Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

Identifieur interne : 000477 ( Pmc/Corpus ); précédent : 000476; suivant : 000478

Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

Auteurs : Mythili Prakasam ; Janis Locs ; Kristine Salma-Ancane ; Dagnija Loca ; Alain Largeteau ; Liga Berzina-Cimdina

Source :

RBID : PMC:4695913

Abstract

In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes.


Url:
DOI: 10.3390/jfb6041099
PubMed: 26703750
PubMed Central: 4695913

Links to Exploration step

PMC:4695913

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review</title>
<author>
<name sortKey="Prakasam, Mythili" sort="Prakasam, Mythili" uniqKey="Prakasam M" first="Mythili" last="Prakasam">Mythili Prakasam</name>
<affiliation>
<nlm:aff id="af1-jfb-06-01099">CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
<email>mythili.prakasam@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Locs, Janis" sort="Locs, Janis" uniqKey="Locs J" first="Janis" last="Locs">Janis Locs</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salma Ancane, Kristine" sort="Salma Ancane, Kristine" uniqKey="Salma Ancane K" first="Kristine" last="Salma-Ancane">Kristine Salma-Ancane</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Loca, Dagnija" sort="Loca, Dagnija" uniqKey="Loca D" first="Dagnija" last="Loca">Dagnija Loca</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Largeteau, Alain" sort="Largeteau, Alain" uniqKey="Largeteau A" first="Alain" last="Largeteau">Alain Largeteau</name>
<affiliation>
<nlm:aff id="af1-jfb-06-01099">CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
<email>mythili.prakasam@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berzina Cimdina, Liga" sort="Berzina Cimdina, Liga" uniqKey="Berzina Cimdina L" first="Liga" last="Berzina-Cimdina">Liga Berzina-Cimdina</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26703750</idno>
<idno type="pmc">4695913</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4695913</idno>
<idno type="RBID">PMC:4695913</idno>
<idno type="doi">10.3390/jfb6041099</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000477</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000477</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review</title>
<author>
<name sortKey="Prakasam, Mythili" sort="Prakasam, Mythili" uniqKey="Prakasam M" first="Mythili" last="Prakasam">Mythili Prakasam</name>
<affiliation>
<nlm:aff id="af1-jfb-06-01099">CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
<email>mythili.prakasam@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Locs, Janis" sort="Locs, Janis" uniqKey="Locs J" first="Janis" last="Locs">Janis Locs</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Salma Ancane, Kristine" sort="Salma Ancane, Kristine" uniqKey="Salma Ancane K" first="Kristine" last="Salma-Ancane">Kristine Salma-Ancane</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Loca, Dagnija" sort="Loca, Dagnija" uniqKey="Loca D" first="Dagnija" last="Loca">Dagnija Loca</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Largeteau, Alain" sort="Largeteau, Alain" uniqKey="Largeteau A" first="Alain" last="Largeteau">Alain Largeteau</name>
<affiliation>
<nlm:aff id="af1-jfb-06-01099">CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
<email>mythili.prakasam@gmail.com</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Berzina Cimdina, Liga" sort="Berzina Cimdina, Liga" uniqKey="Berzina Cimdina L" first="Liga" last="Berzina-Cimdina">Liga Berzina-Cimdina</name>
<affiliation>
<nlm:aff id="af2-jfb-06-01099">Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Functional Biomaterials</title>
<idno type="eISSN">2079-4983</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction,
<italic>etc.</italic>
Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better
<italic>in vitro</italic>
/
<italic>in vivo</italic>
methodologies to afford more particular outcomes.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Legeros, R Z" uniqKey="Legeros R">R.Z. LeGeros</name>
</author>
<author>
<name sortKey="Legeros, J P" uniqKey="Legeros J">J.P. LeGeros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petit, R" uniqKey="Petit R">R. Petit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramesh, S" uniqKey="Ramesh S">S. Ramesh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sinha, A" uniqKey="Sinha A">A. Sinha</name>
</author>
<author>
<name sortKey="Mishra, T" uniqKey="Mishra T">T. Mishra</name>
</author>
<author>
<name sortKey="Ravishankar, N" uniqKey="Ravishankar N">N. Ravishankar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Correia, R N" uniqKey="Correia R">R.N. Correia</name>
</author>
<author>
<name sortKey="Magalh, M C F" uniqKey="Magalh M">M.C.F. Magalh</name>
</author>
<author>
<name sortKey="Marques, P A A P" uniqKey="Marques P">P.A.A.P. Marques</name>
</author>
<author>
<name sortKey="Senos, A M R" uniqKey="Senos A">A.M.R. Senos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Best, S M" uniqKey="Best S">S.M. Best</name>
</author>
<author>
<name sortKey="Porter, A E" uniqKey="Porter A">A.E. Porter</name>
</author>
<author>
<name sortKey="Thian, E S" uniqKey="Thian E">E.S. Thian</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dubok, V A" uniqKey="Dubok V">V.A. Dubok</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hench, L" uniqKey="Hench L">L. Hench</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hickman, K" uniqKey="Hickman K">K. Hickman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hulbert, S F" uniqKey="Hulbert S">S.F. Hulbert</name>
</author>
<author>
<name sortKey="Bokros, J C" uniqKey="Bokros J">J.C. Bokros</name>
</author>
<author>
<name sortKey="Hench, L L" uniqKey="Hench L">L.L. Hench</name>
</author>
<author>
<name sortKey="Wilson, J" uniqKey="Wilson J">J. Wilson</name>
</author>
<author>
<name sortKey="Heimke, G" uniqKey="Heimke G">G. Heimke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, M M" uniqKey="Stevens M">M.M. Stevens</name>
</author>
<author>
<name sortKey="George, J H" uniqKey="George J">J.H. George</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jager, M Z C" uniqKey="Jager M">M.Z.C. Jager</name>
</author>
<author>
<name sortKey="Zanger, K" uniqKey="Zanger K">K. Zanger</name>
</author>
<author>
<name sortKey="Krauspe, R" uniqKey="Krauspe R">R. Krauspe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gaston, M S" uniqKey="Gaston M">M.S. Gaston</name>
</author>
<author>
<name sortKey="Simpson, A H R W" uniqKey="Simpson A">A.H.R.W. Simpson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brydone, A S" uniqKey="Brydone A">A.S. Brydone</name>
</author>
<author>
<name sortKey="Meek, D" uniqKey="Meek D">D. Meek</name>
</author>
<author>
<name sortKey="Maclaine, S" uniqKey="Maclaine S">S. Maclaine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Champion, E" uniqKey="Champion E">E. Champion</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veljovi, D J" uniqKey="Veljovi D">D.J. Veljović</name>
</author>
<author>
<name sortKey="Joki, B" uniqKey="Joki B">B. Jokić</name>
</author>
<author>
<name sortKey="Petrovi, R" uniqKey="Petrovi R">R. Petrović</name>
</author>
<author>
<name sortKey="Palcevskis, E" uniqKey="Palcevskis E">E. Palcevskis</name>
</author>
<author>
<name sortKey="Dindune, A" uniqKey="Dindune A">A. Dindune</name>
</author>
<author>
<name sortKey="Mihailescu, I N" uniqKey="Mihailescu I">I.N. Mihailescu</name>
</author>
<author>
<name sortKey="Jana Kovi, D J" uniqKey="Jana Kovi D">D.J. Janaćković</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorozhkin, S V" uniqKey="Dorozhkin S">S.V. Dorozhkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kurien, T" uniqKey="Kurien T">T. Kurien</name>
</author>
<author>
<name sortKey="Pearson, R G" uniqKey="Pearson R">R.G. Pearson</name>
</author>
<author>
<name sortKey="Scammell, B E" uniqKey="Scammell B">B.E. Scammell</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baggett, J" uniqKey="Baggett J">J. Baggett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, L" uniqKey="Lin L">L. Lin</name>
</author>
<author>
<name sortKey="Tong, A" uniqKey="Tong A">A. Tong</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H. Zhang</name>
</author>
<author>
<name sortKey="Hu, Q" uniqKey="Hu Q">Q. Hu</name>
</author>
<author>
<name sortKey="Fang, M" uniqKey="Fang M">M. Fang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rho, J Y" uniqKey="Rho J">J.-Y. Rho</name>
</author>
<author>
<name sortKey="Kuhn Spearing, L" uniqKey="Kuhn Spearing L">L. Kuhn-Spearing</name>
</author>
<author>
<name sortKey="Zioupos, P" uniqKey="Zioupos P">P. Zioupos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rho, J Y" uniqKey="Rho J">J.-Y. Rho</name>
</author>
<author>
<name sortKey="Tsui, T Y" uniqKey="Tsui T">T.Y. Tsui</name>
</author>
<author>
<name sortKey="Pharr, G M" uniqKey="Pharr G">G.M. Pharr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T. Kokubo</name>
</author>
<author>
<name sortKey="Kim, H M" uniqKey="Kim H">H.-M. Kim</name>
</author>
<author>
<name sortKey="Kawashita, M" uniqKey="Kawashita M">M. Kawashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kong, Y M" uniqKey="Kong Y">Y.-M. Kong</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Kim, H E" uniqKey="Kim H">H.-E. Kim</name>
</author>
<author>
<name sortKey="Lee, I S" uniqKey="Lee I">I.-S. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suchanek, W" uniqKey="Suchanek W">W. Suchanek</name>
</author>
<author>
<name sortKey="Yoshimura, M" uniqKey="Yoshimura M">M. Yoshimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T. Kokubo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bechtold, J E" uniqKey="Bechtold J">J.E. Bechtold</name>
</author>
<author>
<name sortKey="Camisa, W J" uniqKey="Camisa W">W.J. Camisa</name>
</author>
<author>
<name sortKey="Freeman, A L" uniqKey="Freeman A">A.L. Freeman</name>
</author>
<author>
<name sortKey="Gustilo, R B" uniqKey="Gustilo R">R.B. Gustilo</name>
</author>
<author>
<name sortKey="Sasing, J L" uniqKey="Sasing J">J.L. Sasing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorozhkin, S V" uniqKey="Dorozhkin S">S.V. Dorozhkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nery, E B" uniqKey="Nery E">E.B. Nery</name>
</author>
<author>
<name sortKey="Legeros, R Z" uniqKey="Legeros R">R.Z. LeGeros</name>
</author>
<author>
<name sortKey="Lynch, K" uniqKey="Lynch K">K. Lynch</name>
</author>
<author>
<name sortKey="Kalbfleisch, J" uniqKey="Kalbfleisch J">J. Kalbfleisch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gouin, F" uniqKey="Gouin F">F. Gouin</name>
</author>
<author>
<name sortKey="Delecrin, J" uniqKey="Delecrin J">J. Delecrin</name>
</author>
<author>
<name sortKey="Passuti, N" uniqKey="Passuti N">N. Passuti</name>
</author>
<author>
<name sortKey="Touchais, S" uniqKey="Touchais S">S. Touchais</name>
</author>
<author>
<name sortKey="Poirier, P" uniqKey="Poirier P">P. Poirier</name>
</author>
<author>
<name sortKey="Bainvel, J V" uniqKey="Bainvel J">J.V. Bainvel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ransford, A O" uniqKey="Ransford A">A.O. Ransford</name>
</author>
<author>
<name sortKey="Morley, T" uniqKey="Morley T">T. Morley</name>
</author>
<author>
<name sortKey="Edgar, M A" uniqKey="Edgar M">M.A. Edgar</name>
</author>
<author>
<name sortKey="Webb, P" uniqKey="Webb P">P. Webb</name>
</author>
<author>
<name sortKey="Passuti, N" uniqKey="Passuti N">N. Passuti</name>
</author>
<author>
<name sortKey="Chopin, D" uniqKey="Chopin D">D. Chopin</name>
</author>
<author>
<name sortKey="Morin, C" uniqKey="Morin C">C. Morin</name>
</author>
<author>
<name sortKey="Michel, F" uniqKey="Michel F">F. Michel</name>
</author>
<author>
<name sortKey="Garin, C" uniqKey="Garin C">C. Garin</name>
</author>
<author>
<name sortKey="Pries, D" uniqKey="Pries D">D. Pries</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavagna, R" uniqKey="Cavagna R">R. Cavagna</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Soares, E J C" uniqKey="Soares E">E.J.C. Soares</name>
</author>
<author>
<name sortKey="Franca, V P" uniqKey="Franca V">V.P. Franca</name>
</author>
<author>
<name sortKey="Wykrota, L" uniqKey="Wykrota L">L. Wykrota</name>
</author>
<author>
<name sortKey="Stumpf, S" uniqKey="Stumpf S">S. Stumpf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wykrota, L L" uniqKey="Wykrota L">L.L. Wykrota</name>
</author>
<author>
<name sortKey="Garrido, C A" uniqKey="Garrido C">C.A. Garrido</name>
</author>
<author>
<name sortKey="Wykrota, F H I" uniqKey="Wykrota F">F.H.I. Wykrota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malard, O" uniqKey="Malard O">O. Malard</name>
</author>
<author>
<name sortKey="Guicheux, J" uniqKey="Guicheux J">J. Guicheux</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
<author>
<name sortKey="Gauthier, O" uniqKey="Gauthier O">O. Gauthier</name>
</author>
<author>
<name sortKey="Beauvillain De Montreuil, C" uniqKey="Beauvillain De Montreuil C">C. Beauvillain de Montreuil</name>
</author>
<author>
<name sortKey="Aguado, E" uniqKey="Aguado E">E. Aguado</name>
</author>
<author>
<name sortKey="Pilet, P" uniqKey="Pilet P">P. Pilet</name>
</author>
<author>
<name sortKey="Legeros, R" uniqKey="Legeros R">R. LeGeros</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meffert, R M" uniqKey="Meffert R">R.M. Meffert</name>
</author>
<author>
<name sortKey="Thomas, J R" uniqKey="Thomas J">J.R. Thomas</name>
</author>
<author>
<name sortKey="Hamilton, K M" uniqKey="Hamilton K">K.M. Hamilton</name>
</author>
<author>
<name sortKey="Brownstein, C N" uniqKey="Brownstein C">C.N. Brownstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yukna, R A" uniqKey="Yukna R">R.A. Yukna</name>
</author>
<author>
<name sortKey="Harrison, B G" uniqKey="Harrison B">B.G. Harrison</name>
</author>
<author>
<name sortKey="Caudill, R F" uniqKey="Caudill R">R.F. Caudill</name>
</author>
<author>
<name sortKey="Evans, G H" uniqKey="Evans G">G.H. Evans</name>
</author>
<author>
<name sortKey="Mayer, E T" uniqKey="Mayer E">E.T. Mayer</name>
</author>
<author>
<name sortKey="Miller, S" uniqKey="Miller S">S. Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piecuch, J F" uniqKey="Piecuch J">J.F. Piecuch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munting, E" uniqKey="Munting E">E. Munting</name>
</author>
<author>
<name sortKey="Verhelpen, M" uniqKey="Verhelpen M">M. Verhelpen</name>
</author>
<author>
<name sortKey="Li, F" uniqKey="Li F">F. Li</name>
</author>
<author>
<name sortKey="Vincent, A" uniqKey="Vincent A">A. Vincent</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, E" uniqKey="Chang E">E. Chang</name>
</author>
<author>
<name sortKey="Chang, W J" uniqKey="Chang W">W.J. Chang</name>
</author>
<author>
<name sortKey="Wang, B C" uniqKey="Wang B">B.C. Wang</name>
</author>
<author>
<name sortKey="Yang, C Y" uniqKey="Yang C">C.Y. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rigo, E C" uniqKey="Rigo E">E.C. Rigo</name>
</author>
<author>
<name sortKey="Boschi, A O" uniqKey="Boschi A">A.O. Boschi</name>
</author>
<author>
<name sortKey="Yoshimoto, M" uniqKey="Yoshimoto M">M. Yoshimoto</name>
</author>
<author>
<name sortKey="Allegrini, S" uniqKey="Allegrini S">S. Allegrini</name>
</author>
<author>
<name sortKey="Kong, B" uniqKey="Kong B">B. Kong</name>
</author>
<author>
<name sortKey="Corbani, M J" uniqKey="Corbani M">M.J. Corbani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jean, A" uniqKey="Jean A">A. Jean</name>
</author>
<author>
<name sortKey="Kerebel, B" uniqKey="Kerebel B">B. Kerebel</name>
</author>
<author>
<name sortKey="Kerebel, L M" uniqKey="Kerebel L">L.M. Kerebel</name>
</author>
<author>
<name sortKey="Legeros, R Z" uniqKey="Legeros R">R.Z. Legeros</name>
</author>
<author>
<name sortKey="Hamel, H" uniqKey="Hamel H">H. Hamel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pissiotis, E" uniqKey="Pissiotis E">E. Pissiotis</name>
</author>
<author>
<name sortKey="Spangberg, L S" uniqKey="Spangberg L">L.S. Spangberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chohayeb, A A" uniqKey="Chohayeb A">A.A. Chohayeb</name>
</author>
<author>
<name sortKey="Adrian, J C" uniqKey="Adrian J">J.C. Adrian</name>
</author>
<author>
<name sortKey="Salamat, K" uniqKey="Salamat K">K. Salamat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wahl, D A" uniqKey="Wahl D">D.A. Wahl</name>
</author>
<author>
<name sortKey="Czernuszka, J T" uniqKey="Czernuszka J">J.T. Czernuszka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarcho, M" uniqKey="Jarcho M">M. Jarcho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Takeda, H" uniqKey="Takeda H">H. Takeda</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gittings, J P" uniqKey="Gittings J">J.P. Gittings</name>
</author>
<author>
<name sortKey="Bowen, C R" uniqKey="Bowen C">C.R. Bowen</name>
</author>
<author>
<name sortKey="Turner, I G" uniqKey="Turner I">I.G. Turner</name>
</author>
<author>
<name sortKey="Baxter, F R" uniqKey="Baxter F">F.R. Baxter</name>
</author>
<author>
<name sortKey="Chaudhuri, J B" uniqKey="Chaudhuri J">J.B. Chaudhuri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotobuki, N" uniqKey="Kotobuki N">N. Kotobuki</name>
</author>
<author>
<name sortKey="Kawagoe, D" uniqKey="Kawagoe D">D. Kawagoe</name>
</author>
<author>
<name sortKey="Nomura, D" uniqKey="Nomura D">D. Nomura</name>
</author>
<author>
<name sortKey="Katou, Y" uniqKey="Katou Y">Y. Katou</name>
</author>
<author>
<name sortKey="Muraki, K" uniqKey="Muraki K">K. Muraki</name>
</author>
<author>
<name sortKey="Fujimori, H" uniqKey="Fujimori H">H. Fujimori</name>
</author>
<author>
<name sortKey="Goto, S" uniqKey="Goto S">S. Goto</name>
</author>
<author>
<name sortKey="Ioku, K" uniqKey="Ioku K">K. Ioku</name>
</author>
<author>
<name sortKey="Ohgushi, H" uniqKey="Ohgushi H">H. Ohgushi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weissman, J L" uniqKey="Weissman J">J.L. Weissman</name>
</author>
<author>
<name sortKey="Snyderman, C H" uniqKey="Snyderman C">C.H. Snyderman</name>
</author>
<author>
