Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0029180 ( Pmc/Corpus ); précédent : 0029179; suivant : 0029181 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep</title>
<author>
<name sortKey="Scarano, Antonio" sort="Scarano, Antonio" uniqKey="Scarano A" first="Antonio" last="Scarano">Antonio Scarano</name>
<affiliation>
<nlm:aff id="I1">Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lorusso, Felice" sort="Lorusso, Felice" uniqKey="Lorusso F" first="Felice" last="Lorusso">Felice Lorusso</name>
<affiliation>
<nlm:aff id="I2">Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ravera, Lorenzo" sort="Ravera, Lorenzo" uniqKey="Ravera L" first="Lorenzo" last="Ravera">Lorenzo Ravera</name>
<affiliation>
<nlm:aff id="I2">Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mortellaro, Carmen" sort="Mortellaro, Carmen" uniqKey="Mortellaro C" first="Carmen" last="Mortellaro">Carmen Mortellaro</name>
<affiliation>
<nlm:aff id="I3">Oral Surgery Unit, University of Eastern Piedmont, Viale Piazza d'Armi 1, 28100 Novara, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Piattelli, Adriano" sort="Piattelli, Adriano" uniqKey="Piattelli A" first="Adriano" last="Piattelli">Adriano Piattelli</name>
<affiliation>
<nlm:aff id="I2">Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27413746</idno>
<idno type="pmc">4931071</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931071</idno>
<idno type="RBID">PMC:4931071</idno>
<idno type="doi">10.1155/2016/4086870</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">002918</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002918</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep</title>
<author>
<name sortKey="Scarano, Antonio" sort="Scarano, Antonio" uniqKey="Scarano A" first="Antonio" last="Scarano">Antonio Scarano</name>
<affiliation>
<nlm:aff id="I1">Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lorusso, Felice" sort="Lorusso, Felice" uniqKey="Lorusso F" first="Felice" last="Lorusso">Felice Lorusso</name>
<affiliation>
<nlm:aff id="I2">Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ravera, Lorenzo" sort="Ravera, Lorenzo" uniqKey="Ravera L" first="Lorenzo" last="Ravera">Lorenzo Ravera</name>
<affiliation>
<nlm:aff id="I2">Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mortellaro, Carmen" sort="Mortellaro, Carmen" uniqKey="Mortellaro C" first="Carmen" last="Mortellaro">Carmen Mortellaro</name>
<affiliation>
<nlm:aff id="I3">Oral Surgery Unit, University of Eastern Piedmont, Viale Piazza d'Armi 1, 28100 Novara, Italy</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Piattelli, Adriano" sort="Piattelli, Adriano" uniqKey="Piattelli A" first="Adriano" last="Piattelli">Adriano Piattelli</name>
<affiliation>
<nlm:aff id="I2">Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BioMed Research International</title>
<idno type="ISSN">2314-6133</idno>
<idno type="eISSN">2314-6141</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<italic>Background</italic>
. Oral rehabilitation of partially fully edentulous patients with dental implants has become a routine procedure in clinical practice. In a site with a lack of bone GBR is a surgical procedure that provides an augmentation in terms of volume for the insertion of dental implants.
<italic> Materials and Methods</italic>
. In the iliac crest of six sheep 4 defects were created where an implant was inserted, three of them with different biomaterials and a control site. All animals were sacrificed after a 4-month healing period. All specimens were processed and analyzed with histomorphometry. Statistical evaluation was done to evaluate percentage of bone defect filled by new bone.
<italic> Results</italic>
. All experimental groups showed an increase of the new bone. Higher and highly statistically significant differences were found in the percentages of bone defect filled by new bone in group filled with corticocancellous 250–1000 microns particulate porcine bone mix.
<italic> Conclusions</italic>
. This study demonstrates that particulate porcine bone mix and porcine corticocancellous collagenate prehydrated bone mix when used as scaffold are able to induce bone regeneration. Moreover, these data suggest that these biomaterials have higher biocompatibility and are capable of inducing faster and greater bone formation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adell, R" uniqKey="Adell R">R. Adell</name>
</author>
<author>
<name sortKey="Eriksson, B" uniqKey="Eriksson B">B. Eriksson</name>
</author>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U. Lekholm</name>
</author>
<author>
<name sortKey="Br Nemark, P I" uniqKey="Br Nemark P">P. I. Brånemark</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T. Jemt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T. Albrektsson</name>
</author>
<author>
<name sortKey="Bergman, B" uniqKey="Bergman B">B. Bergman</name>
</author>
<author>
<name sortKey="Folmer, T" uniqKey="Folmer T">T. Folmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Becker, W" uniqKey="Becker W">W. Becker</name>
</author>
<author>
<name sortKey="Becker, B E" uniqKey="Becker B">B. E. Becker</name>
</author>
<author>
<name sortKey="Handlesman, M" uniqKey="Handlesman M">M. Handlesman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schenk, R K" uniqKey="Schenk R">R. K. Schenk</name>
</author>
<author>
<name sortKey="Buser, D" uniqKey="Buser D">D. Buser</name>
</author>
<author>
<name sortKey="Hardwick, W R" uniqKey="Hardwick W">W. R. Hardwick</name>
</author>
<author>
<name sortKey="Dahlin, C" uniqKey="Dahlin C">C. Dahlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Botticelli, D" uniqKey="Botticelli D">D. Botticelli</name>
</author>
<author>
<name sortKey="Berglundh, T" uniqKey="Berglundh T">T. Berglundh</name>
</author>
<author>
<name sortKey="Lindhe, J" uniqKey="Lindhe J">J. Lindhe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
<author>
<name sortKey="Perrotti, V" uniqKey="Perrotti V">V. Perrotti</name>
</author>
<author>
<name sortKey="Manzon, L" uniqKey="Manzon L">L. Manzon</name>
</author>
<author>
<name sortKey="Iezzi, G" uniqKey="Iezzi G">G. Iezzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, J E" uniqKey="Davies J">J. E. Davies</name>
</author>
<author>
<name sortKey="Matta, R" uniqKey="Matta R">R. Matta</name>
