</name>
</author>
<author>
<name sortKey="Khazaei, S" uniqKey="Khazaei S">S Khazaei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ebadian, B" uniqKey="Ebadian B">B Ebadian</name>
</author>
<author>
<name sortKey="Farzin, M" uniqKey="Farzin M">M Farzin</name>
</author>
<author>
<name sortKey="Talebi, S" uniqKey="Talebi S">S Talebi</name>
</author>
<author>
<name sortKey="Khodaeian, N" uniqKey="Khodaeian N">N Khodaeian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ash, Mm" uniqKey="Ash M">MM Ash</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jinfeng, Pk" uniqKey="Jinfeng P">PK Jinfeng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iplikcio Lu, H" uniqKey="Iplikcio Lu H">H Iplikçioğlu</name>
</author>
<author>
<name sortKey="Akca, K" uniqKey="Akca K">K Akça</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Rien, Wj" uniqKey="O Rien W">WJ O’Brien</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Craig, Rg" uniqKey="Craig R">RG Craig</name>
</author>
<author>
<name sortKey="Ward, Ml" uniqKey="Ward M">ML Ward</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bozkaya, D" uniqKey="Bozkaya D">D Bozkaya</name>
</author>
<author>
<name sortKey="Muftu, S" uniqKey="Muftu S">S Muftu</name>
</author>
<author>
<name sortKey="Muftu, A" uniqKey="Muftu A">A Muftu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Covey, Da" uniqKey="Covey D">DA Covey</name>
</author>
<author>
<name sortKey="Kent, Dk" uniqKey="Kent D">DK Kent</name>
</author>
<author>
<name sortKey="St Germain, Ha" uniqKey="St Germain H">HA St Germain</name>
</author>
<author>
<name sortKey="Koka, S" uniqKey="Koka S">S Koka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nejatidanesh, F" uniqKey="Nejatidanesh F">F Nejatidanesh</name>
</author>
<author>
<name sortKey="Savabi, O" uniqKey="Savabi O">O Savabi</name>
</author>
<author>
<name sortKey="Shahtoosi, M" uniqKey="Shahtoosi M">M Shahtoosi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nejatidanesh, F" uniqKey="Nejatidanesh F">F Nejatidanesh</name>
</author>
<author>
<name sortKey="Savabi, O" uniqKey="Savabi O">O Savabi</name>
</author>
<author>
<name sortKey="Ebrahimi, M" uniqKey="Ebrahimi M">M Ebrahimi</name>
</author>
<author>
<name sortKey="Savabi, G" uniqKey="Savabi G">G Savabi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kamposiora, P" uniqKey="Kamposiora P">P Kamposiora</name>
</author>
<author>
<name sortKey="Papavasiliou, G" uniqKey="Papavasiliou G">G Papavasiliou</name>
</author>
<author>
<name sortKey="Bayne, Sc" uniqKey="Bayne S">SC Bayne</name>
</author>
<author>
<name sortKey="Felton, Da" uniqKey="Felton D">DA Felton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oruc, S" uniqKey="Oruc S">S Oruc</name>
</author>
<author>
<name sortKey="Eraslan, O" uniqKey="Eraslan O">O Eraslan</name>
</author>
<author>
<name sortKey="Tukay, Ha" uniqKey="Tukay H">HA Tukay</name>
</author>
<author>
<name sortKey="Atay, A" uniqKey="Atay A">A Atay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Cl" uniqKey="Lin C">CL Lin</name>
</author>
<author>
<name sortKey="Wang, Jc" uniqKey="Wang J">JC Wang</name>
</author>
<author>
<name sortKey="Chang, Wj" uniqKey="Chang W">WJ Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Motta, Ab" uniqKey="Motta A">AB Motta</name>
</author>
<author>
<name sortKey="Pereira, Lc" uniqKey="Pereira L">LC Pereira</name>
</author>
<author>
<name sortKey="Da Cunha, Ar" uniqKey="Da Cunha A">AR da Cunha</name>
</author>
<author>
<name sortKey="Duda, Fp" uniqKey="Duda F">FP Duda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luthy, H" uniqKey="Luthy H">H Lüthy</name>
</author>
<author>
<name sortKey="Filser, F" uniqKey="Filser F">F Filser</name>
</author>
<author>
<name sortKey="Loeffel, O" uniqKey="Loeffel O">O Loeffel</name>
</author>
<author>
<name sortKey="Schumacher, M" uniqKey="Schumacher M">M Schumacher</name>
</author>
<author>
<name sortKey="Gauckler, Lj" uniqKey="Gauckler L">LJ Gauckler</name>
</author>
<author>
<name sortKey="Hammerle, Ch" uniqKey="Hammerle C">CH Hammerle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, Ws" uniqKey="Oh W">WS Oh</name>
</author>
<author>
<name sortKey="Anusavice, Kj" uniqKey="Anusavice K">KJ Anusavice</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Romeed, Sa" uniqKey="Romeed S">SA Romeed</name>
</author>
<author>
<name sortKey="Fok, Sl" uniqKey="Fok S">SL Fok</name>
</author>
<author>
<name sortKey="Wilson, Nh" uniqKey="Wilson N">NH Wilson</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Dent Res J (Isfahan)</journal-id>
<journal-id journal-id-type="iso-abbrev">Dent Res J (Isfahan)</journal-id>
<journal-id journal-id-type="publisher-id">DRJ</journal-id>
<journal-title-group>
<journal-title>Dental Research Journal</journal-title>
</journal-title-group>
<issn pub-type="ppub">1735-3327</issn>
<issn pub-type="epub">2008-0255</issn>
<publisher>
<publisher-name>Medknow Publications & Media Pvt Ltd</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25709676</article-id>
<article-id pub-id-type="pmc">4336973</article-id>
<article-id pub-id-type="publisher-id">DRJ-12-57</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ghasemi</surname>
<given-names>Ehsan</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Abedian</surname>
<given-names>Alireza</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Iranmanesh</surname>
<given-names>Pedram</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Khazaei</surname>
<given-names>Saber</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Dental Materials Research Center, Department of Prosthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran</aff>
<aff id="aff2">
<label>2</label>