<name sortKey="Hirsch, B E" uniqKey="Hirsch B">B.E. Hirsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hench, L L" uniqKey="Hench L">L.L. Hench</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Asazuma, T" uniqKey="Asazuma T">T. Asazuma</name>
</author>
<author>
<name sortKey="Masuoka, K" uniqKey="Masuoka K">K. Masuoka</name>
</author>
<author>
<name sortKey="Motosuneya, T" uniqKey="Motosuneya T">T. Motosuneya</name>
</author>
<author>
<name sortKey="Tsuji, T" uniqKey="Tsuji T">T. Tsuji</name>
</author>
<author>
<name sortKey="Yasuoka, H" uniqKey="Yasuoka H">H. Yasuoka</name>
</author>
<author>
<name sortKey="Fujikawa, K" uniqKey="Fujikawa K">K. Fujikawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, J E" uniqKey="Davies J">J.E. Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anselme, K" uniqKey="Anselme K">K. Anselme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rivera, E M" uniqKey="Rivera E">E.M. Rivera</name>
</author>
<author>
<name sortKey="Araiza, M" uniqKey="Araiza M">M. Araiza</name>
</author>
<author>
<name sortKey="Brostow, W" uniqKey="Brostow W">W. Brostow</name>
</author>
<author>
<name sortKey="Casta O, V M" uniqKey="Casta O V">V.M. Castaño</name>
</author>
<author>
<name sortKey="Diaz Estrada, J R" uniqKey="Diaz Estrada J">J.R. Díaz-Estrada</name>
</author>
<author>
<name sortKey="Hernandez, R" uniqKey="Hernandez R">R. Hernández</name>
</author>
<author>
<name sortKey="Rodriguez, J R" uniqKey="Rodriguez J">J.R. Rodríguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, S J" uniqKey="Lee S">S.J. Lee</name>
</author>
<author>
<name sortKey="Oh, S H" uniqKey="Oh S">S.H. Oh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Balazsi, C" uniqKey="Balazsi C">C. Balazsi</name>
</author>
<author>
<name sortKey="Weber, F" uniqKey="Weber F">F. Weber</name>
</author>
<author>
<name sortKey="Kover, Z" uniqKey="Kover Z">Z. Kover</name>
</author>
<author>
<name sortKey="Horvath, E" uniqKey="Horvath E">E. Horvath</name>
</author>
<author>
<name sortKey="Nemeth, C" uniqKey="Nemeth C">C. Nemeth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murugan, R" uniqKey="Murugan R">R. Murugan</name>
</author>
<author>
<name sortKey="Ramakrishna, S" uniqKey="Ramakrishna S">S. Ramakrishna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vallet Regi, M" uniqKey="Vallet Regi M">M. Vallet-Regí</name>
</author>
<author>
<name sortKey="Gonzalez Calbet, J M" uniqKey="Gonzalez Calbet J">J.M. González-Calbet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lecomte, A" uniqKey="Lecomte A">A. Lecomte</name>
</author>
<author>
<name sortKey="Gautier, H" uniqKey="Gautier H">H. Gautier</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
<author>
<name sortKey="Gouyette, A" uniqKey="Gouyette A">A. Gouyette</name>
</author>
<author>
<name sortKey="Pegon, Y" uniqKey="Pegon Y">Y. Pegon</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
<author>
<name sortKey="Merle, C" uniqKey="Merle C">C. Merle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tancret, F" uniqKey="Tancret F">F. Tancret</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
<author>
<name sortKey="Chamousset, J" uniqKey="Chamousset J">J. Chamousset</name>
</author>
<author>
<name sortKey="Minois, L M" uniqKey="Minois L">L.M. Minois</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
<author>
<name sortKey="Trecant, M" uniqKey="Trecant M">M. Trecant</name>
</author>
<author>
<name sortKey="Delecrin, J" uniqKey="Delecrin J">J. Delecrin</name>
</author>
<author>
<name sortKey="Royer, J" uniqKey="Royer J">J. Royer</name>
</author>
<author>
<name sortKey="Passuti, N" uniqKey="Passuti N">N. Passuti</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Eill, W C" uniqKey="O Eill W">W.C. O’Neill</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Da Silva, R V" uniqKey="Da Silva R">R.V. Da Silva</name>
</author>
<author>
<name sortKey="Bertran, C A" uniqKey="Bertran C">C.A. Bertran</name>
</author>
<author>
<name sortKey="Kawachi, E Y" uniqKey="Kawachi E">E.Y. Kawachi</name>
</author>
<author>
<name sortKey="Camilli, J A" uniqKey="Camilli J">J.A. Camilli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Lorenzo, L M" uniqKey="Rodriguez Lorenzo L">L.M. Rodríguez-Lorenzo</name>
</author>
<author>
<name sortKey="Vallet Regi, M" uniqKey="Vallet Regi M">M. Vallet-Regí</name>
</author>
<author>
<name sortKey="Ferreira, J M F" uniqKey="Ferreira J">J.M.F. Ferreira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nazarpak, M H" uniqKey="Nazarpak M">M.H. Nazarpak</name>
</author>
<author>
<name sortKey="Solati Hashjin, M" uniqKey="Solati Hashjin M">M. Solati-Hashjin</name>
</author>
<author>
<name sortKey="Moztarzadeh, F" uniqKey="Moztarzadeh F">F. Moztarzadeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itoh, H" uniqKey="Itoh H">H. Itoh</name>
</author>
<author>
<name sortKey="Wakisaka, Y" uniqKey="Wakisaka Y">Y. Wakisaka</name>
</author>
<author>
<name sortKey="Ohnuma, Y" uniqKey="Ohnuma Y">Y. Ohnuma</name>
</author>
<author>
<name sortKey="Kuboki, Y" uniqKey="Kuboki Y">Y. Kuboki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gautier, H" uniqKey="Gautier H">H. Gautier</name>
</author>
<author>
<name sortKey="Merle, C" uniqKey="Merle C">C. Merle</name>
</author>
<author>
<name sortKey="Auget, J L" uniqKey="Auget J">J.L. Auget</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tadic, D" uniqKey="Tadic D">D. Tadic</name>
</author>
<author>
<name sortKey="Epple, M" uniqKey="Epple M">M. Epple</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pecqueux, F" uniqKey="Pecqueux F">F. Pecqueux</name>
</author>
<author>
<name sortKey="Tancret, F" uniqKey="Tancret F">F. Tancret</name>
</author>
<author>
<name sortKey="Payraudeau, N" uniqKey="Payraudeau N">N. Payraudeau</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viana, M" uniqKey="Viana M">M. Viana</name>
</author>
<author>
<name sortKey="Desire, A" uniqKey="Desire A">A. Désiré</name>
</author>
<author>
<name sortKey="Chevalier, E" uniqKey="Chevalier E">E. Chevalier</name>
</author>
<author>
<name sortKey="Champion, E" uniqKey="Champion E">E. Champion</name>
</author>
<author>
<name sortKey="Chotard, R" uniqKey="Chotard R">R. Chotard</name>
</author>
<author>
<name sortKey="Chulia, D" uniqKey="Chulia D">D. Chulia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reiker S, O" uniqKey="Reiker S O">O. Reikerås</name>
</author>
<author>
<name sortKey="Johansson, C B" uniqKey="Johansson C">C.B. Johansson</name>
</author>
<author>
<name sortKey="Sundfeldt, M" uniqKey="Sundfeldt M">M. Sundfeldt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rao, R R" uniqKey="Rao R">R.R. Rao</name>
</author>
<author>
<name sortKey="Kannan, T S" uniqKey="Kannan T">T.S. Kannan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sakka, Y" uniqKey="Sakka Y">Y. Sakka</name>
</author>
<author>
<name sortKey="Takahashi, K" uniqKey="Takahashi K">K. Takahashi</name>
</author>
<author>
<name sortKey="Matsuda, N" uniqKey="Matsuda N">N. Matsuda</name>
</author>
<author>
<name sortKey="Suzuki, T S" uniqKey="Suzuki T">T.S. Suzuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Yokogawa, Y" uniqKey="Yokogawa Y">Y. Yokogawa</name>
</author>
<author>
<name sortKey="Feng, X" uniqKey="Feng X">X. Feng</name>
</author>
<author>
<name sortKey="Tao, Y" uniqKey="Tao Y">Y. Tao</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sepulveda, P" uniqKey="Sepulveda P">P. Sepulveda</name>
</author>
<author>
<name sortKey="Ortega, F S" uniqKey="Ortega F">F.S. Ortega</name>
</author>
<author>
<name sortKey="Innocentini, M D M" uniqKey="Innocentini M">M.D.M. Innocentini</name>
</author>
<author>
<name sortKey="Pandolfelli, V C" uniqKey="Pandolfelli V">V.C. Pandolfelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Padilla, S" uniqKey="Padilla S">S. Padilla</name>
</author>
<author>
<name sortKey="Vallet Regi, M" uniqKey="Vallet Regi M">M. Vallet-Regí</name>
</author>
<author>
<name sortKey="Ginebra, M P" uniqKey="Ginebra M">M.P. Ginebra</name>
</author>
<author>
<name sortKey="Gil, F J" uniqKey="Gil F">F.J. Gil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez Salcedo, S" uniqKey="Sanchez Salcedo S">S. Sánchez-Salcedo</name>
</author>
<author>
<name sortKey="Werner, J" uniqKey="Werner J">J. Werner</name>
</author>
<author>
<name sortKey="Vallet Regi, M" uniqKey="Vallet Regi M">M. Vallet-Regí</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fomin, A S" uniqKey="Fomin A">A.S. Fomin</name>
</author>
<author>
<name sortKey="Barinov, S M" uniqKey="Barinov S">S.M. Barinov</name>
</author>
<author>
<name sortKey="Ievlev, V M" uniqKey="Ievlev V">V.M. Ievlev</name>
</author>
<author>
<name sortKey="Smirnov, V V" uniqKey="Smirnov V">V.V. Smirnov</name>
</author>
<author>
<name sortKey="Mikhailov, B P" uniqKey="Mikhailov B">B.P. Mikhailov</name>
</author>
<author>
<name sortKey="Belonogov, E K" uniqKey="Belonogov E">E.K. Belonogov</name>
</author>
<author>
<name sortKey="Drozdova, N A" uniqKey="Drozdova N">N.A. Drozdova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kankawa, Y" uniqKey="Kankawa Y">Y. Kankawa</name>
</author>
<author>
<name sortKey="Kaneko, Y" uniqKey="Kaneko Y">Y. Kaneko</name>
</author>
<author>
<name sortKey="Saitou, K" uniqKey="Saitou K">K. Saitou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kwon, S H" uniqKey="Kwon S">S.H. Kwon</name>
</author>
<author>
<name sortKey="Jun, Y K" uniqKey="Jun Y">Y.K. Jun</name>
</author>
<author>
<name sortKey="Hong, S H" uniqKey="Hong S">S.H. Hong</name>
</author>
<author>
<name sortKey="Lee, I S" uniqKey="Lee I">I.S. Lee</name>
</author>
<author>
<name sortKey="Kim, H E" uniqKey="Kim H">H.E. Kim</name>
</author>
<author>
<name sortKey="Won, Y Y" uniqKey="Won Y">Y.Y. Won</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fooki, A C B M" uniqKey="Fooki A">A.C.B.M. Fooki</name>
</author>
<author>
<name sortKey="Aparecida, A H" uniqKey="Aparecida A">A.H. Aparecida</name>
</author>
<author>
<name sortKey="Fideles, T B" uniqKey="Fideles T">T.B. Fideles</name>
</author>
<author>
<name sortKey="Costa, R C" uniqKey="Costa R">R.C. Costa</name>
</author>
<author>
<name sortKey="Fook, M V L" uniqKey="Fook M">M.V.L. Fook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sopyan, I" uniqKey="Sopyan I">I. Sopyan</name>
</author>
<author>
<name sortKey="Kaur, J" uniqKey="Kaur J">J. Kaur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Velayudhan, S" uniqKey="Velayudhan S">S. Velayudhan</name>
</author>
<author>
<name sortKey="Ramesh, P" uniqKey="Ramesh P">P. Ramesh</name>
</author>
<author>
<name sortKey="Sunny, M C" uniqKey="Sunny M">M.C. Sunny</name>
</author>
<author>
<name sortKey="Varma, H K" uniqKey="Varma H">H.K. Varma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H Y" uniqKey="Yang H">H.Y. Yang</name>
</author>
<author>
<name sortKey="Thompson, I" uniqKey="Thompson I">I. Thompson</name>
</author>
<author>
<name sortKey="Yang, S F" uniqKey="Yang S">S.F. Yang</name>
</author>
<author>
<name sortKey="Chi, X P" uniqKey="Chi X">X.P. Chi</name>
</author>
<author>
<name sortKey="Evans, J R G" uniqKey="Evans J">J.R.G. Evans</name>
</author>
<author>
<name sortKey="Cook, R J" uniqKey="Cook R">R.J. Cook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muthutantri, A I" uniqKey="Muthutantri A">A.I. Muthutantri</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J. Huang</name>
</author>
<author>
<name sortKey="Edirisinghe, M J" uniqKey="Edirisinghe M">M.J. Edirisinghe</name>
</author>
<author>
<name sortKey="Bretcanu, O" uniqKey="Bretcanu O">O. Bretcanu</name>
</author>
<author>
<name sortKey="Boccaccini, A R" uniqKey="Boccaccini A">A.R. Boccaccini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roncari, E" uniqKey="Roncari E">E. Roncari</name>
</author>
<author>
<name sortKey="Galassi, C" uniqKey="Galassi C">C. Galassi</name>
</author>
<author>
<name sortKey="Pinasco, P" uniqKey="Pinasco P">P. Pinasco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tian, T" uniqKey="Tian T">T. Tian</name>
</author>
<author>
<name sortKey="Jiang, D" uniqKey="Jiang D">D. Jiang</name>
</author>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Lin, Q" uniqKey="Lin Q">Q. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorozhkin, S V" uniqKey="Dorozhkin S">S.V. Dorozhkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorozhkin, S V" uniqKey="Dorozhkin S">S.V. Dorozhkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamada, M" uniqKey="Yamada M">M. Yamada</name>
</author>
<author>
<name sortKey="Shiota, M" uniqKey="Shiota M">M. Shiota</name>
</author>
<author>
<name sortKey="Yamashita, Y" uniqKey="Yamashita Y">Y. Yamashita</name>
</author>
<author>
<name sortKey="Kasugai, S" uniqKey="Kasugai S">S. Kasugai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elliot, J C" uniqKey="Elliot J">J.C. Elliot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, J" uniqKey="Zhou J">J. Zhou</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X. Zhang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Zeng, S" uniqKey="Zeng S">S. Zeng</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K. de groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Famery, R" uniqKey="Famery R">R. Famery</name>
</author>
<author>
<name sortKey="Richard, N" uniqKey="Richard N">N. Richard</name>
</author>
<author>
<name sortKey="Boch, P" uniqKey="Boch P">P. Boch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, K T" uniqKey="Chu K">K.-T. Chu</name>
</author>
<author>
<name sortKey="Ou, S F" uniqKey="Ou S">S.-F. Ou</name>
</author>
<author>
<name sortKey="Chen, S Y" uniqKey="Chen S">S.-Y. Chen</name>
</author>
<author>
<name sortKey="Chiou, S Y" uniqKey="Chiou S">S.-Y. Chiou</name>
</author>
<author>
<name sortKey="Chou, H H" uniqKey="Chou H">H.-H. Chou</name>
</author>
<author>
<name sortKey="Ou, K L" uniqKey="Ou K">K.-L. Ou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruseska, G" uniqKey="Ruseska G">G. Ruseska</name>
</author>
<author>
<name sortKey="Fidancevska, E" uniqKey="Fidancevska E">E. Fidancevska</name>
</author>
<author>
<name sortKey="Bossert, J" uniqKey="Bossert J">J. Bossert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patel, N" uniqKey="Patel N">N. Patel</name>
</author>
<author>
<name sortKey="Best, S M" uniqKey="Best S">S.M. Best</name>
</author>
<author>
<name sortKey="Bonfield, W" uniqKey="Bonfield W">W. Bonfield</name>
</author>
<author>
<name sortKey="Gibson, I R" uniqKey="Gibson I">I.R. Gibson</name>
</author>
<author>
<name sortKey="Hing, K A" uniqKey="Hing K">K.A. Hing</name>
</author>
<author>
<name sortKey="Damien, E" uniqKey="Damien E">E. Damien</name>
</author>
<author>
<name sortKey="Revell, P A" uniqKey="Revell P">P.A. Revell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Landi, E" uniqKey="Landi E">E. Landi</name>
</author>
<author>
<name sortKey="Logroscino, G" uniqKey="Logroscino G">G. Logroscino</name>
</author>
<author>
<name sortKey="Proietti, L" uniqKey="Proietti L">L. Proietti</name>
</author>
<author>
<name sortKey="Tampieri, A" uniqKey="Tampieri A">A. Tampieri</name>
</author>
<author>
<name sortKey="Sandri, M" uniqKey="Sandri M">M. Sandri</name>
</author>
<author>
<name sortKey="Sprio, S" uniqKey="Sprio S">S. Sprio</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, T N" uniqKey="Kim T">T.N. Kim</name>
</author>
<author>
<name sortKey="Feng, Q L" uniqKey="Feng Q">Q.L. Feng</name>
</author>
<author>
<name sortKey="Kim, J O" uniqKey="Kim J">J.O. Kim</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Chen, G C" uniqKey="Chen G">G.C. Chen</name>
</author>
<author>
<name sortKey="Cui, F Z" uniqKey="Cui F">F.Z. Cui</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boanini, E" uniqKey="Boanini E">E. Boanini</name>
</author>
<author>
<name sortKey="Gazzano, M" uniqKey="Gazzano M">M. Gazzano</name>
</author>
<author>
<name sortKey="Bigi, A" uniqKey="Bigi A">A. Bigi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, I G" uniqKey="Turner I">I.G. Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bowen, P" uniqKey="Bowen P">P. Bowen</name>
</author>
<author>
<name sortKey="Carry, C" uniqKey="Carry C">C. Carry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munir, Z A" uniqKey="Munir Z">Z.A. Munir</name>
</author>
<author>
<name sortKey="Anselmi Tamburini, U" uniqKey="Anselmi Tamburini U">U. Anselmi-Tamburini</name>
</author>
<author>
<name sortKey="Ohyanagi, M" uniqKey="Ohyanagi M">M. Ohyanagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, I W" uniqKey="Chen I">I.-W. Chen</name>
</author>
<author>
<name sortKey="Wang, X H" uniqKey="Wang X">X.H. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dynys, F W" uniqKey="Dynys F">F.W. Dynys</name>
</author>
<author>
<name sortKey="Halloran, J W" uniqKey="Halloran J">J.W. Halloran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuan, W H" uniqKey="Tuan W">W.H. Tuan</name>
</author>
<author>
<name sortKey="Gilbart, E" uniqKey="Gilbart E">E. Gilbart</name>
</author>
<author>
<name sortKey="Brook, R J" uniqKey="Brook R">R.J. Brook</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, D M" uniqKey="Liu D">D.-M. Liu</name>
</author>
<author>
<name sortKey="Lin, J T" uniqKey="Lin J">J.-T. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaim, R" uniqKey="Chaim R">R. Chaim</name>
</author>
<author>
<name sortKey="Levin, M" uniqKey="Levin M">M. Levin</name>
</author>
<author>
<name sortKey="Shlayer, A" uniqKey="Shlayer A">A. Shlayer</name>
</author>
<author>
<name sortKey="Estournes, C" uniqKey="Estournes C">C. Estournès</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arunachalam, V S" uniqKey="Arunachalam V">V.S. Arunachalam</name>
</author>
<author>
<name sortKey="Sundaresan, R" uniqKey="Sundaresan R">R. Sundaresan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coble, R L" uniqKey="Coble R">R.L. Coble</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Braginsky, M" uniqKey="Braginsky M">M. Braginsky</name>
</author>
<author>
<name sortKey="Tikare, V" uniqKey="Tikare V">V. Tikare</name>
</author>
<author>
<name sortKey="Olevsky, E" uniqKey="Olevsky E">E. Olevsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ji, S" uniqKey="Ji S">S. Ji</name>
</author>
<author>