</author>
<author>
<name sortKey="Mendes, V C" uniqKey="Mendes V">V. C. Mendes</name>
</author>
<author>
<name sortKey="Perri De Carvalho, P S" uniqKey="Perri De Carvalho P">P. S. Perri de Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Testori, T" uniqKey="Testori T">T. Testori</name>
</author>
<author>
<name sortKey="Iezzi, G" uniqKey="Iezzi G">G. Iezzi</name>
</author>
<author>
<name sortKey="Manzon, L" uniqKey="Manzon L">L. Manzon</name>
</author>
<author>
<name sortKey="Fratto, G" uniqKey="Fratto G">G. Fratto</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
<author>
<name sortKey="Weinstein, R L" uniqKey="Weinstein R">R. L. Weinstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Annibali, S" uniqKey="Annibali S">S. Annibali</name>
</author>
<author>
<name sortKey="Quaranta, R" uniqKey="Quaranta R">R. Quaranta</name>
</author>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Carinci, F" uniqKey="Carinci F">F. Carinci</name>
</author>
<author>
<name sortKey="Quaranta, A" uniqKey="Quaranta A">A. Quaranta</name>
</author>
<author>
<name sortKey="Iezzi, G" uniqKey="Iezzi G">G. Iezzi</name>
</author>
<author>
<name sortKey="Piattelli, M" uniqKey="Piattelli M">M. Piattelli</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
<author>
<name sortKey="Pecora, G" uniqKey="Pecora G">G. Pecora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravaglioli, A" uniqKey="Ravaglioli A">A. Ravaglioli</name>
</author>
<author>
<name sortKey="Krajewski, A" uniqKey="Krajewski A">A. Krajewski</name>
</author>
<author>
<name sortKey="Celotti, G C" uniqKey="Celotti G">G. C. Celotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, M L C" uniqKey="Anderson M">M. L. C. Anderson</name>
</author>
<author>
<name sortKey="Dhert, W J A" uniqKey="Dhert W">W. J. A. Dhert</name>
</author>
<author>
<name sortKey="De Bruijn, J D" uniqKey="De Bruijn J">J. D. de Bruijn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Newman, E" uniqKey="Newman E">E. Newman</name>
</author>
<author>
<name sortKey="Turner, A S" uniqKey="Turner A">A. S. Turner</name>
</author>
<author>
<name sortKey="Wark, J D" uniqKey="Wark J">J. D. Wark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eitel, F" uniqKey="Eitel F">F. Eitel</name>
</author>
<author>
<name sortKey="Klapp, F" uniqKey="Klapp F">F. Klapp</name>
</author>
<author>
<name sortKey="Jacobson, W" uniqKey="Jacobson W">W. Jacobson</name>
</author>
<author>
<name sortKey="Schweiberer, L" uniqKey="Schweiberer L">L. Schweiberer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pobloth, A M" uniqKey="Pobloth A">A. M. Pobloth</name>
</author>
<author>
<name sortKey="Johnson, K A" uniqKey="Johnson K">K. A. Johnson</name>
</author>
<author>
<name sortKey="Schell, H" uniqKey="Schell H">H. Schell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kohal, R J" uniqKey="Kohal R">R. J. Kohal</name>
</author>
<author>
<name sortKey="Mellas, P" uniqKey="Mellas P">P. Mellas</name>
</author>
<author>
<name sortKey="Hurzeler, M B" uniqKey="Hurzeler M">M. B. Hürzeler</name>
</author>
<author>
<name sortKey="Trejo, P M" uniqKey="Trejo P">P. M. Trejo</name>
</author>
<author>
<name sortKey="Morrison, E" uniqKey="Morrison E">E. Morrison</name>
</author>
<author>
<name sortKey="Caffesse, R G" uniqKey="Caffesse R">R. G. Caffesse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calvo Guirado, J L" uniqKey="Calvo Guirado J">J. L. Calvo-Guirado</name>
</author>
<author>
<name sortKey="Gomez Moreno, G" uniqKey="Gomez Moreno G">G. Gomez-Moreno</name>
</author>
<author>
<name sortKey="Guardia, J" uniqKey="Guardia J">J. Guardia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Calvo Guirado, J L" uniqKey="Calvo Guirado J">J. L. Calvo-Guirado</name>
</author>
<author>
<name sortKey="G Mez Moreno, G" uniqKey="G Mez Moreno G">G. Gómez-Moreno</name>
</author>
<author>
<name sortKey="Guardia, J" uniqKey="Guardia J">J. Guardia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Carinci, F" uniqKey="Carinci F">F. Carinci</name>
</author>
<author>
<name sortKey="Assenza, B" uniqKey="Assenza B">B. Assenza</name>
</author>
<author>
<name sortKey="Piattelli, M" uniqKey="Piattelli M">M. Piattelli</name>
</author>
<author>
<name sortKey="Murmura, G" uniqKey="Murmura G">G. Murmura</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
<author>
<name sortKey="Assenza, B" uniqKey="Assenza B">B. Assenza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orsini, G" uniqKey="Orsini G">G. Orsini</name>
</author>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Degidi, M" uniqKey="Degidi M">M. Degidi</name>
</author>
<author>
<name sortKey="Caputi, S" uniqKey="Caputi S">S. Caputi</name>
</author>
<author>
<name sortKey="Iezzi, G" uniqKey="Iezzi G">G. Iezzi</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akimoto, K" uniqKey="Akimoto K">K. Akimoto</name>
</author>
<author>
<name sortKey="Becker, W" uniqKey="Becker W">W. Becker</name>
</author>
<author>
<name sortKey="Donath, K" uniqKey="Donath K">K. Donath</name>
</author>
<author>
<name sortKey="Becker, B E" uniqKey="Becker B">B. E. Becker</name>
</author>
<author>
<name sortKey="Sanchez, R" uniqKey="Sanchez R">R. Sanchez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veis, A" uniqKey="Veis A">A. Veis</name>
</author>
<author>
<name sortKey="Kougias, K" uniqKey="Kougias K">K. Kougias</name>
</author>
<author>
<name sortKey="Tsirlis, A" uniqKey="Tsirlis A">A. Tsirlis</name>
</author>
<author>
<name sortKey="Parisis, N" uniqKey="Parisis N">N. Parisis</name>
</author>
<author>
<name sortKey="Papadopoulou, C" uniqKey="Papadopoulou C">C. Papadopoulou</name>
</author>
<author>
<name sortKey="Romanos, G E" uniqKey="Romanos G">G. E. Romanos</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Biomed Res Int</journal-id>
<journal-id journal-id-type="iso-abbrev">Biomed Res Int</journal-id>
<journal-id journal-id-type="publisher-id">BMRI</journal-id>
<journal-title-group>
<journal-title>BioMed Research International</journal-title>
</journal-title-group>
<issn pub-type="ppub">2314-6133</issn>
<issn pub-type="epub">2314-6141</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27413746</article-id>
<article-id pub-id-type="pmc">4931071</article-id>