Department of Mechanical Engineering, Daneshpajoohan Higher Education Institiue, Isfahan, Iran</aff>
<aff id="aff3">
<label>3</label>
Dental Students’ Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran</aff>
<aff id="aff4">
<label>4</label>
School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran</aff>
<author-notes>
<corresp id="cor1">
<bold>Address for correspondence:</bold>
Dr. Saber Khazaei, School of Dentistry, Kermanshah University of Medical Sciences, Shariati Street, Kermanshah 67139- 54658, Iran. E-mail:
<email xlink:href="skhazaei@kums.ac.ir">skhazaei@kums.ac.ir</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Jan-Feb</season>
<year>2015</year>
</pub-date>
<volume>12</volume>
<issue>1</issue>
<fpage>57</fpage>
<lpage>63</lpage>
<history>
<date date-type="received">
<month>2</month>
<year>2013</year>
</date>
<date date-type="accepted">
<month>1</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © Dental Research Journal</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec id="st1">
<title>Background:</title>
<p>Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis.</p>
</sec>
<sec id="st2">
<title>Materials and Methods:</title>
<p>A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic.</p>
</sec>
<sec id="st3">
<title>Results:</title>
<p>For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part.</p>
</sec>
<sec id="st4">
<title>Conclusion:</title>
<p>Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Adhesive cement</kwd>
<kwd>dental implants</kwd>
<kwd>finite element analysis</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro" id="sec1-1">
<title>INTRODUCTION</title>
<p>Dental implants are widely used in the treatment of partially edentulous patients.[
<xref rid="ref1" ref-type="bibr">1</xref>
] A dental implant consists of components, which transfer chewing forces to the jaw bone. In recent years, the effects of loading on implants and surrounding bone have been widely investigated to design dental implant systems.[
<xref rid="ref2" ref-type="bibr">2</xref>
] Biomechanical, mechanical, chemical and biological aspects of dental implants are required to be considered to increase the success rate of dental implants.[
<xref rid="ref3" ref-type="bibr">3</xref>
]</p>
<p>Osseointegration and prognosis of dental implants are influenced by many biomechanical factors.[
<xref rid="ref4" ref-type="bibr">4</xref>
] The most important factors that affect dental implant-bone interface include the type and direction of forces,[
<xref rid="ref5" ref-type="bibr">5</xref>
] quantity and quality of the supporting bone[
<xref rid="ref6" ref-type="bibr">6</xref>
] and materials of dental implant and prosthesis.[
<xref rid="ref7" ref-type="bibr">7</xref>
] Dental implants and prostheses are attached using different types of luting agents, which are commonly used to increase retention and to improve the marginal seal of prosthesis.[
<xref rid="ref8" ref-type="bibr">8</xref>
<xref rid="ref9" ref-type="bibr">9</xref>
] To investigate the biomechanical factors, it is necessary to predict stress distribution on the implant structure. Stress is the consequence of masticatory load on the prosthesis.</p>
<p>In a study by De Jager
<italic>et al</italic>
.[
<xref rid="ref10" ref-type="bibr">10</xref>
] investigated a simple model that imitated the contraction behavior of luting agents to evaluate the finite element model merit in predicating the contraction stress. They compared the experimental contraction stress by finite element method (FEM) analysis and demonstrated that it is a reliable method to predict the actual contraction stress in dental restorations when the luting agent thickness is uniform. In addition, the thinnest layer resulted in the smallest deformation and stress. Sannino
<italic>et al</italic>
.[
<xref rid="ref11" ref-type="bibr">11</xref>
] evaluated the stress distribution of a three-unit zirconia based implant-supported fixed dental prosthesis (FDP), using the 3D-FEM with different load conditions. Accurate information about the clinical success of FDP was obtained by FEM. Furthermore, they found the highest von Mises stress in the cervical area of the frameworks and abutment. The maximum tensile stress and fracture risk occurs in the connector regions. Moreover, tensile stress values and stress distribution extremely depend on the loading condition.</p>
<p>Liu
<italic>et al</italic>
.[
<xref rid="ref12" ref-type="bibr">12</xref>
] investigated the effect of luting agent types and thickness on the stress distribution within all-ceramic crowns using the FEM. The results of their study showed that luting agent thickness does not have a significant effect on stress distribution of the core or veneer. However, the loading conditions and elastic modulus of luting agents play a vital role in stress distribution.</p>
<p>Different luting agents have various properties such as modulus of elasticity, compressive and tensile strengths, toughness and poisson ratios.[
<xref rid="ref13" ref-type="bibr">13</xref>
<xref rid="ref14" ref-type="bibr">14</xref>
] The FEM is an efficient method to evaluate the effects of luting agents on the stress distribution. Recently, the FEM has been widely used in implant dentistry researches.[
<xref rid="ref1" ref-type="bibr">1</xref>
<xref rid="ref3" ref-type="bibr">3</xref>
<xref rid="ref15" ref-type="bibr">15</xref>
<xref rid="ref16" ref-type="bibr">16</xref>
] The aim of this study was to evaluate the effect of type of luting agent on stress distribution of the bone surrounding implants in a three-unit FDP using FEM analysis. The null hypothesis was that the type of luting agent does not have any effect on stress distribution pattern of a three-unit implant-supported FDP.</p>