<name sortKey="Gu, Q" uniqKey="Gu Q">Q. Gu</name>
</author>
<author>
<name sortKey="Xia, B" uniqKey="Xia B">B. Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynn Johnson, D" uniqKey="Lynn Johnson D">D. Lynn Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haberko, K" uniqKey="Haberko K">K. Haberko</name>
</author>
<author>
<name sortKey="Bu Ko, M M" uniqKey="Bu Ko M">M.M. Bućko</name>
</author>
<author>
<name sortKey="Brzezi Ska Miecznik, J" uniqKey="Brzezi Ska Miecznik J">J. Brzezińska-Miecznik</name>
</author>
<author>
<name sortKey="Haberko, M" uniqKey="Haberko M">M. Haberko</name>
</author>
<author>
<name sortKey="Mozgawa, W" uniqKey="Mozgawa W">W. Mozgawa</name>
</author>
<author>
<name sortKey="Panz, T" uniqKey="Panz T">T. Panz</name>
</author>
<author>
<name sortKey="Pyda, A" uniqKey="Pyda A">A. Pyda</name>
</author>
<author>
<name sortKey="Zarebski, J" uniqKey="Zarebski J">J. Zarebski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haberko, K" uniqKey="Haberko K">K. Haberko</name>
</author>
<author>
<name sortKey="Bu Ko, M M" uniqKey="Bu Ko M">M.M. Bućko</name>
</author>
<author>
<name sortKey="Mozgawa, W" uniqKey="Mozgawa W">W. Mozgawa</name>
</author>
<author>
<name sortKey="Pyda, A" uniqKey="Pyda A">A. Pyda</name>
</author>
<author>
<name sortKey="Brzezi Ska Miecznik, J" uniqKey="Brzezi Ska Miecznik J">J. Brzezińska-Miecznik</name>
</author>
<author>
<name sortKey="Carpentier, J" uniqKey="Carpentier J">J. Carpentier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Janus, A M" uniqKey="Janus A">A.M. Janus</name>
</author>
<author>
<name sortKey="Faryna, M" uniqKey="Faryna M">M. Faryna</name>
</author>
<author>
<name sortKey="Haberko, K" uniqKey="Haberko K">K. Haberko</name>
</author>
<author>
<name sortKey="Rakowska, A" uniqKey="Rakowska A">A. Rakowska</name>
</author>
<author>
<name sortKey="Panz, T" uniqKey="Panz T">T. Panz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahrololoom, M E" uniqKey="Bahrololoom M">M.E. Bahrololoom</name>
</author>
<author>
<name sortKey="Javidi, M" uniqKey="Javidi M">M. Javidi</name>
</author>
<author>
<name sortKey="Javadpour, S" uniqKey="Javadpour S">S. Javadpour</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q. Liu</name>
</author>
<author>
<name sortKey="Huang, S" uniqKey="Huang S">S. Huang</name>
</author>
<author>
<name sortKey="Matinlinna, J P" uniqKey="Matinlinna J">J.P. Matinlinna</name>
</author>
<author>
<name sortKey="Chen, Z" uniqKey="Chen Z">Z. Chen</name>
</author>
<author>
<name sortKey="Pan, H" uniqKey="Pan H">H. Pan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mostafa, N Y" uniqKey="Mostafa N">N.Y. Mostafa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suchanek, W" uniqKey="Suchanek W">W. Suchanek</name>
</author>
<author>
<name sortKey="Yashima, M" uniqKey="Yashima M">M. Yashima</name>
</author>
<author>
<name sortKey="Kakihana, M" uniqKey="Kakihana M">M. Kakihana</name>
</author>
<author>
<name sortKey="Yoshimura, M" uniqKey="Yoshimura M">M. Yoshimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalita, S J" uniqKey="Kalita S">S.J. Kalita</name>
</author>
<author>
<name sortKey="Bose, S" uniqKey="Bose S">S. Bose</name>
</author>
<author>
<name sortKey="Bandyopadhyay, A" uniqKey="Bandyopadhyay A">A. Bandyopadhyay</name>
</author>
<author>
<name sortKey="Hosick, H L" uniqKey="Hosick H">H.L. Hosick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kalita, S J" uniqKey="Kalita S">S.J. Kalita</name>
</author>
<author>
<name sortKey="Bose, S" uniqKey="Bose S">S. Bose</name>
</author>
<author>
<name sortKey="Hosick, H L" uniqKey="Hosick H">H.L. Hosick</name>
</author>
<author>
<name sortKey="Bandyopadhyay, A" uniqKey="Bandyopadhyay A">A. Bandyopadhyay</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Safronova, T V" uniqKey="Safronova T">T.V. Safronova</name>
</author>
<author>
<name sortKey="Putlyaev, V I" uniqKey="Putlyaev V">V.I. Putlyaev</name>
</author>
<author>
<name sortKey="Shekhirev, M A" uniqKey="Shekhirev M">M.A. Shekhirev</name>
</author>
<author>
<name sortKey="Tretyakov, Y D" uniqKey="Tretyakov Y">Y.D. Tretyakov</name>
</author>
<author>
<name sortKey="Kuznetsov, A V" uniqKey="Kuznetsov A">A.V. Kuznetsov</name>
</author>
<author>
<name sortKey="Belyakov, A V" uniqKey="Belyakov A">A.V. Belyakov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Kono, H" uniqKey="Kono H">H. Kono</name>
</author>
<author>
<name sortKey="Sassa, K" uniqKey="Sassa K">K. Sassa</name>
</author>
<author>
<name sortKey="Asai, S" uniqKey="Asai S">S. Asai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sadat Shojai, M" uniqKey="Sadat Shojai M">M. Sadat-Shojai</name>
</author>
<author>
<name sortKey="Khorasani, M T" uniqKey="Khorasani M">M.-T. Khorasani</name>
</author>
<author>
<name sortKey="Dinpanah Khoshdargi, E" uniqKey="Dinpanah Khoshdargi E">E. Dinpanah-Khoshdargi</name>
</author>
<author>
<name sortKey="Jamshidi, A" uniqKey="Jamshidi A">A. Jamshidi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cihlar, J" uniqKey="Cihlar J">J. Cihlar</name>
</author>
<author>
<name sortKey="Castkova, K" uniqKey="Castkova K">K. Castkova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vijayalakshmi, U" uniqKey="Vijayalakshmi U">U. Vijayalakshmi</name>
</author>
<author>
<name sortKey="Rajeswari, S" uniqKey="Rajeswari S">S. Rajeswari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Costa, D O" uniqKey="Costa D">D.O. Costa</name>
</author>
<author>
<name sortKey="Dixon, S J" uniqKey="Dixon S">S.J. Dixon</name>
</author>
<author>
<name sortKey="Rizkalla, A S" uniqKey="Rizkalla A">A.S. Rizkalla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhan, J" uniqKey="Zhan J">J. Zhan</name>
</author>
<author>
<name sortKey="Tseng, Y H" uniqKey="Tseng Y">Y.H. Tseng</name>
</author>
<author>
<name sortKey="Chan, J C C" uniqKey="Chan J">J.C.C. Chan</name>
</author>
<author>
<name sortKey="Mou, C Y" uniqKey="Mou C">C.Y. Mou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, Y X" uniqKey="Pang Y">Y.X. Pang</name>
</author>
<author>
<name sortKey="Bao, X" uniqKey="Bao X">X. Bao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, G" uniqKey="Zhang G">G. Zhang</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J. Chen</name>
</author>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S. Yang</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q. Yu</name>
</author>
<author>
<name sortKey="Wang, Q Z" uniqKey="Wang Q">Q.Z. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, H" uniqKey="Xu H">H. Xu</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Zhang, S F" uniqKey="Zhang S">S.-F. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fathi, M H" uniqKey="Fathi M">M.H. Fathi</name>
</author>
<author>
<name sortKey="Zahrani, E M" uniqKey="Zahrani E">E.M. Zahrani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, C C" uniqKey="Silva C">C.C. Silva</name>
</author>
<author>
<name sortKey="Graca, M P F" uniqKey="Graca M">M.P.F. Graça</name>
</author>
<author>
<name sortKey="Valente, M A" uniqKey="Valente M">M.A. Valente</name>
</author>
<author>
<name sortKey="Sombra, A S B" uniqKey="Sombra A">A.S.B. Sombra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, M" uniqKey="Roy M">M. Roy</name>
</author>
<author>
<name sortKey="Bandyopadhyay, A" uniqKey="Bandyopadhyay A">A. Bandyopadhyay</name>
</author>
<author>
<name sortKey="Bose, S" uniqKey="Bose S">S. Bose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruksudjarit, A" uniqKey="Ruksudjarit A">A. Ruksudjarit</name>
</author>
<author>
<name sortKey="Pengpat, K" uniqKey="Pengpat K">K. Pengpat</name>
</author>
<author>
<name sortKey="Rujijanagul, G" uniqKey="Rujijanagul G">G. Rujijanagul</name>
</author>
<author>
<name sortKey="Tunkasiri, T" uniqKey="Tunkasiri T">T. Tunkasiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mhin, S W" uniqKey="Mhin S">S.W. Mhin</name>
</author>
<author>
<name sortKey="Ryu, J H" uniqKey="Ryu J">J.H. Ryu</name>
</author>
<author>
<name sortKey="Kim, K M" uniqKey="Kim K">K.M. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musaev, O R" uniqKey="Musaev O">O.R. Musaev</name>
</author>
<author>
<name sortKey="Dusevich, V" uniqKey="Dusevich V">V. Dusevich</name>
</author>
<author>
<name sortKey="Wieliecza, D M" uniqKey="Wieliecza D">D.M. Wieliecza</name>
</author>
<author>
<name sortKey="Wrobel, J M" uniqKey="Wrobel J">J.M. Wrobel</name>
</author>
<author>
<name sortKey="Kruger, M B" uniqKey="Kruger M">M.B. Kruger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nelson, D G A" uniqKey="Nelson D">D.G.A. Nelson</name>
</author>
<author>
<name sortKey="Wefel Jongebloed, W L" uniqKey="Wefel Jongebloed W">W.L. Wefel Jongebloed</name>
</author>
<author>
<name sortKey="Featherstone, J D B" uniqKey="Featherstone J">J.D.B. Featherstone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eliaz, N" uniqKey="Eliaz N">N. Eliaz</name>
</author>
<author>
<name sortKey="Sridhar, T M" uniqKey="Sridhar T">T.M. Sridhar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smolen, D" uniqKey="Smolen D">D. Smolen</name>
</author>
<author>
<name sortKey="Chudoba, T" uniqKey="Chudoba T">T. Chudoba</name>
</author>
<author>
<name sortKey="Malka, I" uniqKey="Malka I">I. Malka</name>
</author>
<author>
<name sortKey="Kedzierska, A" uniqKey="Kedzierska A">A. Kedzierska</name>
</author>
<author>
<name sortKey="Lojkowski, W" uniqKey="Lojkowski W">W. Lojkowski</name>
</author>
<author>
<name sortKey="Swieszkowski, W" uniqKey="Swieszkowski W">W. Swieszkowski</name>
</author>
<author>
<name sortKey="Kurzydlowski, K J" uniqKey="Kurzydlowski K">K.J. Kurzydlowski</name>
</author>
<author>
<name sortKey="Mierzynska, M K" uniqKey="Mierzynska M">M.K. Mierzynska</name>
</author>
<author>
<name sortKey="Szumiel, M L" uniqKey="Szumiel M">M.L. Szumiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
<author>
<name sortKey="Hench, L L" uniqKey="Hench L">L.L. Hench</name>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
</author>
<author>
<name sortKey="Choy, K L" uniqKey="Choy K">K.-L. Choy</name>
</author>
<author>
<name sortKey="Guo, J" uniqKey="Guo J">J. Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Socol, G" uniqKey="Socol G">G. Socol</name>
</author>
<author>
<name sortKey="Macovei, A M" uniqKey="Macovei A">A.M. Macovei</name>
</author>
<author>
<name sortKey="Miroiu, F" uniqKey="Miroiu F">F. Miroiu</name>
</author>
<author>
<name sortKey="Stefan, N" uniqKey="Stefan N">N. Stefan</name>
</author>
<author>
<name sortKey="Duta, L" uniqKey="Duta L">L. Duta</name>
</author>
<author>
<name sortKey="Dorcioman, G" uniqKey="Dorcioman G">G. Dorcioman</name>
</author>
<author>
<name sortKey="Mihailescu, I N" uniqKey="Mihailescu I">I.N. Mihailescu</name>
</author>
<author>
<name sortKey="Petrescu, S M" uniqKey="Petrescu S">S.M. Petrescu</name>
</author>
<author>
<name sortKey="Stan, G E" uniqKey="Stan G">G.E. Stan</name>
</author>
<author>
<name sortKey="Marcov, D A" uniqKey="Marcov D">D.A. Marcov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="D Lia, N L" uniqKey="D Lia N">N.L. D’Elía</name>
</author>
<author>
<name sortKey="Noel Gravina, A" uniqKey="Noel Gravina A">A. Noel Gravina</name>
</author>
<author>
<name sortKey="Ruso, J M" uniqKey="Ruso J">J.M. Ruso</name>
</author>
<author>
<name sortKey="Laiuppa, J A" uniqKey="Laiuppa J">J.A. Laiuppa</name>
</author>
<author>
<name sortKey="Santillan, G E" uniqKey="Santillan G">G.E. Santillán</name>
</author>
<author>
<name sortKey="Messina, P V" uniqKey="Messina P">P.V. Messina</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorozhkin, S V" uniqKey="Dorozhkin S">S.V. Dorozhkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, H" uniqKey="Zhou H">H. Zhou</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thangamani, N" uniqKey="Thangamani N">N. Thangamani</name>
</author>
<author>
<name sortKey="Chinnakali, K" uniqKey="Chinnakali K">K. Chinnakali</name>
</author>
<author>
<name sortKey="Gnanam, F D" uniqKey="Gnanam F">F.D. Gnanam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richard, R" uniqKey="Richard R">R. Richard</name>
</author>
<author>
<name sortKey="Alexander, B" uniqKey="Alexander B">B. Alexander</name>
</author>
<author>
<name sortKey="Eugene, Z" uniqKey="Eugene Z">Z. Eugene</name>
</author>
<author>
<name sortKey="Dan, H" uniqKey="Dan H">H. Dan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H W" uniqKey="Kim H">H.W. Kim</name>
</author>
<author>
<name sortKey="Kim, H E" uniqKey="Kim H">H.E. Kim</name>
</author>
<author>
<name sortKey="Salih, V" uniqKey="Salih V">V. Salih</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mucalo, M" uniqKey="Mucalo M">M. Mucalo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, C" uniqKey="Du C">C. Du</name>
</author>
<author>
<name sortKey="Cui, F Z" uniqKey="Cui F">F.Z. Cui</name>
</author>
<author>
<name sortKey="Feng, Q L" uniqKey="Feng Q">Q.L. Feng</name>
</author>
<author>
<name sortKey="Zhu, X D" uniqKey="Zhu X">X.D. Zhu</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K. de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller Mai, C M" uniqKey="Muller Mai C">C.M. Müller-Mai</name>
</author>
<author>
<name sortKey="Stupp, S I" uniqKey="Stupp S">S.I. Stupp</name>
</author>
<author>
<name sortKey="Voigt, C" uniqKey="Voigt C">C. Voigt</name>
</author>
<author>
<name sortKey="Gross, U" uniqKey="Gross U">U. Gross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pielichowska, K" uniqKey="Pielichowska K">K. Pielichowska</name>
</author>
<author>
<name sortKey="Blazewicz, S" uniqKey="Blazewicz S">S. Blazewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Tang, S" uniqKey="Tang S">S. Tang</name>
</author>
<author>
<name sortKey="He, Y" uniqKey="He Y">Y. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, I W" uniqKey="Bauer I">I.W. Bauer</name>
</author>
<author>
<name sortKey="Li, S P" uniqKey="Li S">S.P. Li</name>
</author>
<author>
<name sortKey="Han, Y C" uniqKey="Han Y">Y.C. Han</name>
</author>
<author>
<name sortKey="Yuan, L" uniqKey="Yuan L">L. Yuan</name>
</author>
<author>
<name sortKey="Yin, M Z" uniqKey="Yin M">M.Z. Yin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pezzatini, S" uniqKey="Pezzatini S">S. Pezzatini</name>
</author>
<author>
<name sortKey="Solito, R" uniqKey="Solito R">R. Solito</name>
</author>
<author>
<name sortKey="Morbidelli, L" uniqKey="Morbidelli L">L. Morbidelli</name>
</author>
<author>
<name sortKey="Lamponi, S" uniqKey="Lamponi S">S. Lamponi</name>
</author>
<author>
<name sortKey="Boanini, E" uniqKey="Boanini E">E. Boanini</name>
</author>
<author>
<name sortKey="Bigi, A" uniqKey="Bigi A">A. Bigi</name>
</author>
<author>
<name sortKey="Ziche, M" uniqKey="Ziche M">M. Ziche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
</author>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Yao, F" uniqKey="Yao F">F. Yao</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Yao, K" uniqKey="Yao K">K. Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cai, Y R" uniqKey="Cai Y">Y.R. Cai</name>
</author>
<author>
<name sortKey="Tang, R K" uniqKey="Tang R">R.K. Tang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, W" uniqKey="Sun W">W. Sun</name>
</author>
<author>
<name sortKey="Chu, C" uniqKey="Chu C">C. Chu</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Shaw, L L" uniqKey="Shaw L">L.L. Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Veljovic, " uniqKey="Veljovic ">Đ. Veljovic</name>
</author>
<author>
<name sortKey="Zalite, I" uniqKey="Zalite I">I. Zalite</name>
</author>
<author>
<name sortKey="Palcevskis, E" uniqKey="Palcevskis E">E. Palcevskis</name>
</author>
<author>
<name sortKey="Smiciklas, I" uniqKey="Smiciklas I">I. Smiciklas</name>
</author>
<author>
<name sortKey="Petrovic, R" uniqKey="Petrovic R">R. Petrovic</name>
</author>
<author>
<name sortKey="Janackovic, " uniqKey="Janackovic ">Đ. Janackovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eriksson, M" uniqKey="Eriksson M">M. Eriksson</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
<author>
<name sortKey="Gao, L" uniqKey="Gao L">L. Gao</name>
</author>
<author>
<name sortKey="Nigren, M" uniqKey="Nigren M">M. Nigren</name>
</author>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lukic, M J" uniqKey="Lukic M">M.J. Lukic</name>
</author>
<author>
<name sortKey="Veselinovic, L" uniqKey="Veselinovic L">L. Veselinovic</name>
</author>
<author>
<name sortKey="Stojanovic, Z" uniqKey="Stojanovic Z">Z. Stojanovic</name>
</author>
<author>
<name sortKey="Macek Krzmanc, M" uniqKey="Macek Krzmanc M">M. Macek-Krzmanc</name>
</author>
<author>
<name sortKey="Bracko, I" uniqKey="Bracko I">I. Bracko</name>
</author>
<author>
<name sortKey="Skapin, S D" uniqKey="Skapin S">S.D. Skapin</name>
</author>
<author>
<name sortKey="Markovic, S" uniqKey="Markovic S">S. Markovic</name>
</author>
<author>
<name sortKey="Uskokovic, D" uniqKey="Uskokovic D">D. Uskokovic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misiek, D J" uniqKey="Misiek D">D.J. Misiek</name>
</author>
<author>
<name sortKey="Kent, J N" uniqKey="Kent J">J.N. Kent</name>
</author>
<author>
<name sortKey="Carr, R F" uniqKey="Carr R">R.F. Carr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uskokovic, D P" uniqKey="Uskokovic D">D.P. Uskokovic</name>
</author>
<author>
<name sortKey="Palmour, H" uniqKey="Palmour H">H. Palmour</name>
</author>
<author>
<name sortKey="Spriggs, R M" uniqKey="Spriggs R">R.M. Spriggs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H W" uniqKey="Kim H">H.W. Kim</name>
</author>
<author>
<name sortKey="Kong, Y M" uniqKey="Kong Y">Y.M. Kong</name>
</author>
<author>
<name sortKey="Koh, Y H" uniqKey="Koh Y">Y.H. Koh</name>
</author>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
</author>
<author>
<name sortKey="Kim, H M" uniqKey="Kim H">H.M. Kim</name>
</author>
<author>
<name sortKey="Ko, J S" uniqKey="Ko J">J.S. Ko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bernache Assollant, D" uniqKey="Bernache Assollant D">D. Bernache-Assollant</name>
</author>
<author>
<name sortKey="Ababou, A" uniqKey="Ababou A">A. Ababou</name>
</author>
<author>
<name sortKey="Champion, E" uniqKey="Champion E">E. Champion</name>