<article-id pub-id-type="doi">10.1155/2016/4086870</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Bone Regeneration in Iliac Crestal Defects: An Experimental Study on Sheep</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0001-5528-0853</contrib-id>
<name>
<surname>Scarano</surname>
<given-names>Antonio</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="cor1">
<sup>*</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lorusso</surname>
<given-names>Felice</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ravera</surname>
<given-names>Lorenzo</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mortellaro</surname>
<given-names>Carmen</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Piattelli</surname>
<given-names>Adriano</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</aff>
<aff id="I2">
<sup>2</sup>
Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy</aff>
<aff id="I3">
<sup>3</sup>
Oral Surgery Unit, University of Eastern Piedmont, Viale Piazza d'Armi 1, 28100 Novara, Italy</aff>
<author-notes>
<corresp id="cor1">*Antonio Scarano:
<email>ascarano@unich.it</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Seong-Hun Kim</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>5</month>
<year>2016</year>
</pub-date>
<volume>2016</volume>
<elocation-id>4086870</elocation-id>
<history>
<date date-type="received">
<day>18</day>
<month>3</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>5</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Antonio Scarano et al.</copyright-statement>
<copyright-year>2016</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>
<italic>Background</italic>
. Oral rehabilitation of partially fully edentulous patients with dental implants has become a routine procedure in clinical practice. In a site with a lack of bone GBR is a surgical procedure that provides an augmentation in terms of volume for the insertion of dental implants.
<italic> Materials and Methods</italic>
. In the iliac crest of six sheep 4 defects were created where an implant was inserted, three of them with different biomaterials and a control site. All animals were sacrificed after a 4-month healing period. All specimens were processed and analyzed with histomorphometry. Statistical evaluation was done to evaluate percentage of bone defect filled by new bone.
<italic> Results</italic>
. All experimental groups showed an increase of the new bone. Higher and highly statistically significant differences were found in the percentages of bone defect filled by new bone in group filled with corticocancellous 250–1000 microns particulate porcine bone mix.
<italic> Conclusions</italic>
. This study demonstrates that particulate porcine bone mix and porcine corticocancellous collagenate prehydrated bone mix when used as scaffold are able to induce bone regeneration. Moreover, these data suggest that these biomaterials have higher biocompatibility and are capable of inducing faster and greater bone formation.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>As seen by Adell and Albrektsson et al., implant therapy as restoring of edentulous sites has gained popularity in modern dentistry [
<xref rid="B1" ref-type="bibr">1</xref>
,
<xref rid="B2" ref-type="bibr">2</xref>
]. Successful implant placement requires adequate alveolar ridge dimensions, which are essential to house the implant and provide aesthetics and function. If the implant site presents a lack of bone, a portion of the implant perimeter and surface will not be covered by bone, leading, possibly, to a failure of the implant. One technique of ridge augmentation is Guided Bone Regeneration (GBR). GBR is a surgical procedure that uses barrier membranes with or without particulate bone grafts or/and bone substitutes. Becker et al. described that osseous regeneration by GBR depends on the migration of pluripotential and osteogenic cells (e.g., osteoblasts derived from the periosteum and/or adjacent bone and/or bone marrow) to the bone defect site and exclusion of cells impeding bone formation (e.g., epithelial cells and fibroblasts) [
<xref rid="B3" ref-type="bibr">3</xref>
]. As seen by Schenk et al., to ensure successful GBR, four principles need to be met: exclusion of epithelium and connective tissue, space maintenance, stability of the fibrin clot, and primary wound closure [
<xref rid="B4" ref-type="bibr">4</xref>
].</p>
<p>Several types of membranes have been proposed and used in GBR techniques. The membrane can be synthetic, either with or without a titanium reinforcement to improve its space-making capabilities, or biologic, resorbable, not needing a second surgical step for removal. Titanium membranes have also been successfully used. Since resorbable membranes have a low space-making capability, it is necessary to use a biomaterial underneath them, to maintain space and to help the bone regeneration capabilities of the site. As reported by Botticelli et al., several biomaterials have been used [
<xref rid="B5" ref-type="bibr">5</xref>
]. Xenografts are, probably, the most commonly used bone substitutes as seen by the group of Scarano et al. [
<xref rid="B6" ref-type="bibr">6</xref>
].</p>
<p>To evaluate the different potentially regenerating biomaterials, a histological analysis to find the percentage of the bone fill of the defect (partial or complete) and the percentage of the contact between the newly formed bone and the surface of the implant is necessary. The selection of an appropriate grafting material is one of the factors that is important in achieving adequate bone formation following bone regeneration grafting.</p>
<p>Bone regeneration can be accomplished through three different mechanisms: osteogenesis, osteoinduction, and osteoconduction. The primary types of bone graft material are autogenous bone, allografts, xenografts, and alloplasts. All grafting materials have one or more of these three mechanisms of action. The mechanisms by which the grafts act are normally determined by their origin and composition. Autogenous bone harvested from the patient forms new bone by the abovementioned mechanisms. Davies et al. said that the improvement of successful methods for the induction of bone regeneration is a continuous challenge in dentistry [
<xref rid="B7" ref-type="bibr">7</xref>