</sec>
<sec sec-type="materials|methods" id="sec1-2">
<title>MATERIALS AND METHODS</title>
<sec id="sec2-1">
<title>Preparation of the model</title>
<p>A 3D FE model of three-unit implant-supported FDP replacing the maxillary first molar with maxillary second premolar and second molar as the abutments was designed based on Wheeler's dental anatomy.[
<xref rid="ref17" ref-type="bibr">17</xref>
]
<xref ref-type="fig" rid="F1">Figure 1</xref>
shows the geometric mesh of the modeled FDP. The mesh has been achieved after evaluating the dependency and sensitivity for discretization.</p>
<fig id="F1" position="float">
<label>Figure 1</label>
<caption>
<p>The geometric mesh of the modeled fixed dental prosthesis</p>
</caption>
<graphic xlink:href="DRJ-12-57-g001"></graphic>
</fig>
</sec>
<sec id="sec2-2">
<title>Generation of the numerical model</title>
<p>The maxillary second premolar and maxillary second molar were supported by two standard-plus screw-shaped implants (4.1 diameter, 043.152S for premolar and 4.8 diameter, 043.252S for second molar, Straumann AG, Waldenburg, Switzerland) with regular neck solid abutments (048.541, Straumann AG) with 5.5 height and 6° tapered tightened on the implants. A sanitary pontic was considered to replace the missing maxillary first molar. All superstructure materials used in this study had two 4-6 mm
<sup>2</sup>
connectors. A porcelain veneer with 1 mm thickness and a base-metal core from minimum 0.5 mm to maximum 1.5 mm thickness were established for porcelain fused to metal framework. Although the thickness of luting agent does not have an important effect on stress values,[
<xref rid="ref12" ref-type="bibr">12</xref>
] the luting agent thickness was considered 25 μm.[
<xref rid="ref11" ref-type="bibr">11</xref>
] The FDP model was designed using CATIA V5 R18 software (Dassault System, Suresnes Cedex, France)[
<xref rid="ref18" ref-type="bibr">18</xref>
] based on Wheeler's anatomical teeth dimension.[
<xref rid="ref17" ref-type="bibr">17</xref>
] Mesh design and FEM calculations were carried out using ABAQUS/CAE 6.6 version (Hibbitt, Karlsson and Sorensen Inc., Providence, Rhode Island, USA). The whole model was created with C3D4 elements (4-node linear tetrahedron). In total, the model was consisted of 465108 nodes and 86296 elements [
<xref ref-type="fig" rid="F1">Figure 1</xref>
].</p>
</sec>
<sec id="sec2-3">
<title>Loading condition</title>
<p>To simulate the model during mastication movements, three different loads were considered in oblique, vertical and horizontal directions. On the functional cusps of the FDP, 400 N oblique, 200 N vertical and 57 N horizontal loads were applied [
<xref ref-type="fig" rid="F2">Figure 2</xref>
]. To simulate an oblique loading condition, a 400 N load was applied with θ = 120° according to the horizontal plane to the palatal cusps of each prosthetic unit.[
<xref rid="ref19" ref-type="bibr">19</xref>
] Each load case was carried out separately and applied on 8 equal points of each unit.[
<xref rid="ref12" ref-type="bibr">12</xref>
]</p>
<fig id="F2" position="float">
<label>Figure 2</label>
<caption>
<p>The directions and magnitudes of three load conditions</p>
</caption>
<graphic xlink:href="DRJ-12-57-g002"></graphic>
</fig>
</sec>
<sec id="sec2-4">
<title>Materials properties</title>
<p>To apply the boundary condition, all nodes in the y–z plane at the end of the x-axis in both directions were fixed; no translation was allowed in any direction [
<xref ref-type="fig" rid="F2">Figure 2</xref>
]. All the interfaces were merged together. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic.[
<xref rid="ref19" ref-type="bibr">19</xref>
<xref rid="ref20" ref-type="bibr">20</xref>
<xref rid="ref21" ref-type="bibr">21</xref>
] The material properties of the FDP unit[
<xref rid="ref19" ref-type="bibr">19</xref>
] and different types of luting agents are listed in Tables
<xref ref-type="table" rid="T1">1</xref>
and
<xref ref-type="table" rid="T2">2</xref>
respectively.</p>
<table-wrap id="T1" position="float">
<label>Table 1</label>
<caption>
<p>Elastic properties of the materials used</p>
</caption>
<graphic xlink:href="DRJ-12-57-g003"></graphic>
</table-wrap>
<table-wrap id="T2" position="float">
<label>Table 2</label>
<caption>
<p>Luting agents used</p>
</caption>
<graphic xlink:href="DRJ-12-57-g004"></graphic>
</table-wrap>
</sec>
</sec>
<sec sec-type="results" id="sec1-3">
<title>RESULTS</title>
<sec id="sec2-5">
<title>Stress distribution in the supporting bone</title>
<p>The stress levels were calculated using von Mises stress value which is an appropriate criterion for stress evaluation of ductile materials. Contours of stress distribution on the cortical bone corresponding to three different loads are shown in
<xref ref-type="fig" rid="F3">Figure 3</xref>
. The maximum stress occurred at oblique load. The maximum von Mises stress values were localized in the palatal side of second premolar supporting bone; particularly the area of cortical bone which has interaction with the implant. The maximum value was 48 MPa in all cases [
<xref ref-type="fig" rid="F3">Figure 3</xref>
] and the minimum von Mises stress values occurred in the area far from the implants. To compare the results of simulation of the model with different types of luting agents, contours of the cross sectional view of the cortical bone are shown in Figures
<xref ref-type="fig" rid="F4">4</xref>
<xref ref-type="fig" rid="F6">6</xref>
. As shown in these figures, there is a little difference between contours of stress distribution.</p>