</author>
<author>
<name sortKey="Heughebaert, M" uniqKey="Heughebaert M">M. Heughebaert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, S" uniqKey="Kobayashi S">S. Kobayashi</name>
</author>
<author>
<name sortKey="Kawai, W" uniqKey="Kawai W">W. Kawai</name>
</author>
<author>
<name sortKey="Wakayama, S" uniqKey="Wakayama S">S. Wakayama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, X M" uniqKey="Chen X">X.M. Chen</name>
</author>
<author>
<name sortKey="Wang, B" uniqKey="Wang B">B. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kasuga, T" uniqKey="Kasuga T">T. Kasuga</name>
</author>
<author>
<name sortKey="Ota, Y" uniqKey="Ota Y">Y. Ota</name>
</author>
<author>
<name sortKey="Tsuji, K" uniqKey="Tsuji K">K. Tsuji</name>
</author>
<author>
<name sortKey="Abe, Y" uniqKey="Abe Y">Y. Abe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suchanek, W L" uniqKey="Suchanek W">W.L. Suchanek</name>
</author>
<author>
<name sortKey="Yoshimura, M" uniqKey="Yoshimura M">M. Yoshimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, J G" uniqKey="Li J">J.G. Li</name>
</author>
<author>
<name sortKey="Hashida, T" uniqKey="Hashida T">T. Hashida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onoki, T" uniqKey="Onoki T">T. Onoki</name>
</author>
<author>
<name sortKey="Hashida, T" uniqKey="Hashida T">T. Hashida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uematsu, K" uniqKey="Uematsu K">K. Uematsu</name>
</author>
<author>
<name sortKey="Takagi, M" uniqKey="Takagi M">M. Takagi</name>
</author>
<author>
<name sortKey="Honda, T" uniqKey="Honda T">T. Honda</name>
</author>
<author>
<name sortKey="Uchida, N" uniqKey="Uchida N">N. Uchida</name>
</author>
<author>
<name sortKey="Saito, K" uniqKey="Saito K">K. Saito</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakahira, A" uniqKey="Nakahira A">A. Nakahira</name>
</author>
<author>
<name sortKey="Murakami, T" uniqKey="Murakami T">T. Murakami</name>
</author>
<author>
<name sortKey="Onoki, T" uniqKey="Onoki T">T. Onoki</name>
</author>
<author>
<name sortKey="Hashida, T" uniqKey="Hashida T">T. Hashida</name>
</author>
<author>
<name sortKey="Hosoi, K" uniqKey="Hosoi K">K. Hosoi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Auger, M A" uniqKey="Auger M">M.A. Auger</name>
</author>
<author>
<name sortKey="Savoini, B" uniqKey="Savoini B">B. Savoini</name>
</author>
<author>
<name sortKey="Mu Oz, A" uniqKey="Mu Oz A">A. Muñoz</name>
</author>
<author>
<name sortKey="Leguey, T" uniqKey="Leguey T">T. Leguey</name>
</author>
<author>
<name sortKey="Monge, M A" uniqKey="Monge M">M.A. Monge</name>
</author>
<author>
<name sortKey="Pareja, R" uniqKey="Pareja R">R. Pareja</name>
</author>
<author>
<name sortKey="Victoria, J" uniqKey="Victoria J">J. Victoria</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nath, S" uniqKey="Nath S">S. Nath</name>
</author>
<author>
<name sortKey="Basu, B" uniqKey="Basu B">B. Basu</name>
</author>
<author>
<name sortKey="Sinha, A" uniqKey="Sinha A">A. Sinha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramesh, S" uniqKey="Ramesh S">S. Ramesh</name>
</author>
<author>
<name sortKey="Tan, C Y" uniqKey="Tan C">C.Y. Tan</name>
</author>
<author>
<name sortKey="Bhaduri, S B" uniqKey="Bhaduri S">S.B. Bhaduri</name>
</author>
<author>
<name sortKey="Teng, W D" uniqKey="Teng W">W.D. Teng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Silva, C C" uniqKey="Silva C">C.C. Silva</name>
</author>
<author>
<name sortKey="Graca, M P F" uniqKey="Graca M">M.P.F. Graça</name>
</author>
<author>
<name sortKey="Sombra, A S B" uniqKey="Sombra A">A.S.B. Sombra</name>
</author>
<author>
<name sortKey="Valente, M A" uniqKey="Valente M">M.A. Valente</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Y W" uniqKey="Gu Y">Y.W. Gu</name>
</author>
<author>
<name sortKey="Loh, N H" uniqKey="Loh N">N.H. Loh</name>
</author>
<author>
<name sortKey="Khor, K A" uniqKey="Khor K">K.A. Khor</name>
</author>
<author>
<name sortKey="Tor, S B" uniqKey="Tor S">S.B. Tor</name>
</author>
<author>
<name sortKey="Cheang, P" uniqKey="Cheang P">P. Cheang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, X" uniqKey="Guo X">X. Guo</name>
</author>
<author>
<name sortKey="Xiao, P" uniqKey="Xiao P">P. Xiao</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J. Liu</name>
</author>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drouet, C" uniqKey="Drouet C">C. Drouet</name>
</author>
<author>
<name sortKey="Largeot, C" uniqKey="Largeot C">C. Largeot</name>
</author>
<author>
<name sortKey="Raimbeaux, G" uniqKey="Raimbeaux G">G. Raimbeaux</name>
</author>
<author>
<name sortKey="Estournes, C" uniqKey="Estournes C">C. Estournès</name>
</author>
<author>
<name sortKey="Dechambre, G" uniqKey="Dechambre G">G. Dechambre</name>
</author>
<author>
<name sortKey="Combes, C" uniqKey="Combes C">C. Combes</name>
</author>
<author>
<name sortKey="Rey, C" uniqKey="Rey C">C. Rey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Shen, Z" uniqKey="Shen Z">Z. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, W" uniqKey="Cao W">W. Cao</name>
</author>
<author>
<name sortKey="Hench, L L" uniqKey="Hench L">L.L. Hench</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hench, L L" uniqKey="Hench L">L.L. Hench</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramesh, S" uniqKey="Ramesh S">S. Ramesh</name>
</author>
<author>
<name sortKey="Tan, C Y" uniqKey="Tan C">C.Y. Tan</name>
</author>
<author>
<name sortKey="Sopyan, I" uniqKey="Sopyan I">I. Sopyan</name>
</author>
<author>
<name sortKey="Hamdi, M" uniqKey="Hamdi M">M. Hamdi</name>
</author>
<author>
<name sortKey="Teng, W D" uniqKey="Teng W">W.D. Teng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tancred, D C" uniqKey="Tancred D">D.C. Tancred</name>
</author>
<author>
<name sortKey="Mccormack, B A" uniqKey="Mccormack B">B.A. McCormack</name>
</author>
<author>
<name sortKey="Carr, A J" uniqKey="Carr A">A.J. Carr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murugan, R" uniqKey="Murugan R">R. Murugan</name>
</author>
<author>
<name sortKey="Ramakrishnan, S" uniqKey="Ramakrishnan S">S. Ramakrishnan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sopyan, I" uniqKey="Sopyan I">I. Sopyan</name>
</author>
<author>
<name sortKey="Mel, M" uniqKey="Mel M">M. Mel</name>
</author>
<author>
<name sortKey="Ramesh, S" uniqKey="Ramesh S">S. Ramesh</name>
</author>
<author>
<name sortKey="Khalid, K A" uniqKey="Khalid K">K.A. Khalid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karageorgiou, V" uniqKey="Karageorgiou V">V. Karageorgiou</name>
</author>
<author>
<name sortKey="Kaplan, D" uniqKey="Kaplan D">D. Kaplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bucholz, R W" uniqKey="Bucholz R">R.W. Bucholz</name>
</author>
<author>
<name sortKey="Carlton, A" uniqKey="Carlton A">A. Carlton</name>
</author>
<author>
<name sortKey="Holmes, R" uniqKey="Holmes R">R. Holmes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, J X" uniqKey="Lu J">J.X. Lu</name>
</author>
<author>
<name sortKey="Flautre, B" uniqKey="Flautre B">B. Flautre</name>
</author>
<author>
<name sortKey="Anselme, K" uniqKey="Anselme K">K. Anselme</name>
</author>
<author>
<name sortKey="Hardouin, P" uniqKey="Hardouin P">P. Hardouin</name>
</author>
<author>
<name sortKey="Gallur, A" uniqKey="Gallur A">A. Gallur</name>
</author>
<author>
<name sortKey="Descamps, M" uniqKey="Descamps M">M. Descamps</name>
</author>
<author>
<name sortKey="Thierry, B" uniqKey="Thierry B">B. Thierry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jones, A C" uniqKey="Jones A">A.C. Jones</name>
</author>
<author>
<name sortKey="Arns, C H" uniqKey="Arns C">C.H. Arns</name>
</author>
<author>
<name sortKey="Sheppard, A P" uniqKey="Sheppard A">A.P. Sheppard</name>
</author>
<author>
<name sortKey="Hutmacher, D W" uniqKey="Hutmacher D">D.W. Hutmacher</name>
</author>
<author>
<name sortKey="Milthorpe, B K" uniqKey="Milthorpe B">B.K. Milthorpe</name>
</author>
<author>
<name sortKey="Knackstedt, M A" uniqKey="Knackstedt M">M.A. Knackstedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ayers, R A" uniqKey="Ayers R">R.A. Ayers</name>
</author>
<author>
<name sortKey="Simske, S J" uniqKey="Simske S">S.J. Simske</name>
</author>
<author>
<name sortKey="Nunes, C R" uniqKey="Nunes C">C.R. Nunes</name>
</author>
<author>
<name sortKey="Wolford, L M" uniqKey="Wolford L">L.M. Wolford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gauthier, O" uniqKey="Gauthier O">O. Gauthier</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
<author>
<name sortKey="Weiss, P" uniqKey="Weiss P">P. Weiss</name>
</author>
<author>
<name sortKey="Bosco, J" uniqKey="Bosco J">J. Bosco</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
<author>
<name sortKey="Aguado, E" uniqKey="Aguado E">E. Aguado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hing, K A" uniqKey="Hing K">K.A. Hing</name>
</author>
<author>
<name sortKey="Best, S M" uniqKey="Best S">S.M. Best</name>
</author>
<author>
<name sortKey="Bonfield, W" uniqKey="Bonfield W">W. Bonfield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carotenuto, G" uniqKey="Carotenuto G">G. Carotenuto</name>
</author>
<author>
<name sortKey="Spagnuolo, G" uniqKey="Spagnuolo G">G. Spagnuolo</name>
</author>
<author>
<name sortKey="Ambrosio, L" uniqKey="Ambrosio L">L. Ambrosio</name>
</author>
<author>
<name sortKey="Nicolais, L" uniqKey="Nicolais L">L. Nicolais</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Charriere, E" uniqKey="Charriere E">E. Charriere</name>
</author>
<author>
<name sortKey="Lemaitre, J" uniqKey="Lemaitre J">J. Lemaitre</name>
</author>
<author>
<name sortKey="Zysset, P" uniqKey="Zysset P">P. Zysset</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yan, X" uniqKey="Yan X">X. Yan</name>
</author>
<author>
<name sortKey="Yu, C" uniqKey="Yu C">C. Yu</name>
</author>
<author>
<name sortKey="Zhou, X" uniqKey="Zhou X">X. Zhou</name>
</author>
<author>
<name sortKey="Tang, J" uniqKey="Tang J">J. Tang</name>
</author>
<author>
<name sortKey="Zhao, D" uniqKey="Zhao D">D. Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L. Zhou</name>
</author>
<author>
<name sortKey="Wang, D" uniqKey="Wang D">D. Wang</name>
</author>
<author>
<name sortKey="Huang, W" uniqKey="Huang W">W. Huang</name>
</author>
<author>
<name sortKey="Yao, A" uniqKey="Yao A">A. Yao</name>
</author>
<author>
<name sortKey="Kamitakahara, M" uniqKey="Kamitakahara M">M. Kamitakahara</name>
</author>
<author>
<name sortKey="Ioku, K" uniqKey="Ioku K">K. Ioku</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munch, E" uniqKey="Munch E">E. Munch</name>
</author>
<author>
<name sortKey="Franco, J" uniqKey="Franco J">J. Franco</name>
</author>
<author>
<name sortKey="Deville, S" uniqKey="Deville S">S. Deville</name>
</author>
<author>
<name sortKey="Hunger, P" uniqKey="Hunger P">P. Hunger</name>
</author>
<author>
<name sortKey="Saiz, E" uniqKey="Saiz E">E. Saiz</name>
</author>
<author>
<name sortKey="Tomsia, A P" uniqKey="Tomsia A">A.P. Tomsia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C W" uniqKey="Chen C">C.W. Chen</name>
</author>
<author>
<name sortKey="Riman, R E" uniqKey="Riman R">R.E. Riman</name>
</author>
<author>
<name sortKey="Ten Huisen, K S" uniqKey="Ten Huisen K">K.S. Ten Huisen</name>
</author>
<author>
<name sortKey="Brown, K" uniqKey="Brown K">K. Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nagase, M" uniqKey="Nagase M">M. Nagase</name>
</author>
<author>
<name sortKey="Baker, D G" uniqKey="Baker D">D.G. Baker</name>
</author>
<author>
<name sortKey="Schumacher, H R" uniqKey="Schumacher H">H.R. Schumacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rooney, T" uniqKey="Rooney T">T. Rooney</name>
</author>
<author>
<name sortKey="Berman, S" uniqKey="Berman S">S. Berman</name>
</author>
<author>
<name sortKey="Indersano, A T" uniqKey="Indersano A">A.T. Indersano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prudhommeaux, F" uniqKey="Prudhommeaux F">F. Prudhommeaux</name>
</author>
<author>
<name sortKey="Schiltz, C" uniqKey="Schiltz C">C. Schiltz</name>
</author>
<author>
<name sortKey="Liote, F" uniqKey="Liote F">F. Lioté</name>
</author>
<author>
<name sortKey="Hina, A" uniqKey="Hina A">A. Hina</name>
</author>
<author>
<name sortKey="Champy, R" uniqKey="Champy R">R. Champy</name>
</author>
<author>
<name sortKey="Bucki, B" uniqKey="Bucki B">B. Bucki</name>
</author>
<author>
<name sortKey="Ortiz Bravo, E" uniqKey="Ortiz Bravo E">E. Ortiz-Bravo</name>
</author>
<author>
<name sortKey="Meunier, A" uniqKey="Meunier A">A. Meunier</name>
</author>
<author>
<name sortKey="Rey, C" uniqKey="Rey C">C. Rey</name>
</author>
<author>
<name sortKey="Bardin, T" uniqKey="Bardin T">T. Bardin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Legeros, R Z" uniqKey="Legeros R">R.Z. LeGeros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gauthier, O" uniqKey="Gauthier O">O. Gauthier</name>
</author>
<author>
<name sortKey="Bouler, J M" uniqKey="Bouler J">J.M. Bouler</name>
</author>
<author>
<name sortKey="Aguado, E" uniqKey="Aguado E">E. Aguado</name>
</author>
<author>
<name sortKey="Pilet, P" uniqKey="Pilet P">P. Pilet</name>
</author>
<author>
<name sortKey="Daculsi, G" uniqKey="Daculsi G">G. Daculsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fujita, Y" uniqKey="Fujita Y">Y. Fujita</name>
</author>
<author>
<name sortKey="Yamamuro, T" uniqKey="Yamamuro T">T. Yamamuro</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T. Nakamura</name>
</author>
<author>
<name sortKey="Kotani, S" uniqKey="Kotani S">S. Kotani</name>
</author>
<author>
<name sortKey="Ohtsuki, C" uniqKey="Ohtsuki C">C. Ohtsuki</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T. Kokubo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, G" uniqKey="Jiang G">G. Jiang</name>
</author>
<author>
<name sortKey="Evans, M E" uniqKey="Evans M">M.E. Evans</name>
</author>
<author>
<name sortKey="Jones, I A" uniqKey="Jones I">I.A. Jones</name>
</author>
<author>
<name sortKey="Rudd, C D" uniqKey="Rudd C">C.D. Rudd</name>
</author>
<author>
<name sortKey="Scotchford, C A" uniqKey="Scotchford C">C.A. Scotchford</name>
</author>
<author>
<name sortKey="Walker, G S" uniqKey="Walker G">G.S. Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarcho, M" uniqKey="Jarcho M">M. Jarcho</name>
</author>
<author>
<name sortKey="Kay, J F" uniqKey="Kay J">J.F. Kay</name>
</author>
<author>
<name sortKey="Kennenth, I" uniqKey="Kennenth I">I. Kennenth</name>
</author>
<author>
<name sortKey="Gumaer, K I" uniqKey="Gumaer K">K.I. Gumaer</name>
</author>
<author>
<name sortKey="Doremus, R H" uniqKey="Doremus R">R.H. Doremus</name>
</author>
<author>
<name sortKey="Drobeck, H P" uniqKey="Drobeck H">H.P. Drobeck</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Driskell, T D" uniqKey="Driskell T">T.D. Driskell</name>
</author>
<author>
<name sortKey="Hassler, C R" uniqKey="Hassler C">C.R. Hassler</name>
</author>
<author>
<name sortKey="Tennery, V J" uniqKey="Tennery V">V.J. Tennery</name>
</author>
<author>
<name sortKey="Mccoy, I R" uniqKey="Mccoy I">I.R. McCoy</name>
</author>
<author>
<name sortKey="Clarke, W J" uniqKey="Clarke W">W.J. Clarke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lutz Christian, G" uniqKey="Lutz Christian G">G. Lutz-Christian</name>
</author>
<author>
<name sortKey="Boccaccini, A R" uniqKey="Boccaccini A">A.R. Boccaccini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vallet Regi, M" uniqKey="Vallet Regi M">M. Vallet-Regí</name>
</author>
<author>
<name sortKey="Balas, F" uniqKey="Balas F">F. Balas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nawawi, N A" uniqKey="Nawawi N">N.A. Nawawi</name>
</author>
<author>
<name sortKey="Alqap, A S F" uniqKey="Alqap A">A.S.F. Alqap</name>
</author>
<author>
<name sortKey="Sopyan, I" uniqKey="Sopyan I">I. Sopyan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Izquierdo Barba, I" uniqKey="Izquierdo Barba I">I. Izquierdo-Barba</name>
</author>
<author>
<name sortKey="Ruiz Gonzalez, L" uniqKey="Ruiz Gonzalez L">L. Ruiz-González</name>
</author>
<author>
<name sortKey="Doadrio, J C" uniqKey="Doadrio J">J.C. Doadrio</name>
</author>
<author>
<name sortKey="Gonzalez Calbet, J M" uniqKey="Gonzalez Calbet J">J.M. González-Calbet</name>
</author>
<author>
<name sortKey="Vallet Regi, M" uniqKey="Vallet Regi M">M. Vallet-Regí</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hermawan, H" uniqKey="Hermawan H">H. Hermawan</name>
</author>
<author>
<name sortKey="Ramdan, D" uniqKey="Ramdan D">D. Ramdan</name>
</author>
<author>
<name sortKey="Djuansjah, J R P" uniqKey="Djuansjah J">J.R.P. Djuansjah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heimke, G" uniqKey="Heimke G">G. Heimke</name>
</author>
<author>
<name sortKey="Griss, P" uniqKey="Griss P">P. Griss</name>
</author>
<author>
<name sortKey="Jentschura, G" uniqKey="Jentschura G">G. Jentschura</name>
</author>
<author>
<name sortKey="Werner, E" uniqKey="Werner E">E. Werner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ehrl, P A" uniqKey="Ehrl P">P.A. Ehrl</name>
</author>
<author>
<name sortKey="Reuther, J" uniqKey="Reuther J">J. Reuther</name>
</author>
<author>
<name sortKey="Frenkel, G" uniqKey="Frenkel G">G. Frenkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zweymuller, K" uniqKey="Zweymuller K">K. Zweymüller</name>
</author>
<author>
<name sortKey="Semlitsch, M" uniqKey="Semlitsch M">M. Semlitsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinotti, G" uniqKey="Cinotti G">G. Cinotti</name>
</author>
<author>
<name sortKey="Lucioli, N" uniqKey="Lucioli N">N. Lucioli</name>
</author>
<author>
<name sortKey="Malagoli, A" uniqKey="Malagoli A">A. Malagoli</name>
</author>
<author>
<name sortKey="Calderoli, C" uniqKey="Calderoli C">C. Calderoli</name>
</author>
<author>
<name sortKey="Cassese, F" uniqKey="Cassese F">F. Cassese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maccauro, G" uniqKey="Maccauro G">G. Maccauro</name>
</author>
<author>
<name sortKey="Iommetti, P R" uniqKey="Iommetti P">P.R. Iommetti</name>
</author>
<author>