]. In recent years as seen by the group of Testori et al. the use of biomaterials has been adopted to guide and favor bone regeneration due to their capability to mimic the natural environment of the extracellular matrix [
<xref rid="B8" ref-type="bibr">8</xref>
].</p>
<p>The aim of the present study was to determine the in vivo tissue responses and gap healing patterns around dental implants treated with corticocancellous porcine bone blocks, collagenate corticocancellous porcine bone versus only membrane in a standardized sheep peri-implant gap-defect model.</p>
</sec>
<sec id="sec2">
<title>2. Materials and Methods</title>
<p>Six sheep (mean age 2 years) were used in the present study. The procedures were approved by the Ethical Committee of the Faculty of Veterinary Sciences of the University of Teramo, Italy (Prot. 06/2012/CEISA/PROG31), and this study was performed according to the European community guidelines (E.D. 2010/63/UE).</p>
<p>In each iliac crest 4 defects (7 mm wide and 4 mm deep) were created (Figures
<xref ref-type="fig" rid="fig1">1(a)</xref>
and
<xref ref-type="fig" rid="fig1">1(b)</xref>
). In each defect a 4 × 11 mm implant was inserted (Implacil De Bortoli, Sao Paulo, Brazil). The defects were then filled with
<list list-type="roman-lower">
<list-item>
<p>control, only membrane (Evolution, Tecnoss, Varazze (Torino), Italy);</p>
</list-item>
<list-item>
<p>250–1000 micron corticocancellous particulate porcine bone mix (Gen-Os, Tecnoss, Varazze (Torino), Italy) + resorbable equine pericardium membrane (Evolution, Tecnoss, Varazze (Torino), Italy) (test 1);</p>
</list-item>
<list-item>
<p>cancellous equine bone blocks (SP-Block, Tecnoss, Varazze (Torino), Italy) + resorbable membrane (Evolution, Tecnoss, Varazze (Torino), Italy) (test 2);</p>
</list-item>
<list-item>
<p>prehydrated collagenate corticocancellous porcine bone mix (90% granulated mix, 10% collagen gel) (MP3, Tecnoss, Varazze (Torino), Italy) + membrane (Evolution, Tecnoss, Varazze (Torino), Italy) (test 3).</p>
</list-item>
</list>
</p>
<p> All the animals were sacrificed after a 4-month healing period.</p>
<sec id="sec2.1">
<title>2.1. Statistical Analysis</title>
<p>Differences between groups of treatment were analyzed by one-way analysis of variance (ANOVA) followed by Fisher's Protected Least Significant Difference (PLSD) post hoc test. A
<italic>P</italic>
value < 0.05 was considered statistically significant. Statistical analysis was performed using the StatView software from SAS Institute.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<sec id="sec3.1">
<title>3.1. Control (Only Membrane)</title>
<p>The defects were only partially filled by newly formed trabecular bone, with wide marrow spaces (
<xref ref-type="fig" rid="fig2">Figure 2(a)</xref>
). Only in a few areas active osteoblasts were present. In the portions where the defect was not filled by newly formed bone, no contact with the implant surface was observed (
<xref ref-type="fig" rid="fig2">Figure 2(a)</xref>
). Histomorphometry showed soft tissues representing 65.1%  ±  6.1% and newly formed bone 15.1%  ±  1.9%; no residual biomaterial was present and the marrow spaces are 20.7 ± 5.3%.</p>
</sec>
<sec id="sec3.2">
<title>3.2. Test 1 (250–1000 Micron Corticocancellous Particulate Porcine Bone Mix)</title>
<p>The defect was completely filled by newly formed trabecular bone (
<xref ref-type="fig" rid="fig3">Figure 3(a)</xref>
). Wide marrow spaces were present. Newly formed bone was observed over the coronal portion of the implant. The newly formed bone was in close contact with the implant surface, with no gaps at the interface (
<xref ref-type="fig" rid="fig3">Figure 3(b)</xref>
). In several areas, the biomaterial particles were bridged by the newly formed bone. Inside the central portion of the biomaterial particles it was possible to see the presence of newly formed bone. A few Haversian systems were present. Histomorphometry showed soft tissues representing 30.1%  ±  6.1%, newly formed bone 31.1%  ±  1.9%, the residual biomaterial particles represented 23.4%  ±  2.8%, and the marrow spaces 22.7 ± 4.3%.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Test 2 (Cancellous Equine Bone Blocks)</title>
<p>The defect was only partially filled by the newly formed bone (
<xref ref-type="fig" rid="fig4">Figure 4(a)</xref>
). Only a small quantity of residual biomaterial particles was present. The most coronal portion of the defect was filled by fibrous, connective tissue in contact with the implant surface. No bone in contact with the implant surface was observed in this area (
<xref ref-type="fig" rid="fig4">Figure 4(b)</xref>
). Histomorphometry showed soft tissues representing 55.1%  ±  6.1%, newly formed bone 23.1%  ±  1.9%, the residual biomaterial particles represented 33.4%  ±  5.8%, and the marrow spaces 12.7 ± 5.3%.</p>
</sec>
<sec id="sec3.4">
<title>3.4. Test 3 (Prehydrated Collagenate Corticocancellous Porcine Bone Mix)</title>
<p>The defects were filled by newly formed trabecular bone, with wide marrow spaces and large osteocyte lacunae (
<xref ref-type="fig" rid="fig5">Figure 5(a)</xref>
). All the biomaterial particles were completely surrounded by the newly formed bone, and, in some areas, biomaterial particles were bridged by this newly formed bone. In many areas it was possible to observe rims of osteoblasts, actively depositing osteoid matrix. The newly formed bone was in close and tight contact with the implant surface with no gaps at the interface (
<xref ref-type="fig" rid="fig5">Figure 5(b)</xref>
). No inflammatory cell infiltrate was present. Neither foreign body reaction cells nor multinucleated giant cells were observed. Histomorphometry showed soft tissues representing 47.1%  ±  6.4%, newly formed bone 26.1%  ±  2.1%, the residual biomaterial particles represented 21.2%  ±  2.1%, and the marrow spaces 14.7 ± 5.3%.</p>
</sec>
<sec id="sec3.5">
<title>3.5. Statistical Analysis</title>
<p>All experimental groups showed an increase of new bone. Higher and highly statistically significant differences were found in the percentages of bone defect filled by new bone in control group versus test groups 1, 2, and 3, test 1 versus 3. No statistically significant differences were found in the percentages of bone defect filling in test group 2 versus 3 (
<xref ref-type="fig" rid="fig6">Figure 6</xref>