<fig id="F3" position="float">
<label>Figure 3</label>
<caption>
<p>Von Mises stress values (MPa) and distribution patterns on the cortical bone when the different loads were applied</p>
</caption>
<graphic xlink:href="DRJ-12-57-g005"></graphic>
</fig>
<fig id="F4" position="float">
<label>Figure 4</label>
<caption>
<p>Comparison of applying different types of luting agent materials to cortical bone stress distribution (horizontal load)</p>
</caption>
<graphic xlink:href="DRJ-12-57-g006"></graphic>
</fig>
<fig id="F5" position="float">
<label>Figure 5</label>
<caption>
<p>Comparison of applying different types of luting agent materials to cortical bone stress distribution (oblique load)</p>
</caption>
<graphic xlink:href="DRJ-12-57-g007"></graphic>
</fig>
<fig id="F6" position="float">
<label>Figure 6</label>
<caption>
<p>Comparison of applying different types of luting agent materials to cortical bone stress distribution (vertical load)</p>
</caption>
<graphic xlink:href="DRJ-12-57-g008"></graphic>
</fig>
</sec>
<sec id="sec2-6">
<title>Stress distribution in the connectors</title>
<p>
<xref ref-type="fig" rid="F7">Figure 7</xref>
shows the stress distribution in connectors region under horizontal, vertical and oblique load conditions. The horizontal load condition generated almost the same stress pattern along the connector while the maximum stresses were in the top and bottom of the connector due to stress concentration [
<xref ref-type="fig" rid="F7">Figure 7a</xref>
]. Under vertical load condition [
<xref ref-type="fig" rid="F7">Figure 7b</xref>
], shearing load behavior appeared in the bottom of the connectors which was much more than von Mises stress in the horizontal load condition. The oblique load condition is a superposition of horizontal and vertical load conditions, which resulted in the maximum stress in the bottom of the connector [
<xref ref-type="fig" rid="F7">Figure 7c</xref>
].</p>
<fig id="F7" position="float">
<label>Figure 7</label>
<caption>
<p>Stress distribution in connector regions (a) horizontal, (b) oblique, (c) vertical</p>
</caption>
<graphic xlink:href="DRJ-12-57-g009"></graphic>
</fig>
</sec>
<sec id="sec2-7">
<title>Stress distribution in implant</title>
<p>
<xref ref-type="fig" rid="F8">Figure 8</xref>
shows the stress distribution in implant and abutment regions. The stress distribution patterns were similar among all luting agents. There was no significant difference between the premolar and molar implants. Moreover, the maximum von Mises stress was seen in the vertical load direction.</p>
<fig id="F8" position="float">
<label>Figure 8</label>
<caption>
<p>Stress distribution in implant and abutment regions (a) horizontal, (b) oblique, (c) vertical</p>
</caption>
<graphic xlink:href="DRJ-12-57-g010"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion" id="sec1-4">
<title>DISCUSSION</title>
<p>The failure is defined by the criteria which depend on stress distribution and material property. Therefore, the stress distribution for each part of the model is of interest. The FEM is used to evaluate the stress distribution in a structure. The FEM can employ structures of various shapes with many elements defined with specific Young's modulus and Possion's ratio values. The 3D FE model was designed of three-unit implant-supported FDP to determine the influence of different types of luting agents on stress distribution pattern of the unit.</p>
<p>The periodontal ligament is absent in implant-supported FDP, hence the stress occurs as a result of functional forces, which are directly transmitted to the supporting bone. A study by Bozkaya
<italic>et al</italic>
.[
<xref rid="ref22" ref-type="bibr">22</xref>
] showed that occlusal loads more than 1000 N will overload the compact bone and change its geometric shape. Different types of loading were applied to the framework; the maximum mastication load cases were considered as 400 N oblique, 200 N vertical and 57 N horizontal. As shown in the results, the maximum stress values in surrounding bone, connectors, implants and abutments occurred in the oblique load. The applied oblique load has the maximum value compared with the vertical and horizontal load cases. In addition, the oblique load contains vertical and horizontal components, which can yield horizontal and vertical load effects.</p>
<p>Adhesive cements are commonly used to enhance the retention, marginal adaptation and fracture resistance of the restored teeth. Moreover, these types of luting agents are different in terms of chemical and physical properties. For example, zinc phosphate luting agent has the highest modulus of elasticity (13.5 GPa), which protects the supra-structure material of prosthesis from destructive occlusal forces.[
<xref rid="ref13" ref-type="bibr">13</xref>
] Furthermore, polycarboxylate luting agent has lower compressive (55-85 MPa) and higher tensile (8-12 MPa) strength than zinc phosphate agent, that result in more deformation which is not suitable for high force concentration in occlusal area.[
<xref rid="ref13" ref-type="bibr">13</xref>
<xref rid="ref19" ref-type="bibr">19</xref>
] Covey
<italic>et al</italic>
.[
<xref rid="ref23" ref-type="bibr">23</xref>
] demonstrated that permanent luting agents like zinc phosphate agent generate uniaxial retention forces from 2.5 to 4.7 times greater than provisional luting agents such as zinc oxide eugenol. Nejatidanesh
<italic>et al</italic>
.[
<xref rid="ref24" ref-type="bibr">24</xref>