<name sortKey="Raffaelli, L" uniqKey="Raffaelli L">L. Raffaelli</name>
</author>
<author>
<name sortKey="Manicone, P F" uniqKey="Manicone P">P.F. Manicone</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rettig, R" uniqKey="Rettig R">R. Rettig</name>
</author>
<author>
<name sortKey="Virtanen, S" uniqKey="Virtanen S">S. Virtanen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Aza, H" uniqKey="De Aza H">H. De Aza</name>
</author>
<author>
<name sortKey="Chevalier, J" uniqKey="Chevalier J">J. Chevalier</name>
</author>
<author>
<name sortKey="Fantozzi, G" uniqKey="Fantozzi G">G. Fantozzi</name>
</author>
<author>
<name sortKey="Schehl, M" uniqKey="Schehl M">M. Schehl</name>
</author>
<author>
<name sortKey="Torrecillas, R" uniqKey="Torrecillas R">R. Torrecillas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gamal, G A" uniqKey="Gamal G">G.A. Gamal</name>
</author>
<author>
<name sortKey="Al Mufadi, F A" uniqKey="Al Mufadi F">F.A. Al-Mufadi</name>
</author>
<author>
<name sortKey="Said, A H" uniqKey="Said A">A.H. Said</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Habibovic, P" uniqKey="Habibovic P">P. Habibovic</name>
</author>
<author>
<name sortKey="Barrere, F" uniqKey="Barrere F">F. Barrere</name>
</author>
<author>
<name sortKey="Van Blitterswijk, C A" uniqKey="Van Blitterswijk C">C.A. van Blitterswijk</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K. de Groot</name>
</author>
<author>
<name sortKey="Layrolle, P" uniqKey="Layrolle P">P. Layrolle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Itoh, S" uniqKey="Itoh S">S. Itoh</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M. Nakamura</name>
</author>
<author>
<name sortKey="Shinomiya, K" uniqKey="Shinomiya K">K. Shinomiya</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, C" uniqKey="Wu C">C. Wu</name>
</author>
<author>
<name sortKey="Ramaswamy, Y" uniqKey="Ramaswamy Y">Y. Ramaswamy</name>
</author>
<author>
<name sortKey="Gale, D" uniqKey="Gale D">D. Gale</name>
</author>
<author>
<name sortKey="Yang, W" uniqKey="Yang W">W. Yang</name>
</author>
<author>
<name sortKey="Xiao, K" uniqKey="Xiao K">K. Xiao</name>
</author>
<author>
<name sortKey="Zhang, L" uniqKey="Zhang L">L. Zhang</name>
</author>
<author>
<name sortKey="Yin, Y" uniqKey="Yin Y">Y. Yin</name>
</author>
<author>
<name sortKey="Zreiqat, H" uniqKey="Zreiqat H">H. Zreiqat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ergun, C" uniqKey="Ergun C">C. Ergun</name>
</author>
<author>
<name sortKey="Webster, T J" uniqKey="Webster T">T.J. Webster</name>
</author>
<author>
<name sortKey="Bizios, R" uniqKey="Bizios R">R. Bizios</name>
</author>
<author>
<name sortKey="Doremus, R H" uniqKey="Doremus R">R.H. Doremus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, T J" uniqKey="Webster T">T.J. Webster</name>
</author>
<author>
<name sortKey="Ergun, C" uniqKey="Ergun C">C. Ergun</name>
</author>
<author>
<name sortKey="Doremus, R H" uniqKey="Doremus R">R.H. Doremus</name>
</author>
<author>
<name sortKey="Bizios, R" uniqKey="Bizios R">R. Bizios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, Y W" uniqKey="Gu Y">Y.W. Gu</name>
</author>
<author>
<name sortKey="Khor, K A" uniqKey="Khor K">K.A. Khor</name>
</author>
<author>
<name sortKey="Cheang, P" uniqKey="Cheang P">P. Cheang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rizzi, S C" uniqKey="Rizzi S">S.C. Rizzi</name>
</author>
<author>
<name sortKey="Heath, D J" uniqKey="Heath D">D.J. Heath</name>
</author>
<author>
<name sortKey="Coombes, A G" uniqKey="Coombes A">A.G. Coombes</name>
</author>
<author>
<name sortKey="Bock, N" uniqKey="Bock N">N. Bock</name>
</author>
<author>
<name sortKey="Textor, M" uniqKey="Textor M">M. Textor</name>
</author>
<author>
<name sortKey="Downes, S" uniqKey="Downes S">S. Downes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furuzano, T" uniqKey="Furuzano T">T. Furuzano</name>
</author>
<author>
<name sortKey="Kisida, A" uniqKey="Kisida A">A. Kisida</name>
</author>
<author>
<name sortKey="Tanaka, J" uniqKey="Tanaka J">J. Tanaka</name>
</author>
<author>
<name sortKey="Matsuda, A" uniqKey="Matsuda A">A. Matsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Verma, D" uniqKey="Verma D">D. Verma</name>
</author>
<author>
<name sortKey="Katti, K" uniqKey="Katti K">K. Katti</name>
</author>
<author>
<name sortKey="Katti, D" uniqKey="Katti D">D. Katti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jui, C" uniqKey="Jui C">C. Jui</name>
</author>
<author>
<name sortKey="Sanghamitra, B" uniqKey="Sanghamitra B">B. Sanghamitra</name>
</author>
<author>
<name sortKey="Kumar, S M" uniqKey="Kumar S">S.M. Kumar</name>
</author>
<author>
<name sortKey="Debabrata, B" uniqKey="Debabrata B">B. Debabrata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
<author>
<name sortKey="Regeros, R" uniqKey="Regeros R">R. Regeros</name>
</author>
<author>
<name sortKey="Kim, J W" uniqKey="Kim J">J.-W. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akao, M" uniqKey="Akao M">M. Akao</name>
</author>
<author>
<name sortKey="Aoki, H" uniqKey="Aoki H">H. Aoki</name>
</author>
<author>
<name sortKey="Kato, K" uniqKey="Kato K">K. Kato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itatani, K" uniqKey="Itatani K">K. Itatani</name>
</author>
<author>
<name sortKey="Tsuchiya, K" uniqKey="Tsuchiya K">K. Tsuchiya</name>
</author>
<author>
<name sortKey="Sakka, Y" uniqKey="Sakka Y">Y. Sakka</name>
</author>
<author>
<name sortKey="Davies, I J" uniqKey="Davies I">I.J. Davies</name>
</author>
<author>
<name sortKey="Koda, S" uniqKey="Koda S">S. Koda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, G" uniqKey="Wei G">G. Wei</name>
</author>
<author>
<name sortKey="Ma, P X" uniqKey="Ma P">P.X. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuroda, K" uniqKey="Kuroda K">K. Kuroda</name>
</author>
<author>
<name sortKey="Nakamoto, S" uniqKey="Nakamoto S">S. Nakamoto</name>
</author>
<author>
<name sortKey="Miyashita, Y" uniqKey="Miyashita Y">Y. Miyashita</name>
</author>
<author>
<name sortKey="Ichino, R" uniqKey="Ichino R">R. Ichino</name>
</author>
<author>
<name sortKey="Okido, M" uniqKey="Okido M">M. Okido</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sivaprasad, K" uniqKey="Sivaprasad K">K. Sivaprasad</name>
</author>
<author>
<name sortKey="Siva Rama Krishna, D" uniqKey="Siva Rama Krishna D">D. Siva Rama Krishna</name>
</author>
<author>
<name sortKey="Sampath Kumar, T S" uniqKey="Sampath Kumar T">T.S. Sampath Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galea, L" uniqKey="Galea L">L. Galea</name>
</author>
<author>
<name sortKey="Alexeev, D" uniqKey="Alexeev D">D. Alexeev</name>
</author>
<author>
<name sortKey="Bohner, M" uniqKey="Bohner M">M. Bohner</name>
</author>
<author>
<name sortKey="Doebelin, N" uniqKey="Doebelin N">N. Doebelin</name>
</author>
<author>
<name sortKey="Studart, A R" uniqKey="Studart A">A.R. Studart</name>
</author>
<author>
<name sortKey="Aneziris, C G" uniqKey="Aneziris C">C.G. Aneziris</name>
</author>
<author>
<name sortKey="Graule, T" uniqKey="Graule T">T. Graule</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galea, L" uniqKey="Galea L">L. Galea</name>
</author>
<author>
<name sortKey="Bohner, M" uniqKey="Bohner M">M. Bohner</name>
</author>
<author>
<name sortKey="Thuering, J" uniqKey="Thuering J">J. Thuering</name>
</author>
<author>
<name sortKey="Doebelin, N" uniqKey="Doebelin N">N. Doebelin</name>
</author>
<author>
<name sortKey="Ring, T A" uniqKey="Ring T">T.A. Ring</name>
</author>
<author>
<name sortKey="Aneziris, C G" uniqKey="Aneziris C">C.G. Aneziris</name>
</author>
<author>
<name sortKey="Graule, T" uniqKey="Graule T">T. Graule</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Galea, L" uniqKey="Galea L">L. Galea</name>
</author>
<author>
<name sortKey="Bohner, M" uniqKey="Bohner M">M. Bohner</name>
</author>
<author>
<name sortKey="Thuering, J" uniqKey="Thuering J">J. Thuering</name>
</author>
<author>
<name sortKey="Doebelin, N" uniqKey="Doebelin N">N. Doebelin</name>
</author>
<author>
<name sortKey="Aneziris, C G" uniqKey="Aneziris C">C.G. Aneziris</name>
</author>
<author>
<name sortKey="Graule, T" uniqKey="Graule T">T. Graule</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luz, G M" uniqKey="Luz G">G.M. Luz</name>
</author>
<author>
<name sortKey="Mano, J F" uniqKey="Mano J">J.F. Mano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Finnemore, A" uniqKey="Finnemore A">A. Finnemore</name>
</author>
<author>
<name sortKey="Cunha, P" uniqKey="Cunha P">P. Cunha</name>
</author>
<author>
<name sortKey="Shean, T" uniqKey="Shean T">T. Shean</name>
</author>
<author>
<name sortKey="Vignolini, S" uniqKey="Vignolini S">S. Vignolini</name>
</author>
<author>
<name sortKey="Guldin, S" uniqKey="Guldin S">S. Guldin</name>
</author>
<author>
<name sortKey="Oyen, M" uniqKey="Oyen M">M. Oyen</name>
</author>
<author>
<name sortKey="Steiner, U" uniqKey="Steiner U">U. Steiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halouani, R" uniqKey="Halouani R">R. Halouani</name>
</author>
<author>
<name sortKey="Bernache Assolant, D" uniqKey="Bernache Assolant D">D. Bernache-Assolant</name>
</author>
<author>
<name sortKey="Champion, E" uniqKey="Champion E">E. Champion</name>
</author>
<author>
<name sortKey="Ababou, A" uniqKey="Ababou A">A. Ababou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Viswanath, B" uniqKey="Viswanath B">B. Viswanath</name>
</author>
<author>
<name sortKey="Ravishankar, N" uniqKey="Ravishankar N">N. Ravishankar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pezzotti, G" uniqKey="Pezzotti G">G. Pezzotti</name>
</author>
<author>
<name sortKey="Sakakura, S" uniqKey="Sakakura S">S. Sakakura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mobasherpour, I" uniqKey="Mobasherpour I">I. Mobasherpour</name>
</author>
<author>
<name sortKey="Hashjin, M S" uniqKey="Hashjin M">M.S. Hashjin</name>
</author>
<author>
<name sortKey="Toosi, S S R" uniqKey="Toosi S">S.S.R. Toosi</name>
</author>
<author>
<name sortKey="Kamachali, R D" uniqKey="Kamachali R">R.D. Kamachali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nath, S" uniqKey="Nath S">S. Nath</name>
</author>
<author>
<name sortKey="Biswas, K" uniqKey="Biswas K">K. Biswas</name>
</author>
<author>
<name sortKey="Basu, B" uniqKey="Basu B">B. Basu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aminzare, M" uniqKey="Aminzare M">M. Aminzare</name>
</author>
<author>
<name sortKey="Eskandari, A" uniqKey="Eskandari A">A. Eskandari</name>
</author>
<author>
<name sortKey="Barooniand, M H" uniqKey="Barooniand M">M.H. Barooniand</name>
</author>
<author>
<name sortKey="Berenov, A" uniqKey="Berenov A">A. Berenov</name>
</author>
<author>
<name sortKey="Razavi Hesabi, Z" uniqKey="Razavi Hesabi Z">Z. Razavi Hesabi</name>
</author>
<author>
<name sortKey="Taheri, M" uniqKey="Taheri M">M. Taheri</name>
</author>
<author>
<name sortKey="Sadrnezhaad, S K" uniqKey="Sadrnezhaad S">S.K. Sadrnezhaad</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hasegawa, M" uniqKey="Hasegawa M">M. Hasegawa</name>
</author>
<author>
<name sortKey="Sudo, A" uniqKey="Sudo A">A. Sudo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="White, A A" uniqKey="White A">A.A. White</name>
</author>
<author>
<name sortKey="Kinloch, I A" uniqKey="Kinloch I">I.A. Kinloch</name>
</author>
<author>
<name sortKey="Windle, A H" uniqKey="Windle A">A.H. Windle</name>
</author>
<author>
<name sortKey="Best, S M" uniqKey="Best S">S.M. Best</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gittings, J P" uniqKey="Gittings J">J.P. Gittings</name>
</author>
<author>
<name sortKey="Bowen, C R" uniqKey="Bowen C">C.R. Bowen</name>
</author>
<author>
<name sortKey="Turner, I G" uniqKey="Turner I">I.G. Turner</name>
</author>
<author>
<name sortKey="Dent, A C E" uniqKey="Dent A">A.C.E. Dent</name>
</author>
<author>
<name sortKey="Baxter, F R" uniqKey="Baxter F">F.R. Baxter</name>
</author>
<author>
<name sortKey="Chaudhuri, J B" uniqKey="Chaudhuri J">J.B. Chaudhuri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M. Nakamura</name>
</author>
<author>
<name sortKey="Nagai, A" uniqKey="Nagai A">A. Nagai</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y. Tanaka</name>
</author>
<author>
<name sortKey="Sekijima, Y" uniqKey="Sekijima Y">Y. Sekijima</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fukada, E" uniqKey="Fukada E">E. Fukada</name>
</author>
<author>
<name sortKey="Yasuda, I" uniqKey="Yasuda I">I. Yasuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tofail, S A M" uniqKey="Tofail S">S.A.M. Tofail</name>
</author>
<author>
<name sortKey="Baldisserri, C" uniqKey="Baldisserri C">C. Baldisserri</name>
</author>
<author>
<name sortKey="Haverty, D" uniqKey="Haverty D">D. Haverty</name>
</author>
<author>
<name sortKey="Mcmonagle, J B" uniqKey="Mcmonagle J">J.B. McMonagle</name>
</author>
<author>
<name sortKey="Erhart, J" uniqKey="Erhart J">J. Erhart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
<author>
<name sortKey="Oikawa, N" uniqKey="Oikawa N">N. Oikawa</name>
</author>
<author>
<name sortKey="Umegaki, T" uniqKey="Umegaki T">T. Umegaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teng, N C" uniqKey="Teng N">N.C. Teng</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Takagi, Y" uniqKey="Takagi Y">Y. Takagi</name>
</author>
<author>
<name sortKey="Yamashita, Y" uniqKey="Yamashita Y">Y. Yamashita</name>
</author>
<author>
<name sortKey="Ohgaki, M" uniqKey="Ohgaki M">M. Ohgaki</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, Y J" uniqKey="Park Y">Y.J. Park</name>
</author>
<author>
<name sortKey="Hwang, K S" uniqKey="Hwang K">K.S. Hwang</name>
</author>
<author>
<name sortKey="Song, J E" uniqKey="Song J">J.E. Song</name>
</author>
<author>
<name sortKey="Ong, J L" uniqKey="Ong J">J.L. Ong</name>
</author>
<author>
<name sortKey="Rawls, H R" uniqKey="Rawls H">H.R. Rawls</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W. Wang</name>
</author>
<author>
<name sortKey="Itoh, S" uniqKey="Itoh S">S. Itoh</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y. Tanaka</name>
</author>
<author>
<name sortKey="Nagai, A" uniqKey="Nagai A">A. Nagai</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M. Nakamura</name>
</author>
<author>
<name sortKey="Niwa, K" uniqKey="Niwa K">K. Niwa</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Sekijima, Y" uniqKey="Sekijima Y">Y. Sekijima</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iwasaki, T" uniqKey="Iwasaki T">T. Iwasaki</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y. Tanaka</name>
</author>
<author>
<name sortKey="Nakamura, M" uniqKey="Nakamura M">M. Nakamura</name>
</author>
<author>
<name sortKey="Nagai, A" uniqKey="Nagai A">A. Nagai</name>
</author>
<author>
<name sortKey="Hashimoto, K" uniqKey="Hashimoto K">K. Hashimoto</name>
</author>
<author>
<name sortKey="Toda, Y" uniqKey="Toda Y">Y. Toda</name>
</author>
<author>
<name sortKey="Katayama, K" uniqKey="Katayama K">K. Katayama</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Itoh, S" uniqKey="Itoh S">S. Itoh</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Shinomiya, K" uniqKey="Shinomiya K">K. Shinomiya</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sayer, M" uniqKey="Sayer M">M. Sayer</name>
</author>
<author>
<name sortKey="Stratilatov, A D" uniqKey="Stratilatov A">A.D. Stratilatov</name>
</author>
<author>
<name sortKey="Reid, J W" uniqKey="Reid J">J.W. Reid</name>
</author>
<author>
<name sortKey="Calderin, L" uniqKey="Calderin L">L. Calderin</name>
</author>
<author>
<name sortKey="Stott, M J" uniqKey="Stott M">M.J. Stott</name>
</author>
<author>
<name sortKey="Yin, X" uniqKey="Yin X">X. Yin</name>
</author>
<author>
<name sortKey="Mackenzie, M" uniqKey="Mackenzie M">M. MacKenzie</name>
</author>
<author>
<name sortKey="Smith, T J N" uniqKey="Smith T">T.J.N. Smith</name>
</author>
<author>
<name sortKey="Hendry, J A" uniqKey="Hendry J">J.A. Hendry</name>
</author>
<author>
<name sortKey="Langstaff, S D" uniqKey="Langstaff S">S.D. Langstaff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yuan, H" uniqKey="Yuan H">H. Yuan</name>
</author>
<author>
<name sortKey="Yang, Z" uniqKey="Yang Z">Z. Yang</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z. Zhang</name>
</author>
<author>
<name sortKey="De Bruijn, J D" uniqKey="De Bruijn J">J.D. de Bruijn</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K. de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyde, A" uniqKey="Boyde A">A. Boyde</name>
</author>
<author>
<name sortKey="Corsi, A" uniqKey="Corsi A">A. Corsi</name>
</author>
<author>
<name sortKey="Quarto, R" uniqKey="Quarto R">R. Quarto</name>
</author>
<author>
<name sortKey="Cancedda, R" uniqKey="Cancedda R">R. Cancedda</name>
</author>
<author>
<name sortKey="Bianco, P" uniqKey="Bianco P">P. Bianco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hwang, K S" uniqKey="Hwang K">K.S. Hwang</name>
</author>
<author>
<name sortKey="Song, J E" uniqKey="Song J">J.E. Song</name>
</author>
<author>
<name sortKey="Jo, J W" uniqKey="Jo J">J.W. Jo</name>
</author>
<author>
<name sortKey="Yang, H S" uniqKey="Yang H">H.S. Yang</name>
</author>
<author>
<name sortKey="Park, Y J" uniqKey="Park Y">Y.J. Park</name>
</author>
<author>
<name sortKey="Ong, J L" uniqKey="Ong J">J.L. Ong</name>
</author>
<author>
<name sortKey="Rawls, H R" uniqKey="Rawls H">H.R. Rawls</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uchino, K" uniqKey="Uchino K">K. Uchino</name>
</author>
<author>
<name sortKey="Sadanaga, E" uniqKey="Sadanaga E">E. Sadanaga</name>
</author>
<author>
<name sortKey="Hirose, T" uniqKey="Hirose T">T. Hirose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kerman, K" uniqKey="Kerman K">K. Kerman</name>
</author>
<author>
<name sortKey="Abazari, M" uniqKey="Abazari M">M. Abazari</name>
</author>
<author>
<name sortKey="Marandian Hagh, N" uniqKey="Marandian Hagh N">N. Marandian-Hagh</name>
</author>
<author>
<name sortKey="Akdogan, E K" uniqKey="Akdogan E">E.K. Akdogan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, J Y" uniqKey="Xu J">J.Y. Xu</name>