).</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>The improvement of successful methods for the induction of bone regeneration represents a continuous challenge in dentistry. Recently Annibali et al. described that the use of biomaterials has been adopted to guide and favor bone regeneration due to their capability to mimic the natural environment of the extracellular matrix [
<xref rid="B9" ref-type="bibr">9</xref>
]. Scarano et al. evidenced that a lack of horizontal and/or vertical bone in implant sites may cause major clinical problems and needs to be corrected prior to or at the moment of implant placement [
<xref rid="B10" ref-type="bibr">10</xref>
].</p>
<p>The same authors said that, to regenerate enough bone for successful implant placement, a ridge augmentation technique is often required [
<xref rid="B11" ref-type="bibr">11</xref>
]. Different animal models have been used for the study of bone regeneration. In the present study a sheep model was selected because mature sheep possess a bodyweight comparable to adult humans and long bone dimensions, enabling the use of human dental implants, and were used in a preceding histological study. As seen by Ravaglioli et al. since no major differences in mineral composition are evident and both metabolic and bone remodelling rates are akin to humans [
<xref rid="B12" ref-type="bibr">12</xref>
], so Anderson and Newman observed that sheep could be considered a valid model for human bone turnover and remodelling activity [
<xref rid="B13" ref-type="bibr">13</xref>
,
<xref rid="B14" ref-type="bibr">14</xref>
] and, as Eitel et al. said, it shows comparable bone healing potential and bone blood supply [
<xref rid="B15" ref-type="bibr">15</xref>
]. Pobloth evidenced that sheep bone, however, represents human bone physiology and anatomy much closer in adult animals [
<xref rid="B16" ref-type="bibr">16</xref>
]. Thus, in this study we aimed to further characterize bone regeneration induced by corticocancellous porcine bone, porcine bone blocks, and porcine corticocancellous collagenate versus only membrane in a standardized sheep peri-implant gap-defect model by using histological parameters. We evaluated the percentages of residual biomaterial, new bone formation, and marrow space. Moreover, a qualitative description of the histomorphology of the iliac crest defect was provided, including the characterization of newly formed bone, presence of inflammatory cell infiltrate, and the position of bone formation within the defect.</p>
<p>The results showed that although the percentage of residual biomaterial was greater in group test 2, the percentage of formation of new bone and marrow space was greater in group 1. The results in test 3 were quite similar to test group 1. Very soft tissues were observed in the control group. Thus, while the control group had a higher percentage of soft tissues than the other three groups, the percentage of bone defect filled was higher in group 1 followed by groups 3 and 2, respectively.</p>
<p>When analyzing the residual biomaterials, we found more in group 2. When analyzing the new bone, in the control group, we found bone formed only near the bony walls of the defect. These results show that particles of corticocancellous porcine bone 250–1000 microns particulate mix (CCPB) favor bone formation with a result similar to those obtained with prehydrated collagenate corticocancellous porcine bone mix (PCCPB). Another consideration is that the membrane alone used to protect the defect is not able to support the bone regeneration. Probably because it is a less effective curtain. All biomaterials used in the present study were also characterized by the presence of bone formation and absence of inflammatory cell infiltrates. However, the defect treated by membrane alone was characterized by the presence of soft tissues and a little immature bone.</p>
<p>In this study an adequate animal model was used; in fact animal models play an indispensable role in testing bone substitute biomaterials for understanding their osteoconductivity, biocompatibility, mechanical properties, degradation, and interaction with host tissues. The results of this histomorphometric study demonstrated the beneficial effect of CCPB and PCCPB for bone regeneration in surgically created bone defects around implants in sheep.</p>
<p>In this study, all defects in the four groups were covered with resorbable collagen barriers to provide standardization. Kohal et al. described that usage of barrier membranes (resorbable or nonresorbable) for these types of defects can enhance the BIC values by preventing ingrowth of soft tissue [
<xref rid="B17" ref-type="bibr">17</xref>
]. As said by Calvo-Guirado et al. a number of animal experiments and clinical trials have reported successful results with porcine bone grafts in peri-implant bone defects [
<xref rid="B18" ref-type="bibr">18</xref>
]. The same authors reported that the use of porcine bone as a grafting material yielded results similar to those obtained with autogenous bone transplants in terms of bone regeneration in these types of defects [
<xref rid="B19" ref-type="bibr">19</xref>
]. Scarano et al. in two different studies reported that porcine bone showed osteoconductive potential when placed in large self-contained defects in the human mandible [
<xref rid="B20" ref-type="bibr">20</xref>
] and sinus lifting [
<xref rid="B21" ref-type="bibr">21</xref>
], the graft particles becoming surrounded by newly formed bone. Those results suggest possible future ultrastructural analyses under transmission electron microscopy to characterize the details of bone-biomaterial interface [
<xref rid="B22" ref-type="bibr">22</xref>
].</p>
<p>The findings of this study also revealed new bone formation around the graft particles within the defects after four months of healing. The mean percentage area of total hard tissue in the CCPB group was significantly higher than in the other three groups (
<italic>P</italic>
< 0.001) (7 mm wide and 4 mm deep).</p>
<p>Akimoto et al. have reported that the addition of an anorganic bone graft did not improve the quantity of newly formed bone [
<xref rid="B23" ref-type="bibr">23</xref>
], while, on the other hand, Veis et al. reported many studies in which the use of grafts helped to increase the bone-to-implant contact [