] in their study have reported a significant difference between the mean retention values of different luting agents. Moreover, the results of their study showed that resin luting agents had the highest retention. On the other hand, resin modified glass ionomer, zinc phosphate, zinc polycarboxylate and Panavia F2 have been suggested for definitive cementation of single implant-supported restorations.[
<xref rid="ref25" ref-type="bibr">25</xref>
]</p>
<p>The result of the present study showed that the maximum von Mises stress of the cortical bone was at palatal side of the second premolar. Sevimay
<italic>et al</italic>
.[
<xref rid="ref7" ref-type="bibr">7</xref>
] evaluated the influence of various occlusal materials on the stress transferred to implant-supported prostheses and supporting bone using the FEM. The results of their study showed that von Mises stress increased in the coronal one-third and two-third of the lingual surface of the cortical bone. The modulus of elasticity of cortical bone is higher than spongy bone and for this reason, cortical bone is stronger and more resistant to deformation. Hence, higher stress values can be seen in cortical bone compared to spongy bone.[
<xref rid="ref7" ref-type="bibr">7</xref>
]</p>
<p>The results of this study showed that there were no significant changes in the cortical bone, implant and abutment stress distribution pattern for different luting agent materials. Similar results were observed by comparing Panavia F and Variolink II resin composite luting agents.[
<xref rid="ref12" ref-type="bibr">12</xref>
] One may conclude, the luting agent plays a role in transferring the load to cortical bone, implant and abutment, but different types of luting agents may not affect the pattern of transferring load to the cortical bone. However, different types of luting agents might slightly change the direction of the load transferred to the bone due to different displacement field of luting agents under the same mastication load. Due to the palatal direction of oblique force on functional cusps, maximum von Mises stress values were observed in the palatal area between the cervical region of the implant and supporting bone.</p>
<p>Several FEM studies have been carried out on FDP's connector that evaluated height,[
<xref rid="ref26" ref-type="bibr">26</xref>
] type[
<xref rid="ref27" ref-type="bibr">27</xref>
] and design of connectors.[
<xref rid="ref28" ref-type="bibr">28</xref>
] In the present study, the effect of type of luting agent on stress distribution in the FDP's connectors was evaluated and the maximum stresses in the FDP were in the top and bottom of the connector region that was due to stress concentration in the sharp edges. Therefore, connectors are weakest region in FDPs. It has been reported that regardless of types of connectors’ material, it is the weakest part of the FDP and also connectors are more likely to fail.[
<xref rid="ref29" ref-type="bibr">29</xref>
<xref rid="ref30" ref-type="bibr">30</xref>
<xref rid="ref31" ref-type="bibr">31</xref>
<xref rid="ref32" ref-type="bibr">32</xref>
]</p>
<p>In the implant part for all load cases, the stresses were concentrated in the neck of implant due to the rigid connection between implant and bone which was similar to Oruc
<italic>et al</italic>
. study.[
<xref rid="ref27" ref-type="bibr">27</xref>
]</p>
<p>In the present study, all luting agents were not observed and only well-known luting agents were evaluated. In addition, due to high calculation cost for simulation of whole jaw bone, the model of jaw bone was simplified. The achieved results using some assumptions regarding material properties in each layer of the FE model were compared qualitatively with each other in the current study. Therefore, stress distribution patterns may have been different depending on the material properties assigned to each layer of the FE model and the model used in the experiments. Thus, as many
<italic>in vitro</italic>
studies, it is difficult to extrapolate the results of this study directly to the clinical situation and the inherent limitations in this study should be considered.</p>
</sec>
<sec sec-type="conclusion" id="sec1-5">
<title>CONCLUSION</title>
<p>Within the limitations of this study, the following conclusions were drawn:</p>
<p>
<list list-type="order">
<list-item>
<p>The stress distribution depends on the loading conditions.</p>
</list-item>
<list-item>
<p>The highest stress value was observed at oblique load condition.</p>
</list-item>
<list-item>
<p>The maximum von Mises stress was in the palatal side between the cervical region of the implant and supporting bone.</p>
</list-item>
<list-item>
<p>The type of luting agents did not affect stress distribution and stress values at the bone surrounding implant.</p>
</list-item>
<list-item>
<p>The maximum tensile stress and fracture risk occurs in the connector regions.</p>
</list-item>
</list>
</p>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="supported-by">
<p>
<bold>Source of Support:</bold>
Nil.</p>
</fn>
<fn fn-type="conflict">
<p>
<bold>Conflict of Interest:</bold>
None declared.</p>
</fn>
</fn-group>
<ref-list>
<title>REFERENCES</title>
<ref id="ref1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>CF</given-names>
</name>
</person-group>
<article-title>Finite element analysis of a dental implant</article-title>
<source>J Biomed Eng Appl Basis Commun</source>
<year>2003</year>
<volume>15</volume>
<fpage>82</fpage>
<lpage>5</lpage>
</element-citation>
</ref>
<ref id="ref2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karoussis</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Brägger</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Salvi</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Bürgin</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lang</surname>