</author>
<author>
<name sortKey="Fan, S J" uniqKey="Fan S">S.J. Fan</name>
</author>
<author>
<name sortKey="Xu, X W" uniqKey="Xu X">X.W. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dubey, A K" uniqKey="Dubey A">A.K. Dubey</name>
</author>
<author>
<name sortKey="Anumol, E A" uniqKey="Anumol E">E.A. Anumol</name>
</author>
<author>
<name sortKey="Balani, K" uniqKey="Balani K">K. Balani</name>
</author>
<author>
<name sortKey="Basu, B" uniqKey="Basu B">B. Basu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J. Wang</name>
</author>
<author>
<name sortKey="Shaw, L L" uniqKey="Shaw L">L.L. Shaw</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dubey, A K" uniqKey="Dubey A">A.K. Dubey</name>
</author>
<author>
<name sortKey="Basu, B" uniqKey="Basu B">B. Basu</name>
</author>
<author>
<name sortKey="Balani, K" uniqKey="Balani K">K. Balani</name>
</author>
<author>
<name sortKey="Guo, R" uniqKey="Guo R">R. Guo</name>
</author>
<author>
<name sortKey="Bhalla, A S" uniqKey="Bhalla A">A.S. Bhalla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suarez, M" uniqKey="Suarez M">M. Suárez</name>
</author>
<author>
<name sortKey="Fernandez, A" uniqKey="Fernandez A">A. Fernández</name>
</author>
<author>
<name sortKey="Torrecillas, R" uniqKey="Torrecillas R">R. Torrecillas</name>
</author>
<author>
<name sortKey="Menendez, J L" uniqKey="Menendez J">J.L. Menéndez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanzaki, N" uniqKey="Kanzaki N">N. Kanzaki</name>
</author>
<author>
<name sortKey="Onuma, K" uniqKey="Onuma K">K. Onuma</name>
</author>
<author>
<name sortKey="Ito, A" uniqKey="Ito A">A. Ito</name>
</author>
<author>
<name sortKey="Teraoka, K" uniqKey="Teraoka K">K. Teraoka</name>
</author>
<author>
<name sortKey="Tateishi, T" uniqKey="Tateishi T">T. Tateishi</name>
</author>
<author>
<name sortKey="Tsutsumi, S" uniqKey="Tsutsumi S">S. Tsutsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gupta, T K" uniqKey="Gupta T">T.K. Gupta</name>
</author>
<author>
<name sortKey="Lange, F F" uniqKey="Lange F">F.F. Lange</name>
</author>
<author>
<name sortKey="Bechtold, J H" uniqKey="Bechtold J">J.H. Bechtold</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ioku, K J" uniqKey="Ioku K">K.J. Ioku</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Klimke, J" uniqKey="Klimke J">J. Klimke</name>
</author>
<author>
<name sortKey="Trunec, M" uniqKey="Trunec M">M. Trunec</name>
</author>
<author>
<name sortKey="Krell, A" uniqKey="Krell A">A. Krell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, Y" uniqKey="Fang Y">Y. Fang</name>
</author>
<author>
<name sortKey="Agrawal, D K" uniqKey="Agrawal D">D.K. Agrawal</name>
</author>
<author>
<name sortKey="Roy, D M" uniqKey="Roy D">D.M. Roy</name>
</author>
<author>
<name sortKey="Roy, R" uniqKey="Roy R">R. Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Damestani, Y" uniqKey="Damestani Y">Y. Damestani</name>
</author>
<author>
<name sortKey="Reynolds, C L" uniqKey="Reynolds C">C.L. Reynolds</name>
</author>
<author>
<name sortKey="Szu, J" uniqKey="Szu J">J. Szu</name>
</author>
<author>
<name sortKey="Hsu, M S" uniqKey="Hsu M">M.S. Hsu</name>
</author>
<author>
<name sortKey="Kodera, Y" uniqKey="Kodera Y">Y. Kodera</name>
</author>
<author>
<name sortKey="Binder, D K" uniqKey="Binder D">D.K. Binder</name>
</author>
<author>
<name sortKey="Park, B H" uniqKey="Park B">B.H. Park</name>
</author>
<author>
<name sortKey="Garay, J E" uniqKey="Garay J">J.E. Garay</name>
</author>
<author>
<name sortKey="Rao, M P" uniqKey="Rao M">M.P. Rao</name>
</author>
<author>
<name sortKey="Aguilar, G" uniqKey="Aguilar G">G. Aguilar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thamaraiselvi, T V" uniqKey="Thamaraiselvi T">T.V. Thamaraiselvi</name>
</author>
<author>
<name sortKey="Rajeswari, S" uniqKey="Rajeswari S">S. Rajeswari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotobuki, N" uniqKey="Kotobuki N">N. Kotobuki</name>
</author>
<author>
<name sortKey="Ioku, K" uniqKey="Ioku K">K. Ioku</name>
</author>
<author>
<name sortKey="Kawagoe, D" uniqKey="Kawagoe D">D. Kawagoe</name>
</author>
<author>
<name sortKey="Fujimori, H" uniqKey="Fujimori H">H. Fujimori</name>
</author>
<author>
<name sortKey="Goto, S" uniqKey="Goto S">S. Goto</name>
</author>
<author>
<name sortKey="Ohgushi, H" uniqKey="Ohgushi H">H. Ohgushi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Watanabe, Y" uniqKey="Watanabe Y">Y. Watanabe</name>
</author>
<author>
<name sortKey="Ikoma, T" uniqKey="Ikoma T">T. Ikoma</name>
</author>
<author>
<name sortKey="Monkawa, A" uniqKey="Monkawa A">A. Monkawa</name>
</author>
<author>
<name sortKey="Suetsugu, Y" uniqKey="Suetsugu Y">Y. Suetsugu</name>
</author>
<author>
<name sortKey="Yamada, H" uniqKey="Yamada H">H. Yamada</name>
</author>
<author>
<name sortKey="Tanaka, J" uniqKey="Tanaka J">J. Tanaka</name>
</author>
<author>
<name sortKey="Moriyoshi, Y" uniqKey="Moriyoshi Y">Y. Moriyoshi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Varma, H" uniqKey="Varma H">H. Varma</name>
</author>
<author>
<name sortKey="Vijayan, S P" uniqKey="Vijayan S">S.P. Vijayan</name>
</author>
<author>
<name sortKey="Babu, S S" uniqKey="Babu S">S.S. Babu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takikawa, K" uniqKey="Takikawa K">K. Takikawa</name>
</author>
<author>
<name sortKey="Akao, M" uniqKey="Akao M">M. Akao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boilet, L" uniqKey="Boilet L">L. Boilet</name>
</author>
<author>
<name sortKey="Descamps, M" uniqKey="Descamps M">M. Descamps</name>
</author>
<author>
<name sortKey="Rguiti, E" uniqKey="Rguiti E">E. Rguiti</name>
</author>
<author>
<name sortKey="Tricoteaux, A" uniqKey="Tricoteaux A">A. Tricoteaux</name>
</author>
<author>
<name sortKey="Lu, J" uniqKey="Lu J">J. Lu</name>
</author>
<author>
<name sortKey="Petit, F" uniqKey="Petit F">F. Petit</name>
</author>
<author>
<name sortKey="Lardot, V" uniqKey="Lardot V">V. Lardot</name>
</author>
<author>
<name sortKey="Cambier, F" uniqKey="Cambier F">F. Cambier</name>
</author>
<author>
<name sortKey="Leriche, A" uniqKey="Leriche A">A. Leriche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahn, E S" uniqKey="Ahn E">E.S. Ahn</name>
</author>
<author>
<name sortKey="Gleason, N J" uniqKey="Gleason N">N.J. Gleason</name>
</author>
<author>
<name sortKey="Nakahira, A" uniqKey="Nakahira A">A. Nakahira</name>
</author>
<author>
<name sortKey="Ying, J Y" uniqKey="Ying J">J.Y. Ying</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotobuki, N" uniqKey="Kotobuki N">N. Kotobuki</name>
</author>
<author>
<name sortKey="Kawagoe, D" uniqKey="Kawagoe D">D. Kawagoe</name>
</author>
<author>
<name sortKey="Fujimori, H" uniqKey="Fujimori H">H. Fujimori</name>
</author>
<author>
<name sortKey="Goto, S" uniqKey="Goto S">S. Goto</name>
</author>
<author>
<name sortKey="Ioku, K" uniqKey="Ioku K">K. Ioku</name>
</author>
<author>
<name sortKey="Ohgushi, H" uniqKey="Ohgushi H">H. Ohgushi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, N" uniqKey="Tan N">N. Tan</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z. Kou</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Leng, Y" uniqKey="Leng Y">Y. Leng</name>
</author>
<author>
<name sortKey="Liu, C" uniqKey="Liu C">C. Liu</name>
</author>
<author>
<name sortKey="He, D" uniqKey="He D">D. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawagoe, D" uniqKey="Kawagoe D">D. Kawagoe</name>
</author>
<author>
<name sortKey="Koga, Y" uniqKey="Koga Y">Y. Koga</name>
</author>
<author>
<name sortKey="Ishida, E H" uniqKey="Ishida E">E.H. Ishida</name>
</author>
<author>
<name sortKey="Kotobuki, N" uniqKey="Kotobuki N">N. Kotobuki</name>
</author>
<author>
<name sortKey="Ohgushi, H" uniqKey="Ohgushi H">H. Ohgushi</name>
</author>
<author>
<name sortKey="Ioku, K" uniqKey="Ioku K">K. Ioku</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barralet, J E" uniqKey="Barralet J">J.E. Barralet</name>
</author>
<author>
<name sortKey="Fleming, G J P" uniqKey="Fleming G">G.J.P. Fleming</name>
</author>
<author>
<name sortKey="Campion, C" uniqKey="Campion C">C. Campion</name>
</author>
<author>
<name sortKey="Harris, J J" uniqKey="Harris J">J.J. Harris</name>
</author>
<author>
<name sortKey="Wright, A J" uniqKey="Wright A">A.J. Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okada, M" uniqKey="Okada M">M. Okada</name>
</author>
<author>
<name sortKey="Furuzono, T" uniqKey="Furuzono T">T. Furuzono</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pietrzyk, B" uniqKey="Pietrzyk B">B. Pietrzyk</name>
</author>
<author>
<name sortKey="Gawronski, J" uniqKey="Gawronski J">J. Gawronski</name>
</author>
<author>
<name sortKey="Blaszczyk, T" uniqKey="Blaszczyk T">T. Blaszczyk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marcelo, T M" uniqKey="Marcelo T">T.M. Marcelo</name>
</author>
<author>
<name sortKey="Livramento, V" uniqKey="Livramento V">V. Livramento</name>
</author>
<author>
<name sortKey="Oliveira, M V" uniqKey="Oliveira M">M.V. Oliveira</name>
</author>
<author>
<name sortKey="Carvalho, M H" uniqKey="Carvalho M">M.H. Carvalho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yun, J" uniqKey="Yun J">J. Yun</name>
</author>
<author>
<name sortKey="Son, H" uniqKey="Son H">H. Son</name>
</author>
<author>
<name sortKey="Prajatelistia, E" uniqKey="Prajatelistia E">E. Prajatelistia</name>
</author>
<author>
<name sortKey="Han, Y H" uniqKey="Han Y">Y.-H. Han</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
<author>
<name sortKey="Kim, B N" uniqKey="Kim B">B.-N. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, B N" uniqKey="Kim B">B.-N. Kim</name>
</author>
<author>
<name sortKey="Prajatelistia, E" uniqKey="Prajatelistia E">E. Prajatelistia</name>
</author>
<author>
<name sortKey="Han, Y H" uniqKey="Han Y">Y.-H. Han</name>
</author>
<author>
<name sortKey="Son, H W" uniqKey="Son H">H.W. Son</name>
</author>
<author>
<name sortKey="Sakka, Y" uniqKey="Sakka Y">Y. Sakka</name>
</author>
<author>
<name sortKey="Kim, S" uniqKey="Kim S">S. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majling, J" uniqKey="Majling J">J. Majling</name>
</author>
<author>
<name sortKey="Kremni An, V" uniqKey="Kremni An V">V. Kremničan</name>
</author>
<author>
<name sortKey=" Urov Kova, R" uniqKey=" Urov Kova R">R. Ďurovčíkova</name>
</author>
<author>
<name sortKey="Svetik, S" uniqKey="Svetik S">Š. Svetík</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Agrawal, D K" uniqKey="Agrawal D">D.K. Agrawal</name>
</author>
<author>
<name sortKey="Fang, Y" uniqKey="Fang Y">Y. Fang</name>
</author>
<author>
<name sortKey="Roy, D M" uniqKey="Roy D">D.M. Roy</name>
</author>
<author>
<name sortKey="Roy, R" uniqKey="Roy R">R. Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuccu, A" uniqKey="Cuccu A">A. Cuccu</name>
</author>
<author>
<name sortKey="Montinaro, S" uniqKey="Montinaro S">S. Montinaro</name>
</author>
<author>
<name sortKey="Orru, R" uniqKey="Orru R">R. Orrù</name>
</author>
<author>
<name sortKey="Cao, G" uniqKey="Cao G">G. Cao</name>
</author>
<author>
<name sortKey="Bellucci, D" uniqKey="Bellucci D">D. Bellucci</name>
</author>
<author>
<name sortKey="Sola, A" uniqKey="Sola A">A. Sola</name>
</author>
<author>
<name sortKey="Cannillo, V" uniqKey="Cannillo V">V. Cannillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munir, Z A" uniqKey="Munir Z">Z.A. Munir</name>
</author>
<author>
<name sortKey="Quach, D V" uniqKey="Quach D">D.V. Quach</name>
</author>
<author>
<name sortKey="Ohyanagi, M" uniqKey="Ohyanagi M">M. Ohyanagi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Suarez, M" uniqKey="Suarez M">M. Suárez</name>
</author>
<author>
<name sortKey="Fernandez, A" uniqKey="Fernandez A">A. Fernández</name>
</author>
<author>
<name sortKey="Menendez, J L" uniqKey="Menendez J">J.L. Menéndez</name>
</author>
<author>
<name sortKey="Torrecillas, R" uniqKey="Torrecillas R">R. Torrecillas</name>
</author>
<author>
<name sortKey="Kessel, H U" uniqKey="Kessel H">H.U. Kessel</name>
</author>
<author>
<name sortKey="Hennicke, J" uniqKey="Hennicke J">J. Hennicke</name>
</author>
<author>
<name sortKey="Kirchner, R" uniqKey="Kirchner R">R. Kirchner</name>
</author>
<author>
<name sortKey="Kessel, T" uniqKey="Kessel T">T. Kessel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gentilman, R" uniqKey="Gentilman R">R. Gentilman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quarles, G J" uniqKey="Quarles G">G.J. Quarles</name>
</author>
<author>
<name sortKey="Castillo, V K" uniqKey="Castillo V">V.K. Castillo</name>
</author>
<author>
<name sortKey="Dumm, J Q" uniqKey="Dumm J">J.Q. Dumm</name>
</author>
<author>
<name sortKey="Messing, S G" uniqKey="Messing S">S.G. Messing</name>
</author>
<author>
<name sortKey="Lee, L H" uniqKey="Lee L">L.-H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ikesue, A" uniqKey="Ikesue A">A. Ikesue</name>
</author>
<author>
<name sortKey="Aung, Y L" uniqKey="Aung Y">Y.L. Aung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maca, K" uniqKey="Maca K">K. Maca</name>
</author>
<author>
<name sortKey="Trunec, M" uniqKey="Trunec M">M. Trunec</name>
</author>
<author>
<name sortKey="Chmelik, R" uniqKey="Chmelik R">R. Chmelik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarcho, M" uniqKey="Jarcho M">M. Jarcho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fang, Y" uniqKey="Fang Y">Y. Fang</name>
</author>
<author>
<name sortKey="Agrawal, Dk" uniqKey="Agrawal D">DK. Agrawal</name>
</author>
<author>
<name sortKey="Roy, D M" uniqKey="Roy D">D.M. Roy</name>
</author>
<author>
<name sortKey="Roy, R" uniqKey="Roy R">R. Roy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S. Li</name>
</author>
<author>
<name sortKey="Izui, H" uniqKey="Izui H">H. Izui</name>
</author>
<author>
<name sortKey="Okano, M" uniqKey="Okano M">M. Okano</name>
</author>
<author>
<name sortKey="Watanabe, T" uniqKey="Watanabe T">T. Watanabe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakahira, A" uniqKey="Nakahira A">A. Nakahira</name>
</author>
<author>
<name sortKey="Tamai, M" uniqKey="Tamai M">M. Tamai</name>
</author>
<author>
<name sortKey="Eguchi, K" uniqKey="Eguchi K">K. Eguchi</name>
</author>
<author>
<name sortKey="Nakamura, S" uniqKey="Nakamura S">S. Nakamura</name>
</author>
<author>
<name sortKey="Yamashita, K" uniqKey="Yamashita K">K. Yamashita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majling, J" uniqKey="Majling J">J. Majling</name>
</author>
<author>
<name sortKey="Znaik, P" uniqKey="Znaik P">P. Znaik</name>
</author>
<author>
<name sortKey="Palova, A" uniqKey="Palova A">A. Palova</name>
</author>
<author>
<name sortKey="Svetik, S" uniqKey="Svetik S">S. Svetik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benaqqa, C" uniqKey="Benaqqa C">C. Benaqqa</name>
</author>
<author>
<name sortKey="Chevalier, J" uniqKey="Chevalier J">J. Chevalier</name>
</author>
<author>
<name sortKey="Sa Daoui, M" uniqKey="Sa Daoui M">M. Saädaoui</name>
</author>
<author>
<name sortKey="Fantozzi, G" uniqKey="Fantozzi G">G. Fantozzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ioku, K" uniqKey="Ioku K">K. Ioku</name>
</author>
<author>
<name sortKey="Yamamoto, K" uniqKey="Yamamoto K">K. Yamamoto</name>
</author>
<author>
<name sortKey="Yanagisawa, K" uniqKey="Yanagisawa K">K. Yanagisawa</name>
</author>
<author>
<name sortKey="Yamasaki, N" uniqKey="Yamasaki N">N. Yamasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gandhi, A A" uniqKey="Gandhi A">A.A. Gandhi</name>
</author>
<author>
<name sortKey="Gunning, R D" uniqKey="Gunning R">R.D. Gunning</name>
</author>
<author>
<name sortKey="Ryan, K M" uniqKey="Ryan K">K.M. Ryan</name>
</author>
<author>
<name sortKey="Tofail, S A M" uniqKey="Tofail S">S.A.M. Tofail</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uehira, M" uniqKey="Uehira M">M. Uehira</name>
</author>
<author>
<name sortKey="Okada, M" uniqKey="Okada M">M. Okada</name>
</author>
<author>
<name sortKey="Takeda, S" uniqKey="Takeda S">S. Takeda</name>
</author>
<author>
<name sortKey="Matsumoto, N" uniqKey="Matsumoto N">N. Matsumoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhong, L" uniqKey="Zhong L">L. Zhong</name>
</author>
<author>
<name sortKey="Khor, K A" uniqKey="Khor K">K.A. Khor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aoki, H" uniqKey="Aoki H">H. Aoki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T. Kokubo</name>
</author>
<author>
<name sortKey="Kushitani, H" uniqKey="Kushitani H">H. Kushitani</name>
</author>
<author>
<name sortKey="Sakka, S" uniqKey="Sakka S">S. Sakka</name>
</author>
<author>
<name sortKey="Kitsugi, T" uniqKey="Kitsugi T">T. Kitsugi</name>
</author>
<author>
<name sortKey="Yamamuro, T" uniqKey="Yamamuro T">T. Yamamuro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pintar, F A" uniqKey="Pintar F">F.A. Pintar</name>
</author>
<author>
<name sortKey="Yoganandan, N" uniqKey="Yoganandan N">N. Yoganandan</name>
</author>
<author>
<name sortKey="Myers, T" uniqKey="Myers T">T. Myers</name>
</author>
<author>
<name sortKey="Elhagediab, A" uniqKey="Elhagediab A">A. Elhagediab</name>
</author>
<author>
<name sortKey="Sances, A" uniqKey="Sances A">A. Sances</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Currey, J D" uniqKey="Currey J">J.D. Currey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rigaldie, Y" uniqKey="Rigaldie Y">Y. Rigaldie</name>
</author>
<author>
<name sortKey="Lemagnen, G" uniqKey="Lemagnen G">G. Lemagnen</name>
</author>
<author>
<name sortKey="Largeteau, A" uniqKey="Largeteau A">A. Largeteau</name>
</author>
<author>
<name sortKey="Larrouture, D" uniqKey="Larrouture D">D. Larrouture</name>
</author>
<author>
<name sortKey="Abba, M" uniqKey="Abba M">M. Abba</name>
</author>
<author>
<name sortKey="Durandeau, C" uniqKey="Durandeau C">C. Durandeau</name>
</author>
<author>
<name sortKey="Vallayer, B" uniqKey="Vallayer B">B. Vallayer</name>
</author>
<author>
<name sortKey="Grislain, L" uniqKey="Grislain L">L. Grislain</name>
</author>
<author>
<name sortKey="Demazeau, G" uniqKey="Demazeau G">G. Demazeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rigaldie, Y" uniqKey="Rigaldie Y">Y. Rigaldie</name>