<xref rid="B24" ref-type="bibr">24</xref>
]. The function of the graft is not only to improve the space-making capabilities of the membrane, but also to provide additional points on which osteoblasts can start forming new bone. We have shown that CCPB and PCCPB promote bone regeneration in large defects (7 mm wide and 4 mm deep) around SLA-surfaced dental implants.</p>
<p>In conclusion, this study demonstrates that CCPB and PCCPB when used as scaffolds induce bone regeneration. Moreover, these data suggest that these biomaterials have a high biocompatibility and are capable of inducing faster and greater bone formation.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work was partially supported by the Ministry of Education, University, and Research (M.I.U.R.), Rome, Italy.</p>
</ack>
<sec>
<title>Competing Interests</title>
<p>The authors declare that they have no competing interests.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adell</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eriksson</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lekholm</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Brånemark</surname>
<given-names>P. I.</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws</article-title>
<source>
<italic>The International Journal of Oral & Maxillofacial Implants</italic>
</source>
<year>1990</year>
<volume>5</volume>
<issue>4</issue>
<fpage>347</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="other">2-s2.0-0025583364</pub-id>
<pub-id pub-id-type="pmid">2094653</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrektsson</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bergman</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Folmer</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>A multicenter study of osseointegrated oral implants</article-title>
<source>
<italic>The Journal of Prosthetic Dentistry</italic>
</source>
<year>1988</year>
<volume>60, article 75</volume>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Becker</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Handlesman</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bone formation at dehisced dental implant sites treated with implant augmentation material: a pilot study in dogs</article-title>
<source>
<italic>The International Journal of Periodontics & Restorative Dentistry</italic>
</source>
<year>1990</year>
<volume>10</volume>
<issue>2</issue>
<fpage>92</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="other">2-s2.0-0025654352</pub-id>
<pub-id pub-id-type="pmid">2084059</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schenk</surname>
<given-names>R. K.</given-names>
</name>
<name>
<surname>Buser</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hardwick</surname>
<given-names>W. R.</given-names>
</name>
<name>
<surname>Dahlin</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible</article-title>
<source>
<italic>The International Journal of Oral & Maxillofacial Implants</italic>
</source>
<year>1994</year>
<volume>9</volume>
<issue>1</issue>
<fpage>13</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="other">2-s2.0-0028313251</pub-id>
<pub-id pub-id-type="pmid">8150509</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Botticelli</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Berglundh</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Lindhe</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The influence of a biomaterial on the closure of a marginal hard tissue defect adjacent to implants: an experimental study in the dog</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2004</year>
<volume>15</volume>
<issue>3</issue>
<fpage>285</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="doi">10.1046/j.1600-0501.2003.01008.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-3042580183</pub-id>
<pub-id pub-id-type="pmid">15142090</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Perrotti</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Manzon</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Iezzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Maxillary sinus augmentation in humans using cortical porcine bone: a histological and histomorphometrical evaluation after 4 and 6 months</article-title>
<source>
<italic>Clinical Implant Dentistry and Related Research</italic>
</source>
<year>2011</year>
<volume>13</volume>
<issue>1</issue>
<fpage>13</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1111/j.1708-8208.2009.00176.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-79551531347</pub-id>
<pub-id pub-id-type="pmid">19438954</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Matta</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mendes</surname>
<given-names>V. C.</given-names>
</name>
<name>
<surname>Perri de Carvalho</surname>
<given-names>P. S.</given-names>
</name>
</person-group>
<article-title>Development, characterization and clinical use of a biodegradable composite scaffold for bone engineering in oro-maxillo-facial surgery</article-title>
<source>
<italic>Organogenesis</italic>
</source>
<year>2010</year>
<volume>6</volume>
<issue>3</issue>
<fpage>161</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="doi">10.4161/org.6.3.12392</pub-id>
<pub-id pub-id-type="other">2-s2.0-77956403010</pub-id>
<pub-id pub-id-type="pmid">21197218</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Testori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Iezzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Manzon</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fratto</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Weinstein</surname>
<given-names>R. L.</given-names>
</name>
</person-group>
<article-title>High temperature-treated bovine porous hydroxyapatite in sinus augmentation procedures: a case report</article-title>
<source>
<italic>The International Journal of Periodontics & Restorative Dentistry</italic>
</source>
<year>2012</year>
<volume>32</volume>
<issue>3</issue>
<fpage>295</fpage>
<lpage>301</lpage>
<pub-id pub-id-type="other">2-s2.0-84864873115</pub-id>
<pub-id pub-id-type="pmid">22408774</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Annibali</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Quaranta</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Histomorphometric evaluation of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial “critical size” defect</article-title>