<given-names>NP</given-names>
</name>
</person-group>
<article-title>Effect of implant design on survival and success rates of titanium oral implants: A 10-year prospective cohort study of the ITI Dental Implant System</article-title>
<source>Clin Oral Implants Res</source>
<year>2004</year>
<volume>15</volume>
<fpage>8</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">14731173</pub-id>
</element-citation>
</ref>
<ref id="ref3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Geng</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>KB</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>GR</given-names>
</name>
</person-group>
<article-title>Application of finite element analysis in implant dentistry: A review of the literature</article-title>
<source>J Prosthet Dent</source>
<year>2001</year>
<volume>85</volume>
<fpage>585</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">11404759</pub-id>
</element-citation>
</ref>
<ref id="ref4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Montes</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Thomé</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Alves</surname>
<given-names>ED</given-names>
</name>
<name>
<surname>Acedo</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>de Souza</surname>
<given-names>JR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Failing factors associated with osseointegrated dental implant loss</article-title>
<source>Implant Dent</source>
<year>2007</year>
<volume>16</volume>
<fpage>404</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">18091169</pub-id>
</element-citation>
</ref>
<ref id="ref5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmgren</surname>
<given-names>EP</given-names>
</name>
<name>
<surname>Seckinger</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Kilgren</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Mante</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Evaluating parameters of osseointegrated dental implants using finite element analysis — A two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction</article-title>
<source>J Oral Implantol</source>
<year>1998</year>
<volume>24</volume>
<fpage>80</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">9835834</pub-id>
</element-citation>
</ref>
<ref id="ref6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fanghänel</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gedrange</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Proff</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Bone quality, quantity and metabolism in terms of dental implantation</article-title>
<source>Biomed Tech (Berl)</source>
<year>2008</year>
<volume>53</volume>
<fpage>215</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">18840063</pub-id>
</element-citation>
</ref>
<ref id="ref7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sevimay</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Usumez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Eskitascioglu</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The influence of various occlusal materials on stresses transferred to implant-supported prostheses and supporting bone: A three-dimensional finite-element study</article-title>
<source>J Biomed Mater Res B Appl Biomater</source>
<year>2005</year>
<volume>73</volume>
<fpage>140</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">15742379</pub-id>
</element-citation>
</ref>
<ref id="ref8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Angelis</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Minnoni</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Vitalone</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Carluccio</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Vadini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Paolantonio</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bond strength evaluation of three self-adhesive luting systems used for cementing composite and porcelain</article-title>
<source>Oper Dent</source>
<year>2011</year>
<volume>36</volume>
<fpage>626</fpage>
<lpage>34.8</lpage>
<pub-id pub-id-type="pmid">21864126</pub-id>
</element-citation>
</ref>
<ref id="ref9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Escribano</surname>
<given-names>N</given-names>
</name>
<name>
<surname>de la Macorra</surname>
<given-names>JC</given-names>
</name>
</person-group>
<article-title>Microtensile bond strength of self-adhesive luting cements to ceramic</article-title>
<source>J Adhes Dent</source>
<year>2006</year>
<volume>8</volume>
<fpage>337</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">17080882</pub-id>
</element-citation>
</ref>
<ref id="ref10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Jager</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pallav</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Feilzer</surname>
<given-names>AJ</given-names>
</name>
</person-group>
<article-title>Finite element analysis model to simulate the behavior of luting cements during setting</article-title>
<source>Dent Mater</source>
<year>2005</year>
<volume>21</volume>
<fpage>1025</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">15923032</pub-id>
</element-citation>
</ref>
<ref id="ref11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sannino</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pozzi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schiavetti</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Barlattani</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Stress distribution on a three-unit implant-supported zirconia framework. A 3D finite element analysis and fatigue test</article-title>