</author>
<author>
<name sortKey="Largeteau, A" uniqKey="Largeteau A">A. Largeteau</name>
</author>
<author>
<name sortKey="Lemagnen, G" uniqKey="Lemagnen G">G. Lemagnen</name>
</author>
<author>
<name sortKey="Ibalot, F" uniqKey="Ibalot F">F. Ibalot</name>
</author>
<author>
<name sortKey="Pardon, P" uniqKey="Pardon P">P. Pardon</name>
</author>
<author>
<name sortKey="Demazeau, G" uniqKey="Demazeau G">G. Demazeau</name>
</author>
<author>
<name sortKey="Grislain, L" uniqKey="Grislain L">L. Grislain</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Funct Biomater</journal-id>
<journal-id journal-id-type="iso-abbrev">J Funct Biomater</journal-id>
<journal-id journal-id-type="publisher-id">jfb</journal-id>
<journal-title-group>
<journal-title>Journal of Functional Biomaterials</journal-title>
</journal-title-group>
<issn pub-type="epub">2079-4983</issn>
<publisher>
<publisher-name>MDPI</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26703750</article-id>
<article-id pub-id-type="pmc">4695913</article-id>
<article-id pub-id-type="doi">10.3390/jfb6041099</article-id>
<article-id pub-id-type="publisher-id">jfb-06-01099</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Review</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Prakasam</surname>
<given-names>Mythili</given-names>
</name>
<xref ref-type="aff" rid="af1-jfb-06-01099">1</xref>
<xref ref-type="author-notes" rid="fn1-jfb-06-01099"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Locs</surname>
<given-names>Janis</given-names>
</name>
<xref ref-type="aff" rid="af2-jfb-06-01099">2</xref>
<xref ref-type="author-notes" rid="fn1-jfb-06-01099"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Salma-Ancane</surname>
<given-names>Kristine</given-names>
</name>
<xref ref-type="aff" rid="af2-jfb-06-01099">2</xref>
<xref ref-type="author-notes" rid="fn1-jfb-06-01099"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Loca</surname>
<given-names>Dagnija</given-names>
</name>
<xref ref-type="aff" rid="af2-jfb-06-01099">2</xref>
<xref ref-type="author-notes" rid="fn1-jfb-06-01099"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Largeteau</surname>
<given-names>Alain</given-names>
</name>
<xref ref-type="aff" rid="af1-jfb-06-01099">1</xref>
<xref ref-type="author-notes" rid="fn1-jfb-06-01099"></xref>
<xref rid="c1-jfb-06-01099" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Berzina-Cimdina</surname>
<given-names>Liga</given-names>
</name>
<xref ref-type="aff" rid="af2-jfb-06-01099">2</xref>
<xref ref-type="author-notes" rid="fn1-jfb-06-01099"></xref>
</contrib>
</contrib-group>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Bigi</surname>
<given-names>Adriana</given-names>
</name>
<role>Academic Editor</role>
</contrib>
</contrib-group>
<aff id="af1-jfb-06-01099">
<label>1</label>
CNRS, Université de Bordeaux, ICMCB, 87 avenue du Dr. A. Schweitzer, Pessac F-33608, France; E-Mail:
<email>mythili.prakasam@gmail.com</email>
</aff>
<aff id="af2-jfb-06-01099">
<label>2</label>
Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka 3, Riga LV-1007, Latvia; E-Mails:
<email>janis.locs@rtu.lv</email>
(J.L.);
<email>kristine.salma-ancane@rtu.lv</email>
(K.S.-A.);
<email>dagnija.loca@rtu.lv</email>
(D.L.);
<email>liga@ktf.rtu.lv</email>
(L.B.-C.)</aff>
<author-notes>
<fn id="fn1-jfb-06-01099">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
<corresp id="c1-jfb-06-01099">
<label>*</label>
Author to whom correspondence should be addressed; E-Mail:
<email>alain.largeteau@icmcb.cnrs.fr</email>
; Tel.: +33-540-008-951; Fax: +33-540-002-761.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>21</day>
<month>12</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<month>12</month>
<year>2015</year>
</pub-date>
<volume>6</volume>
<issue>4</issue>
<fpage>1099</fpage>
<lpage>1140</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>10</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>09</day>
<month>12</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 by the authors; licensee MDPI, Basel, Switzerland.</copyright-statement>
<copyright-year>2015</copyright-year>
<license>
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction,
<italic>etc.</italic>
Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better
<italic>in vitro</italic>
/
<italic>in vivo</italic>
methodologies to afford more particular outcomes.</p>
</abstract>
<kwd-group>
<kwd>biomaterials</kwd>
<kwd>dense ceramics</kwd>
<kwd>hydroxyapatite</kwd>
<kwd>bioceramics</kwd>
<kwd>properties</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec1-jfb-06-01099">
<title>1. Introduction</title>
<p>Surplus demands and requirements for synthetic bone substitutes have been experienced in the last few decades, owing to the number of accidents/trauma and inherent bone defects by birth/age/diseases. Significant demand from clinics is known in the fields of cranial, dental, maxillofacial, orthopedic and spinal applications. Recent improvements in materials and cell engineering and surgical bone grafting techniques have been a boon to cure many patients across the world. Constant innovation in stem cells, biomaterials, artificial organs and their recent success stories shows a clear evolution in the human biological sciences. Though the current technologies can be considered as mature, many developments and improvements are required to mimic the biological properties of a human closely. For example, when considering a biomaterial to be used in implants or bone grafts, various aspects, such as biocompatibility, osteogenic properties (interaction with osteoblasts/osteoclasts), bioactivity and its mechanical functions, based on its functionalities have to be studied. Bone (
<xref ref-type="fig" rid="jfb-06-01099-f001">Figure 1</xref>
) in the human body can be defined as a composite of hydroxyapatite [
<xref rid="B1-jfb-06-01099" ref-type="bibr">1</xref>
] (HAp) Ca
<sub>10</sub>
(OH)
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
, type-I collagen, water, cells and lipids. The cells of the osseous tissue are shown in
<xref ref-type="fig" rid="jfb-06-01099-f002">Figure 2</xref>
. Bones [
<xref rid="B2-jfb-06-01099" ref-type="bibr">2</xref>
,
<xref rid="B3-jfb-06-01099" ref-type="bibr">3</xref>
,
<xref rid="B4-jfb-06-01099" ref-type="bibr">4</xref>
,
<xref rid="B5-jfb-06-01099" ref-type="bibr">5</xref>
,
<xref rid="B6-jfb-06-01099" ref-type="bibr">6</xref>
,
<xref rid="B7-jfb-06-01099" ref-type="bibr">7</xref>
,
<xref rid="B8-jfb-06-01099" ref-type="bibr">8</xref>
,
<xref rid="B9-jfb-06-01099" ref-type="bibr">9</xref>
,
<xref rid="B10-jfb-06-01099" ref-type="bibr">10</xref>
] are formed in the body as a result of the osteoblast matrix formed by HAp crystals. Bone is comprised of two distinct forms: one is porous (cancellous bone) and the other dense (cortical bone). Cancellous bone contains hemocytoblasts, proerythroblasts and bone marrow. Cancellous bone has a lower Young’s modulus and is more elastic compared to cortical bone. The porous structure consists of pore sizes in the range of 200–500 μm, and cancellous bone constitutes 30%–90% of the porosity. The porosity content alters depending on the load, age and health state of the bone. Cortical bone is the outer layer of the bone that aids in providing the shape and form of the bone. Eighty percent of the skeleton is composed of cortical bone. Cortical bone stacks osteons or Harversian systems in the form of interstitial lamellae [
<xref rid="B11-jfb-06-01099" ref-type="bibr">11</xref>
,
<xref rid="B12-jfb-06-01099" ref-type="bibr">12</xref>
,
<xref rid="B13-jfb-06-01099" ref-type="bibr">13</xref>
]. In the case of loss of bone, bone grafting is used, and solutions are chosen based on the required biomechanical properties, chemical composition, bone mass and size of the defect site. Different types of bone grafting methods are employed. A few of the bone grafting methods are autografting (cancellous/cortical bones), allograft [
<xref rid="B14-jfb-06-01099" ref-type="bibr">14</xref>
] (cancellous/demineralized bone matrix (DBM)) and bone graft substitutes (HAp/tricalcium phosphates Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
(TCP)/biphasic calcium phosphates (BCP)/bioactive composites, growth factors). The mechanical properties of the bone tissues are given in
<xref ref-type="table" rid="jfb-06-01099-t001">Table 1</xref>
.</p>
<p>Besides its bioactivity, the chemical structure of HAp is similar to the mineral component of mammalian bones and other hard tissues, such as teeth and mineralized cartilage. Depending on its stoichiometry, HAp has different temperature ranges of decomposition from 800° to 1200° [
<xref rid="B15-jfb-06-01099" ref-type="bibr">15</xref>
,
<xref rid="B16-jfb-06-01099" ref-type="bibr">16</xref>
] and hence is known for its thermal instability. HAp is one of the widely-explored biomaterials for its medical applications, being a stable calcium phosphate [
<xref rid="B4-jfb-06-01099" ref-type="bibr">4</xref>
,
<xref rid="B5-jfb-06-01099" ref-type="bibr">5</xref>
] under physiological conditions, and has led to studies on synthetic HAp for bone substitution and bone remodeling applications. Not limited to the applications above, HAp is also used as matrices for controlled drug release and bone tissue engineering, besides its biocompatibility with soft tissues is also used for hard tissue repair. Hence, HAp is most commonly used in bone regeneration in the form of bone graft materials, coatings for implants and as bone fillers. Currently, synthetic HAp finds a wide range of applications in the form of powders, micro-/nano-crystals, dense or porous blocks/sheets/ceramics, thin films, composites with glasses, metals and polymers for various biomedical applications [
<xref rid="B17-jfb-06-01099" ref-type="bibr">17</xref>
,
<xref rid="B18-jfb-06-01099" ref-type="bibr">18</xref>
]. Various ceramics are used in biomedical applications, and their mechanical strength is given in
<xref ref-type="table" rid="jfb-06-01099-t002">Table 2</xref>
and
<xref ref-type="table" rid="jfb-06-01099-t003">Table 3</xref>
, respectively. Early HAp components found applications in maxillofacial surgeries, bioinert implants as a coating, periodontal lesion filling, regions of a skeleton with low mechanical load and as coatings on orthopedic prostheses. Recent research progress has focused more efforts on the development of HAp components for high strength bone implants in the form of dense ceramics or as thin films. Currently, titanium is one of the most widely-chosen metals for medical applications as a load-bearing substitute. Any of the bioactive implant used should be biocompatible, non-toxic and tougher than bone and have a modulus equivalent to the bone. Of all of the properties above, HAp is considered as a viable prospect for bioactive bone implants. Each of the aforesaid bone grafting materials has different degrees of properties for their structural strength, osteoconduction, osteoinduction and osteogenicity.</p>
<fig id="jfb-06-01099-f001" position="float">
<label>Figure 1</label>
<caption>
<p>Cross-section of human bone morphology [
<xref rid="B19-jfb-06-01099" ref-type="bibr">19</xref>
].</p>
</caption>
<graphic xlink:href="jfb-06-01099-g001"></graphic>
</fig>
<fig id="jfb-06-01099-f002" position="float">
<label>Figure 2</label>
<caption>
<p>Cells of osseous tissue [
<xref rid="B20-jfb-06-01099" ref-type="bibr">20</xref>
].</p>
</caption>
<graphic xlink:href="jfb-06-01099-g002"></graphic>
</fig>
<table-wrap id="jfb-06-01099-t001" position="float">
<object-id pub-id-type="pii">jfb-06-01099-t001_Table 1</object-id>
<label>Table 1</label>
<caption>
<p>Mechanical properties of bone tissues [
<xref rid="B21-jfb-06-01099" ref-type="bibr">21</xref>
,
<xref rid="B22-jfb-06-01099" ref-type="bibr">22</xref>
,
<xref rid="B23-jfb-06-01099" ref-type="bibr">23</xref>
,
<xref rid="B24-jfb-06-01099" ref-type="bibr">24</xref>
].</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" rowspan="1" colspan="1">Type of Bone</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Compression Resistance (MPa)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Flexion Resistance (MPa)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Tension Resistance (MPa)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Modulus (GPa)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Porosity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Cortical</td>
<td align="center" valign="middle" rowspan="1" colspan="1">130–180</td>
<td align="center" valign="middle" rowspan="1" colspan="1">135–193</td>
<td align="center" valign="middle" rowspan="1" colspan="1">50–151</td>
<td align="center" valign="middle" rowspan="1" colspan="1">12–18</td>
<td align="center" valign="middle" rowspan="1" colspan="1">5–13</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Spongy</td>
<td align="center" valign="middle" rowspan="1" colspan="1">4–12</td>
<td align="center" valign="middle" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" rowspan="1" colspan="1">1–5</td>
<td align="center" valign="middle" rowspan="1" colspan="1">0.1–0.5</td>
<td align="center" valign="middle" rowspan="1" colspan="1">30–90</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="jfb-06-01099-t002" position="float">
<object-id pub-id-type="pii">jfb-06-01099-t002_Table 2</object-id>
<label>Table 2</label>
<caption>
<p>Ceramics used in biomedical applications.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" rowspan="1" colspan="1">Ceramic</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Chemical Formula</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Alumina </td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Al
<sub>2</sub>
O
<sub>3</sub>
</td>
<td rowspan="3" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Bioinert</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Zirconia</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">ZrO
<sub>2</sub>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Pyrolytic carbon</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Py-C</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bioglass</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Na
<sub>2</sub>
OCaOP
<sub>2</sub>
O
<sub>3</sub>
-SiO</td>
<td rowspan="2" align="center" valign="middle" style="border-bottom:solid thin" colspan="1">Bioactive</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hydroxyapatite (sintered at high temperature)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ca
<sub>10</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(OH)
<sub>2</sub>
</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hydroxyapatite ( sintered at low temperature)</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ca
<sub>10</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(OH)
<sub>2</sub>
</td>
<td rowspan="2" align="center" valign="middle" colspan="1">Biodegradable</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Tricalcium phosphate</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="jfb-06-01099-t003" position="float">
<object-id pub-id-type="pii">jfb-06-01099-t003_Table 3</object-id>
<label>Table 3</label>
<caption>
<p>Mechanical properties of ceramic biomaterials [
<xref rid="B19-jfb-06-01099" ref-type="bibr">19</xref>
,
<xref rid="B25-jfb-06-01099" ref-type="bibr">25</xref>
,
<xref rid="B26-jfb-06-01099" ref-type="bibr">26</xref>
,
<xref rid="B27-jfb-06-01099" ref-type="bibr">27</xref>
].</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" rowspan="1" colspan="1">Name</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Young’s Modulus E (GPa)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Compressive Strength σ (MPa)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Tensile Strength σ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Alumina</td>
<td align="center" valign="middle" rowspan="1" colspan="1">380</td>
<td align="center" valign="middle" rowspan="1" colspan="1">4500</td>
<td align="center" valign="middle" rowspan="1" colspan="1">350</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Bioglass-ceramics</td>
<td align="center" valign="middle" rowspan="1" colspan="1">22</td>
<td align="center" valign="middle" rowspan="1" colspan="1">500</td>
<td align="center" valign="middle" rowspan="1" colspan="1">56–83</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Calcium phosphates</td>
<td align="center" valign="middle" rowspan="1" colspan="1">40–117</td>
<td align="center" valign="middle" rowspan="1" colspan="1">510–896</td>
<td align="center" valign="middle" rowspan="1" colspan="1">69–193</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Pyrolytic carbon</td>
<td align="center" valign="middle" rowspan="1" colspan="1">18–28</td>
<td align="center" valign="middle" rowspan="1" colspan="1">517</td>
<td align="center" valign="middle" rowspan="1" colspan="1">280–560</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>There are a number of research publications, patents and commercial products for artificial cancellous bone, but lesser for artificial cortical bone in comparison to cancellous bone. The porous structure of cancellous bone makes it unacceptable to be used for load-bearing cortical/compact bone functions. There is a report [
<xref rid="B28-jfb-06-01099" ref-type="bibr">28</xref>
] on obtaining stable load-bearing systems by applying pressure and compacting the cancellous bone. Other types of allogenic bones used are DBM, cortical braces, bone flakes and huge allografts. Allograft bones are prone to infections and long healing process, whereas DBMs are obtained from cadaveric bones (from known sources with strict regulations for decontamination). Cortical brace grafts can provide mechanical integrity, but lack osteogenic cells. Various types of bone graft substitutes have been studied to date. The usage of ceramics for medical applications has been prevalent for many centuries. TCP [
<xref rid="B29-jfb-06-01099" ref-type="bibr">29</xref>