<source>
<italic>Journal of Stem Cell Research & Therapy</italic>
</source>
<year>2016</year>
<volume>6, article 322</volume>
<pub-id pub-id-type="doi">10.4172/2157-7633.1000322</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carinci</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Quaranta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Iezzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Correlation between implant stability quotient (ISQ) with clinical and histological aspects of dental implants removed for mobility</article-title>
<source>
<italic>International Journal of Immunopathology and Pharmacology</italic>
</source>
<year>2007</year>
<volume>20</volume>
<issue>1, supplement 1</issue>
<fpage>33</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="other">2-s2.0-41649098563</pub-id>
<pub-id pub-id-type="pmid">17897499</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pecora</surname>
<given-names>G.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A histomorphometric comparison of anorganic bovine bone (ABB) and calcium sulfate (CaS) used in sinus augmentation procedures: a study in sheep</article-title>
<source>
<italic>Journal of Osseointegration</italic>
</source>
<year>2010</year>
<volume>2</volume>
<issue>2</issue>
<fpage>38</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="other">2-s2.0-84873909664</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ravaglioli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Krajewski</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Celotti</surname>
<given-names>G. C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mineral evolution of bone</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>1996</year>
<volume>17</volume>
<issue>6</issue>
<fpage>617</fpage>
<lpage>622</lpage>
<pub-id pub-id-type="doi">10.1016/0142-9612(96)88712-6</pub-id>
<pub-id pub-id-type="other">2-s2.0-0030111137</pub-id>
<pub-id pub-id-type="pmid">8652780</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>M. L. C.</given-names>
</name>
<name>
<surname>Dhert</surname>
<given-names>W. J. A.</given-names>
</name>
<name>
<surname>de Bruijn</surname>
<given-names>J. D.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Critical size defect in the goat's os ilium. A model to evaluate bone grafts and substitutes</article-title>
<source>
<italic>Clinical Orthopaedics and Related Research</italic>
</source>
<year>1999</year>
<issue>364</issue>
<fpage>231</fpage>
<lpage>239</lpage>
<pub-id pub-id-type="other">2-s2.0-0032855453</pub-id>
<pub-id pub-id-type="pmid">10416414</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Newman</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Wark</surname>
<given-names>J. D.</given-names>
</name>
</person-group>
<article-title>The potential of sheep for the study of osteopenia: current status and comparison with other animal models</article-title>
<source>
<italic>Bone</italic>
</source>
<year>1995</year>
<volume>16</volume>
<issue>4, supplement</issue>
<fpage>S277</fpage>
<lpage>S284</lpage>
<pub-id pub-id-type="doi">10.1016/s8756-3282(95)80121-9</pub-id>
<pub-id pub-id-type="other">2-s2.0-0029147322</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eitel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Klapp</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Schweiberer</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Bone regeneration in animals and in man—a contribution to understanding the relative value of animal experiments to human pathophysiology</article-title>
<source>
<italic>Archives of Orthopaedic and Traumatic Surgery</italic>
</source>
<year>1981</year>
<volume>99</volume>
<issue>1</issue>
<fpage>59</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1007/bf00400911</pub-id>
<pub-id pub-id-type="other">2-s2.0-0019865454</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pobloth</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Schell</surname>
<given-names>H.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Establishment of a preclinical ovine screening model for the investigation of bone tissue engineering strategies in cancellous and cortical bone defects</article-title>
<source>
<italic>BMC Musculoskeletal Disorders</italic>
</source>
<year>2016</year>
<volume>17</volume>
<issue>1, article 111</issue>
<pub-id pub-id-type="doi">10.1186/s12891-016-0964-4</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kohal</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Mellas</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hürzeler</surname>
<given-names>M. B.</given-names>
</name>
<name>
<surname>Trejo</surname>
<given-names>P. M.</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Caffesse</surname>
<given-names>R. G.</given-names>
</name>
</person-group>
<article-title>The effects of guided bone regeneration and grafting on implants placed into immediate extraction sockets. An experimental study in dogs</article-title>
<source>
<italic>Journal of Periodontology</italic>
</source>
<year>1998</year>
<volume>69</volume>
<issue>8</issue>
<fpage>927</fpage>
<lpage>937</lpage>
<pub-id pub-id-type="doi">10.1902/jop.1998.69.8.927</pub-id>
<pub-id pub-id-type="other">2-s2.0-0032135206</pub-id>
<pub-id pub-id-type="pmid">9736376</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calvo-Guirado</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Gomez-Moreno</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Guardia</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biological response to porcine xenograft implants: an experimental study in rabbits</article-title>
<source>
<italic>Implant Dentistry</italic>
</source>
<year>2012</year>
<volume>21</volume>
<issue>2</issue>
<fpage>112</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1097/ID.0b013e3182425991</pub-id>
<pub-id pub-id-type="pmid">22440978</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Calvo-Guirado</surname>
<given-names>J. L.</given-names>
</name>
<name>
<surname>Gómez-Moreno</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Guardia</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biological response to porcine xenograft implants: an experimental study in rabbits</article-title>
