Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 002346 ( Pmc/Corpus ); précédent : 0023459; suivant : 0023470 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces</title>
<author>
<name sortKey="Macbarb, Regina F" sort="Macbarb, Regina F" uniqKey="Macbarb R" first="Regina F." last="Macbarb">Regina F. Macbarb</name>
<affiliation>
<nlm:aff id="aff0001">SI-BONE, Inc., San Jose, CA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lindsey, Derek P" sort="Lindsey, Derek P" uniqKey="Lindsey D" first="Derek P." last="Lindsey">Derek P. Lindsey</name>
<affiliation>
<nlm:aff id="aff0001">SI-BONE, Inc., San Jose, CA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bahney, Chelsea S" sort="Bahney, Chelsea S" uniqKey="Bahney C" first="Chelsea S." last="Bahney">Chelsea S. Bahney</name>
<affiliation>
<nlm:aff id="aff0002">Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Woods, Shane A" sort="Woods, Shane A" uniqKey="Woods S" first="Shane A." last="Woods">Shane A. Woods</name>
<affiliation>
<nlm:aff id="aff0003">MPI Research, Mattawan, MI, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wolfe, Mark L" sort="Wolfe, Mark L" uniqKey="Wolfe M" first="Mark L." last="Wolfe">Mark L. Wolfe</name>
<affiliation>
<nlm:aff id="aff0003">MPI Research, Mattawan, MI, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yerby, Scott A" sort="Yerby, Scott A" uniqKey="Yerby S" first="Scott A." last="Yerby">Scott A. Yerby</name>
<affiliation>
<nlm:aff id="aff0001">SI-BONE, Inc., San Jose, CA, USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28765799</idno>
<idno type="pmc">5537982</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537982</idno>
<idno type="RBID">PMC:5537982</idno>
<idno type="doi">10.14444/4015</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">002346</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">002346</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces</title>
<author>
<name sortKey="Macbarb, Regina F" sort="Macbarb, Regina F" uniqKey="Macbarb R" first="Regina F." last="Macbarb">Regina F. Macbarb</name>
<affiliation>
<nlm:aff id="aff0001">SI-BONE, Inc., San Jose, CA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lindsey, Derek P" sort="Lindsey, Derek P" uniqKey="Lindsey D" first="Derek P." last="Lindsey">Derek P. Lindsey</name>
<affiliation>
<nlm:aff id="aff0001">SI-BONE, Inc., San Jose, CA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bahney, Chelsea S" sort="Bahney, Chelsea S" uniqKey="Bahney C" first="Chelsea S." last="Bahney">Chelsea S. Bahney</name>
<affiliation>
<nlm:aff id="aff0002">Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Woods, Shane A" sort="Woods, Shane A" uniqKey="Woods S" first="Shane A." last="Woods">Shane A. Woods</name>
<affiliation>
<nlm:aff id="aff0003">MPI Research, Mattawan, MI, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wolfe, Mark L" sort="Wolfe, Mark L" uniqKey="Wolfe M" first="Mark L." last="Wolfe">Mark L. Wolfe</name>
<affiliation>
<nlm:aff id="aff0003">MPI Research, Mattawan, MI, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yerby, Scott A" sort="Yerby, Scott A" uniqKey="Yerby S" first="Scott A." last="Yerby">Scott A. Yerby</name>
<affiliation>
<nlm:aff id="aff0001">SI-BONE, Inc., San Jose, CA, USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Spine Surgery</title>
<idno type="eISSN">2211-4599</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec id="s1">
<title>Background</title>
<p>An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation (
<italic>e.g.</italic>
for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing,
<italic>i.e.</italic>
3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes.</p>
</sec>
<sec id="s2">
<title>Methods</title>
<p>This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells (
<italic>n</italic>
=5 per group) were measured.</p>
</sec>
<sec id="s3">
<title>Results</title>
<p>Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs (
<italic>p</italic>
=0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs.</p>
</sec>
<sec id="s4">
<title>Conclusions</title>
<p>Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces.</p>
</sec>
<sec id="s5">
<title>Clinical Relevance</title>
<p>Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants.</p>
</sec>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Spine Surg</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Spine Surg</journal-id>
<journal-id journal-id-type="publisher-id">IJSS</journal-id>
<journal-title-group>
<journal-title>International Journal of Spine Surgery</journal-title>
</journal-title-group>
<issn pub-type="epub">2211-4599</issn>
<publisher>
<publisher-name>International Society for the Advancement of Spine Surgery</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28765799</article-id>
<article-id pub-id-type="pmc">5537982</article-id>
<article-id pub-id-type="publisher-id">14444-4015</article-id>
<article-id pub-id-type="doi">10.14444/4015</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Articles</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Fortifying the Bone-Implant Interface Part 1: An In Vitro Evaluation of 3D-Printed and TPS Porous Surfaces</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>MacBarb</surname>
<given-names>Regina F.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff0001">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lindsey</surname>
<given-names>Derek P.</given-names>
</name>
<degrees>MS</degrees>
<xref ref-type="aff" rid="aff0001">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bahney</surname>
<given-names>Chelsea S.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff0002">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Woods</surname>
<given-names>Shane A.</given-names>
</name>
<degrees>MS</degrees>
<xref ref-type="aff" rid="aff0003">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wolfe</surname>
<given-names>Mark L.</given-names>
</name>
<degrees>BS</degrees>
<xref ref-type="aff" rid="aff0003">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yerby</surname>
<given-names>Scott A.</given-names>
</name>
<degrees>PhD</degrees>
<xref ref-type="aff" rid="aff0001">1</xref>
</contrib>
</contrib-group>
<aff id="aff0001">
<label>1</label>
SI-BONE, Inc., San Jose, CA, USA</aff>
<aff id="aff0002">
<label>2</label>
Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA</aff>
<aff id="aff0003">
<label>3</label>
MPI Research, Mattawan, MI, USA</aff>
<author-notes>
<corresp id="cor1">
<bold>Corresponding Author</bold>
Regina F. MacBarb, PhD, SI-BONE, Inc., 3055 Olin Ave, Suite 2200, San Jose, CA 95128, USA.
<email xlink:href="gmacbarb@si-bone.com.">gmacbarb@si-bone.com.</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>01</day>
<month>6</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>11</volume>
<elocation-id>15</elocation-id>
<permissions>
<copyright-statement>Copyright © 2017 ISASS - This manuscript is generously published free of charge by ISASS, the International Society for the Advancement of Spine Surgery</copyright-statement>
<copyright-year>2017</copyright-year>
</permissions>
<abstract>
<sec id="s1">
<title>Background</title>
<p>An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation (
<italic>e.g.</italic>
for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing,
<italic>i.e.</italic>
3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes.</p>
</sec>
<sec id="s2">
<title>Methods</title>
<p>This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells (
<italic>n</italic>
=5 per group) were measured.</p>
</sec>
<sec id="s3">
<title>Results</title>
<p>Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs (
<italic>p</italic>
=0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs.</p>
</sec>
<sec id="s4">
<title>Conclusions</title>
<p>Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces.</p>
</sec>
<sec id="s5">
<title>Clinical Relevance</title>
<p>Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants.</p>
</sec>
</abstract>
<kwd-group>
<kwd>additive manufacturing</kwd>
<kwd>titanium plasma spray coating</kwd>
<kwd>osteointegration</kwd>
<kwd>biomimetic implant surfaces</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002346  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 002346  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022