<source>Oral Implantol (Rome)</source>
<year>2012</year>
<volume>5</volume>
<fpage>11</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">23285401</pub-id>
</element-citation>
</ref>
<ref id="ref12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Arola</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>The effects of adhesive type and thickness on stress distribution in molars restored with all-ceramic crowns</article-title>
<source>J Prosthodont</source>
<year>2011</year>
<volume>20</volume>
<fpage>35</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="pmid">21073593</pub-id>
</element-citation>
</ref>
<ref id="ref13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diaz-Arnold</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Vargas</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Haselton</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Current status of luting agents for fixed prosthodontics</article-title>
<source>J Prosthet Dent</source>
<year>1999</year>
<volume>81</volume>
<fpage>135</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="pmid">9922425</pub-id>
</element-citation>
</ref>
<ref id="ref14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>ZC</given-names>
</name>
<name>
<surname>White</surname>
<given-names>SN</given-names>
</name>
</person-group>
<article-title>Mechanical properties of dental luting cements</article-title>
<source>J Prosthet Dent</source>
<year>1999</year>
<volume>81</volume>
<fpage>597</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="pmid">10220666</pub-id>
</element-citation>
</ref>
<ref id="ref15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iranmanesh</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Abedian</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nasri</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Ghasemi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Khazaei</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Stress analysis of different prosthesis materials in implant-supported fixed dental prosthesis using 3D finite element method</article-title>
<source>Dent Hypotheses</source>
<year>2014</year>
<volume>5</volume>
<fpage>109</fpage>
<lpage>14</lpage>
</element-citation>
</ref>
<ref id="ref16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ebadian</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Farzin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Talebi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Khodaeian</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis</article-title>
<source>Dent Res J (Isfahan)</source>
<year>2012</year>
<volume>9</volume>
<fpage>741</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">23559952</pub-id>
</element-citation>
</ref>
<ref id="ref17">
<label>17</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Ash</surname>
<given-names>MM</given-names>
</name>
</person-group>
<article-title>Wheeler's Dental Anatomy, Physiology, and Occlusion</article-title>
<year>2003</year>
<edition>9th ed</edition>
<publisher-loc>Philadelphia</publisher-loc>
<publisher-name>WB Saunders</publisher-name>
</element-citation>
</ref>
<ref id="ref18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jinfeng</surname>
<given-names>PK</given-names>
</name>
</person-group>
<article-title>Development of a new tool for building 3D parametrization parts library based on CATIA software</article-title>
<source>J Mech Sci Technol</source>
<year>1999</year>
<fpage>1</fpage>
</element-citation>
</ref>
<ref id="ref19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iplikçioğlu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Akça</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone</article-title>
<source>J Dent</source>
<year>2002</year>
<volume>30</volume>
<fpage>41</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">11741734</pub-id>
</element-citation>
</ref>
<ref id="ref20">
<label>20</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>O’Brien</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Dental Materials and Their Selection</article-title>
<year>2008</year>
<edition>4th ed</edition>
<publisher-loc>Chicago</publisher-loc>
<publisher-name>Quintessence Publishing</publisher-name>
</element-citation>
</ref>
<ref id="ref21">
<label>21</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Craig</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Ward</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>Craig's restorative dental materials</article-title>
<year>1997</year>
<edition>10th ed</edition>
<publisher-loc>St. Louis</publisher-loc>
<publisher-name>Mosby</publisher-name>
</element-citation>
</ref>
<ref id="ref22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bozkaya</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Muftu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Muftu</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis</article-title>
<source>J Prosthet Dent</source>
<year>2004</year>
<volume>92</volume>
<fpage>523</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="pmid">15583556</pub-id>
</element-citation>
</ref>
<ref id="ref23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Covey</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Kent</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>St Germain</surname>
<given-names>HA</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Koka</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Effects of abutment size and luting cement type on the uniaxial retention force of implant-supported crowns</article-title>
<source>J Prosthet Dent</source>
<year>2000</year>