<source>
<italic>Implant Dentistry</italic>
</source>
<year>2012</year>
<volume>21</volume>
<issue>2</issue>
<fpage>112</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1097/id.0b013e3182425991</pub-id>
<pub-id pub-id-type="other">2-s2.0-84859129094</pub-id>
<pub-id pub-id-type="pmid">22440978</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Carinci</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Assenza</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Murmura</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Vertical ridge augmentation of atrophic posterior mandible using an inlay technique with a xenograft without miniscrews and miniplates: case series</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2011</year>
<volume>22</volume>
<issue>10</issue>
<fpage>1125</fpage>
<lpage>1130</lpage>
<pub-id pub-id-type="doi">10.1111/j.1600-0501.2010.02083.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-80052668040</pub-id>
<pub-id pub-id-type="pmid">21251081</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Assenza</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Porcine bone used in sinus augmentation procedures: a 5-year retrospective clinical evaluation</article-title>
<source>
<italic>Journal of Oral and Maxillofacial Surgery</italic>
</source>
<year>2010</year>
<volume>68</volume>
<issue>8</issue>
<fpage>1869</fpage>
<lpage>1873</lpage>
<pub-id pub-id-type="doi">10.1016/j.joms.2009.09.015</pub-id>
<pub-id pub-id-type="other">2-s2.0-77955662420</pub-id>
<pub-id pub-id-type="pmid">20452112</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orsini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Degidi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Caputi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Iezzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Histological and ultrastructural evaluation of bone around Bio-Oss® particles in sinus augmentation</article-title>
<source>
<italic>Oral Diseases</italic>
</source>
<year>2007</year>
<volume>13</volume>
<issue>6</issue>
<fpage>586</fpage>
<lpage>593</lpage>
<pub-id pub-id-type="doi">10.1111/j.1601-0825.2006.01343.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-35348994321</pub-id>
<pub-id pub-id-type="pmid">17944677</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akimoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Donath</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>B. E.</given-names>
</name>
<name>
<surname>Sanchez</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Formation of bone around titanium implants placed into zero wall defects: pilot project using reinforced e-PTFE membrane and autogenous bone grafts</article-title>
<source>
<italic>Clinical Implant Dentistry and Related Research</italic>
</source>
<year>1999</year>
<volume>1</volume>
<issue>2</issue>
<fpage>98</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1111/j.1708-8208.1999.tb00098.x</pub-id>
<pub-id pub-id-type="other">2-s2.0-0033302601</pub-id>
<pub-id pub-id-type="pmid">11359304</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kougias</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tsirlis</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Parisis</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Papadopoulou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Romanos</surname>
<given-names>G. E.</given-names>
</name>
</person-group>
<article-title>Evaluation of the osteogenic potential in experimental defects, with and without bone marrow, in the rabbit tibia: a pilot study</article-title>
<source>
<italic>The International Journal of Oral & Maxillofacial Implants</italic>
</source>
<year>2009</year>
<volume>24</volume>
<issue>6</issue>
<fpage>1054</fpage>
<lpage>1060</lpage>
<pub-id pub-id-type="other">2-s2.0-77949905974</pub-id>
<pub-id pub-id-type="pmid">20162109</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>(a) Placement of dental implants into surgically created defects. Dental implants were installed after implant osteotomy and surgical induction of standardized circumferential defect, with the size of 7 mm width and 4 mm depth. (b) All of the surgically created defects were covered with collagen barrier membranes.</p>
</caption>
<graphic xlink:href="BMRI2016-4086870.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>(a) Control sites of gap defects without any grafting. The defects were only partially filled by newly formed trabecular bone. Acid fuchsin and toluidine blue 5x. (b) In the portions where the defect was not filled by newly formed bone, no contact with the implant surface was observed. Acid fuchsin and toluidine blue 50x.</p>
</caption>
<graphic xlink:href="BMRI2016-4086870.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>(a) Bone regeneration around a dental implant in the empty defect group with corticocancellous 250–1000 microns particulate porcine bone mix. Acid fuchsin and toluidine blue 5x. (b) Newly formed bone is present in the coronal portion of the implant. Acid fuchsin and toluidine blue 50x.</p>
</caption>
<graphic xlink:href="BMRI2016-4086870.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>(a) Newly formed trabecular bone is present, with wide marrow spaces. Acid fuchsin and toluidine blue 5x. (b) The cancellous equine bone blocks are completely surrounded by the newly formed bone. Acid fuchsin and toluidine blue 50x.</p>
</caption>
<graphic xlink:href="BMRI2016-4086870.004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>(a) The defect is only partially filled by the newly formed bone with wide marrow spaces. Acid fuchsin and toluidine blue 5x. (b) A small quantity of residual biomaterial particles is present. Acid fuchsin and toluidine blue 50x.</p>
</caption>
<graphic xlink:href="BMRI2016-4086870.005"></graphic>
</fig>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Mean percentage of soft tissues representing, newly formed bone, the residual biomaterial particles represented, and marrow spaces.</p>
</caption>
<graphic xlink:href="BMRI2016-4086870.006"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0029180 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0029180 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022