<volume>83</volume>
<fpage>344</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">10709044</pub-id>
</element-citation>
</ref>
<ref id="ref24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nejatidanesh</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Savabi</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Shahtoosi</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Retention of implant-supported zirconium oxide ceramic restorations using different luting agents</article-title>
<source>Clin Oral Implants Res</source>
<year>2013</year>
<volume>24</volume>
<issue>Suppl A100</issue>
<fpage>20</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="pmid">22092303</pub-id>
</element-citation>
</ref>
<ref id="ref25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nejatidanesh</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Savabi</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Ebrahimi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Savabi</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Retentiveness of implant-supported metal copings using different luting agents</article-title>
<source>Dent Res J (Isfahan)</source>
<year>2012</year>
<volume>9</volume>
<fpage>13</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">22363357</pub-id>
</element-citation>
</ref>
<ref id="ref26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kamposiora</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Papavasiliou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Bayne</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Felton</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Stress concentration in all-ceramic posterior fixed partial dentures</article-title>
<source>Quintessence Int</source>
<year>1996</year>
<volume>27</volume>
<fpage>701</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="pmid">9180408</pub-id>
</element-citation>
</ref>
<ref id="ref27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oruc</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Eraslan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Tukay</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Atay</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Stress analysis of effects of nonrigid connectors on fixed partial dentures with pier abutments</article-title>
<source>J Prosthet Dent</source>
<year>2008</year>
<volume>99</volume>
<fpage>185</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">18319089</pub-id>
</element-citation>
</ref>
<ref id="ref28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Biomechanical interactions in tooth-implant-supported fixed partial dentures with variations in the number of splinted teeth and connector type: A finite element analysis</article-title>
<source>Clin Oral Implants Res</source>
<year>2008</year>
<volume>19</volume>
<fpage>107</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">17944965</pub-id>
</element-citation>
</ref>
<ref id="ref29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Motta</surname>
<given-names>AB</given-names>
</name>
<name>
<surname>Pereira</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>da Cunha</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Duda</surname>
<given-names>FP</given-names>
</name>
</person-group>
<article-title>The influence of the loading mode on the stress distribution on the connector region of metal-ceramic and all-ceramic fixed partial denture</article-title>
<source>Artif Organs</source>
<year>2008</year>
<volume>32</volume>
<fpage>283</fpage>
<lpage>91</lpage>
<pub-id pub-id-type="pmid">18370942</pub-id>
</element-citation>
</ref>
<ref id="ref30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lüthy</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Filser</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Loeffel</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Schumacher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gauckler</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Hammerle</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Strength and reliability of four-unit all-ceramic posterior bridges</article-title>
<source>Dent Mater</source>
<year>2005</year>
<volume>21</volume>
<fpage>930</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="pmid">15923031</pub-id>
</element-citation>
</ref>
<ref id="ref31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>WS</given-names>
</name>
<name>
<surname>Anusavice</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures</article-title>
<source>J Prosthet Dent</source>
<year>2002</year>
<volume>87</volume>
<fpage>536</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">12070517</pub-id>
</element-citation>
</ref>
<ref id="ref32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Romeed</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Fok</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>NH</given-names>
</name>
</person-group>
<article-title>Finite element analysis of fixed partial denture replacement</article-title>
<source>J Oral Rehabil</source>
<year>2004</year>
<volume>31</volume>
<fpage>1208</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">15544658</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B89 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002B89 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4336973
   |texte=   Effect of type of luting agents on stress distribution in the bone surrounding implants supporting a three-unit fixed dental prosthesis: 3D finite element analysis
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25709676" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022