] was reported to be used for repairing bone defects in the early 19th century. During 1969, many researchers reported on the different types of glasses and ceramics designed for medical applications, collectively called “bioceramics.” Bioceramics include glass, glass ceramics, alumina (Al
<sub>2</sub>
O
<sub>3</sub>
), zirconia (ZrO
<sub>2</sub>
), thin film coatings, metal composites, HAp and resorbable calcium phosphates [
<xref rid="B6-jfb-06-01099" ref-type="bibr">6</xref>
,
<xref rid="B7-jfb-06-01099" ref-type="bibr">7</xref>
,
<xref rid="B8-jfb-06-01099" ref-type="bibr">8</xref>
,
<xref rid="B9-jfb-06-01099" ref-type="bibr">9</xref>
,
<xref rid="B10-jfb-06-01099" ref-type="bibr">10</xref>
]. Bioceramics are characterized by their nontoxicity, chemical stability in biological medium and biocompatibility. The functions of bioceramics can be separated into bioinert, bioactive and bioresorbable. Though conventional bioceramics show fatigue and brittleness, their careful mechanical aspects can lead to many potential applications [
<xref rid="B30-jfb-06-01099" ref-type="bibr">30</xref>
,
<xref rid="B31-jfb-06-01099" ref-type="bibr">31</xref>
,
<xref rid="B32-jfb-06-01099" ref-type="bibr">32</xref>
,
<xref rid="B33-jfb-06-01099" ref-type="bibr">33</xref>
,
<xref rid="B34-jfb-06-01099" ref-type="bibr">34</xref>
,
<xref rid="B35-jfb-06-01099" ref-type="bibr">35</xref>
,
<xref rid="B36-jfb-06-01099" ref-type="bibr">36</xref>
,
<xref rid="B37-jfb-06-01099" ref-type="bibr">37</xref>
,
<xref rid="B38-jfb-06-01099" ref-type="bibr">38</xref>
,
<xref rid="B39-jfb-06-01099" ref-type="bibr">39</xref>
,
<xref rid="B40-jfb-06-01099" ref-type="bibr">40</xref>
,
<xref rid="B41-jfb-06-01099" ref-type="bibr">41</xref>
,
<xref rid="B42-jfb-06-01099" ref-type="bibr">42</xref>
,
<xref rid="B43-jfb-06-01099" ref-type="bibr">43</xref>
,
<xref rid="B44-jfb-06-01099" ref-type="bibr">44</xref>
,
<xref rid="B45-jfb-06-01099" ref-type="bibr">45</xref>
,
<xref rid="B46-jfb-06-01099" ref-type="bibr">46</xref>
,
<xref rid="B47-jfb-06-01099" ref-type="bibr">47</xref>
,
<xref rid="B48-jfb-06-01099" ref-type="bibr">48</xref>
,
<xref rid="B49-jfb-06-01099" ref-type="bibr">49</xref>
,
<xref rid="B50-jfb-06-01099" ref-type="bibr">50</xref>
]. Some of the applications of functional bioceramics are dental restorations, root canal treatments, reconstructing the alveolar ridge, middle ear surgery, spine surgery, facial and cranial bones, filling mastoid defects and bony defects [
<xref rid="B51-jfb-06-01099" ref-type="bibr">51</xref>
], adjuvant to hold metal implants, pulp-capping materials, substitute for hard tissue replacement, load-bearing implants, bio-piezocomposites for bone remodeling, as viewports installed in the body, cell culture plates and skeletal and vertebral implants. Amongst the bioceramics other than glass ceramics of HAp [
<xref rid="B52-jfb-06-01099" ref-type="bibr">52</xref>
], HAp has the potential for usage in different forms (dense, coatings on metals, putty, granules) for biomedical applications due to its inertness to foreign body reactions and its ability to create bonding with the bone. Asazuma
<italic>et al.</italic>
[
<xref rid="B53-jfb-06-01099" ref-type="bibr">53</xref>
] reported on the use of posterior lumbar interbody fusion using dense HAp blocks and autogenous iliac bone.</p>
<p>Until now, much focus is restricted to the non-load-bearing application due to its brittleness and low toughness and flexural strength. The objective of this paper is to review the dense bioceramics of Hap and their various applications.</p>
</sec>
<sec id="sec2-jfb-06-01099">
<title>2. Discussion on Dense Hydroxyapatites</title>
<p>In this section, various components of dense hydroxyapatites are discussed in detail under various heads.</p>
<sec id="sec2dot1-jfb-06-01099">
<title>2.1. Calcium Phosphates</title>
<p>Over the last few decades, tissue engineering has been considered to be an alternative solution for the repair and regeneration of damaged human tissue. Particularly, in the case of bone tissue engineering, a scaffold acts as the matrix that serves as a host for tissue formation. Scaffolds to enable tissue formation should have a few basic requirements, such as high porosity, sufficiently large pores, specific surface properties that will enable the adhesion of the cell tissues, differentiation and proliferation and mechanical integrity to maintain the predetermined tissue structure and biocompatibility. Calcium phosphate (CaP) scaffolds are regarded as an interesting material for scaffold application. CaP-based materials aid in osteoblast adhesion and proliferation [
<xref rid="B54-jfb-06-01099" ref-type="bibr">54</xref>
,
<xref rid="B55-jfb-06-01099" ref-type="bibr">55</xref>
]. However, the major disadvantage of CaP-based materials is their inability to be used as load-bearing bioceramics, because of brittleness and poor fatigue resistance. This is further pronounced in the case of highly porous bioceramics, where a porosity of greater than 100 μm [
<xref rid="B8-jfb-06-01099" ref-type="bibr">8</xref>
] is considered as the requirement for bone cell colonization. CaP-based materials can be prepared from various sources [
<xref rid="B56-jfb-06-01099" ref-type="bibr">56</xref>
,
<xref rid="B57-jfb-06-01099" ref-type="bibr">57</xref>
,
<xref rid="B58-jfb-06-01099" ref-type="bibr">58</xref>
,
<xref rid="B59-jfb-06-01099" ref-type="bibr">59</xref>
], where biocompatibility and long-term stability have been moderately achieved [
<xref rid="B60-jfb-06-01099" ref-type="bibr">60</xref>
]. In general, CaP-based bioceramics are characterized by diverse elements, such as chemical composition (stoichiometry and purity) (
<xref ref-type="table" rid="jfb-06-01099-t004">Table 4</xref>
), homogeneity, distribution of phase, grain size/shape, crystallinity, size and distribution of porosity. The vast majority of the CaP-bioceramics are based on hydroxyapatite (HAp), β-tricalcium phosphate (β-TCP), α-TCP and/or biphasic calcium phosphate (BCP), which is a mixture of β-TCP + HAp [
<xref rid="B61-jfb-06-01099" ref-type="bibr">61</xref>
,
<xref rid="B62-jfb-06-01099" ref-type="bibr">62</xref>
,
<xref rid="B63-jfb-06-01099" ref-type="bibr">63</xref>
] or α-TCP + HAp [
<xref rid="B64-jfb-06-01099" ref-type="bibr">64</xref>
,
<xref rid="B65-jfb-06-01099" ref-type="bibr">65</xref>
]. CaP bioceramics are usually fabricated either by employing a lubricant and a liquid binder with the ceramic powders for shaping and subsequent firing or by cementation. Various processing routes are attempted to fabricate CaP compounds, which include uniaxial compaction [
<xref rid="B66-jfb-06-01099" ref-type="bibr">66</xref>
,
<xref rid="B67-jfb-06-01099" ref-type="bibr">67</xref>
], cold/hot isostatic pressing [
<xref rid="B68-jfb-06-01099" ref-type="bibr">68</xref>
,
<xref rid="B69-jfb-06-01099" ref-type="bibr">69</xref>
,
<xref rid="B70-jfb-06-01099" ref-type="bibr">70</xref>
,
<xref rid="B71-jfb-06-01099" ref-type="bibr">71</xref>
], granulation [
<xref rid="B72-jfb-06-01099" ref-type="bibr">72</xref>
], loose packing [
<xref rid="B73-jfb-06-01099" ref-type="bibr">73</xref>
], slip casting [
<xref rid="B74-jfb-06-01099" ref-type="bibr">74</xref>
,
<xref rid="B75-jfb-06-01099" ref-type="bibr">75</xref>
,
<xref rid="B76-jfb-06-01099" ref-type="bibr">76</xref>
], gel casting [
<xref rid="B77-jfb-06-01099" ref-type="bibr">77</xref>
,
<xref rid="B78-jfb-06-01099" ref-type="bibr">78</xref>
,
<xref rid="B79-jfb-06-01099" ref-type="bibr">79</xref>
], pressure mold forming [
<xref rid="B80-jfb-06-01099" ref-type="bibr">80</xref>
], injection molding [
<xref rid="B81-jfb-06-01099" ref-type="bibr">81</xref>
], polymer replication [
<xref rid="B82-jfb-06-01099" ref-type="bibr">82</xref>
,
<xref rid="B83-jfb-06-01099" ref-type="bibr">83</xref>
,
<xref rid="B84-jfb-06-01099" ref-type="bibr">84</xref>
], extrusion [
<xref rid="B85-jfb-06-01099" ref-type="bibr">85</xref>
,
<xref rid="B86-jfb-06-01099" ref-type="bibr">86</xref>
], slurry dipping and spraying [
<xref rid="B87-jfb-06-01099" ref-type="bibr">87</xref>
]. Furthermore, the formation of ceramic sheets by tape casting is also widely employed [
<xref rid="B88-jfb-06-01099" ref-type="bibr">88</xref>
,
<xref rid="B89-jfb-06-01099" ref-type="bibr">89</xref>
].</p>
<table-wrap id="jfb-06-01099-t004" position="float">
<object-id pub-id-type="pii">jfb-06-01099-t004_Table 4</object-id>
<label>Table 4</label>
<caption>
<p>Principal calcium phosphates used as biomaterials. HAp, hydroxyapatite.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center" valign="middle" rowspan="1" colspan="1">Name and Chemical Formula</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Crystal Structure</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Density</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Monocalcium phosphate monohydrate Ca(H
<sub>2</sub>
PO
<sub>4</sub>
)
<sub>2</sub>
·H
<sub>2</sub>
O</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Triclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.23</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">In solution: as liquid phase in certain cements</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Anhydrous monocalcium phosphate Ca(H
<sub>2</sub>
PO
<sub>4</sub>
)
<sub>2</sub>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Triclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.57</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">In solution: as liquid phase in certain cements</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Dicalcium phosphate dihydrate CaHPO
<sub>4</sub>
·2H
<sub>2</sub>
O</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Monoclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.30</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Thin deposits, cements and composites</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Dicalcium phosphate anhydrous CaHPO
<sub>4</sub>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Triclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.93</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Thin deposits, cements and composites</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Amorphous Tricalcium phosphate Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
·nH
<sub>2</sub>
O</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Three polymorphs based on temperature</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1"></td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Thin deposits, cements and composites</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Octocalcium phosphate Ca
<sub>8</sub>
(PO
<sub>4</sub>
)
<sub>4</sub>
(HPO
<sub>4</sub>
)
<sub>2</sub>
·5H
<sub>2</sub>
O</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Triclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.67</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cements</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tricalcium phosphate β Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Rhombohedral</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3.07</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Resorbable bioceramics, cements, composites</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tricalcium phosphate α Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Monoclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.86</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Resorbable bioceramics, cements, composites</td>
</tr>
<tr>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tetracalcium phosphate Ca
<sub>4</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
O</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Monoclinic</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3.05</td>
<td align="center" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cements</td>
</tr>
<tr>
<td align="center" valign="middle" rowspan="1" colspan="1">Hydroxyapatite phospho-calcium Ca
<sub>10</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(OH)
<sub>2</sub>
</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Hexagonal (the stoichiometric HAp is monoclinic at temperatures <212 °C, whereas in other cases, the small quantities of impurities lead to a change from monoclinic to hexagonal)</td>
<td align="center" valign="middle" rowspan="1" colspan="1">3.16</td>
<td align="center" valign="middle" rowspan="1" colspan="1">Cements, composites, ceramics and thin films</td>
</tr>
</tbody>
</table>
</table-wrap>
<p>CaPs of biological origin are nanocrystalline in the range of a few to hundreds of nanometers. CaPs are comprised of six principal compositions [
<xref rid="B90-jfb-06-01099" ref-type="bibr">90</xref>
,
<xref rid="B91-jfb-06-01099" ref-type="bibr">91</xref>
] based on the stoichiometry of Ca/P. Six principal compositions of CaPs are dicalcium phosphate dehydrate (CaHPO
<sub>4</sub>
·2H
<sub>2</sub>
O) (DCPD), dicalcium phosphate (CaHPO
<sub>4</sub>
) (DCPA), octocalcium phosphate (Ca
<sub>8</sub>
H
<sub>2</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
·5H
<sub>2</sub>
O (OCP), tricalcium phosphate (Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
(TCP), hydroxyapatite Ca
<sub>10</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
OH
<sub>2</sub>
(HAp) and tetracalcium phosphate Ca
<sub>4</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
O (TCPM). Nanostructured materials have the capacity to have improved specific interactions with proteins, therefore contributing to better biomechanical and biological attributes. Calcium-deficient HAp (CDHA) and β-TCP nanoparticles have led to obtaining improved densification and sintering ability. HAp though bioactive is non-biodegradable; hence, it will be unable to host tissue surrounding it. β-TCP is used as a biodegradable bone substitute material for alveolar ridge augmentation at implantation sites. Further Yamada
<italic>et al.</italic>
[
<xref rid="B92-jfb-06-01099" ref-type="bibr">92</xref>
] reported histomorphometric analyses on α-TCP and β-TCP and observed bone formation after two months of implantation. α-TCP has a different crystal structure in comparison to β-TCP [
<xref rid="B93-jfb-06-01099" ref-type="bibr">93</xref>
,
<xref rid="B94-jfb-06-01099" ref-type="bibr">94</xref>
,
<xref rid="B95-jfb-06-01099" ref-type="bibr">95</xref>
], but a similar chemical composition, and similar osteoconductivity as that of HAp has been reported. Even though α-TCP has higher bioactivity in comparison to β-TCP, α-TCP has a high dissolution rate under physiological conditions. An equilibrium is necessary for the rate of degradation and the bone growth. Hence, biphasic calcium phosphate (BCP) either with α-TCP or β-TCP has been described by Chu
<italic>et al.</italic>
[
<xref rid="B96-jfb-06-01099" ref-type="bibr">96</xref>
]. BCP, resulting from the mixture of HAp and β-TCP in an appropriate ratio, dissolves more and more under the physical environment by releasing Ca
<sup>2+</sup>
and PO
<sub>4</sub>
<sup>3−</sup>
ions and initiating biological activity. The mechanical properties of BCP are reported to be higher than either HAp phases or β-TCP phases [
<xref rid="B97-jfb-06-01099" ref-type="bibr">97</xref>
]. To obtain homogeneous mixtures of HAp with β-TCP, various methodologies are reported, such as calcination of calcium-deficient apatite, hydrolysis method, sintering of calcium-deficient apatite and a Polyvinyl alcohol (PVA) mediated method. CaPs are densified by the removal of gases and organic compounds, followed by the subsequent shrinking of the powder due to the increase in crystal size and decrease in specific surface area. If the sample is heated further, then the decomposition of the sample occurs. Sintering increases the mechanical strength and toughness due to the increased densification. Sintering at temperatures below 1000 °C leads to particle coalescence with lesser degrees of densification and porosity. The densification degree depends on the sintering temperature and dwell time of the sample at the sintering temperature.</p>
<p>Other substituted ion CaPs exist, as well, which are reported to cause biological activity, in particular, those substituted with silicon “Si” ions and zinc “Zn” aid in osteointegration. The mode of substitution is difficult to predetermine. CaPs containing the substituted ion of silver “Ag”, copper “Cu” or zinc “Zn”, iron “Fe” and magnesium “Mg” have an antibacterial property and are bioactive. Ionic substitution of calcium phosphate compounds is reported in the literature [
<xref rid="B98-jfb-06-01099" ref-type="bibr">98</xref>
,
<xref rid="B99-jfb-06-01099" ref-type="bibr">99</xref>
,
<xref rid="B100-jfb-06-01099" ref-type="bibr">100</xref>
,
<xref rid="B101-jfb-06-01099" ref-type="bibr">101</xref>
]. However, one of the major difficulties in these ion-substituted CaPs are the control of active elements in simulated body fluid (SBF) or in the
<italic>in vitro</italic>
cell culture/
<italic>in vivo</italic>
. CaPs can be associated with various biological molecules, such as antibiotics or bisphosphonates.</p>
</sec>
<sec id="sec2dot2-jfb-06-01099">
<title>2.2. Sintering of Bioceramics</title>
<p>Conventionally, to prepare dense ceramics, the powders of the respective compounds are compacted under the influence of one or a combination of factors, such as pressure, temperature and dwell/holding time at the sintering temperature [
<xref rid="B102-jfb-06-01099" ref-type="bibr">102</xref>
]. The factors above influence the final properties of the ceramics, in addition to the sintering atmosphere, starting powder grain size, shape and preparation methodologies utilized for obtaining a dense material [
<xref rid="B103-jfb-06-01099" ref-type="bibr">103</xref>
,
<xref rid="B104-jfb-06-01099" ref-type="bibr">104</xref>
,
<xref rid="B105-jfb-06-01099" ref-type="bibr">105</xref>
,
<xref rid="B106-jfb-06-01099" ref-type="bibr">106</xref>
,
<xref rid="B107-jfb-06-01099" ref-type="bibr">107</xref>
,
<xref rid="B108-jfb-06-01099" ref-type="bibr">108</xref>
]. Nanocrystalline powders, in general, have better sintering properties and enhanced densification due to the availability of improved sintering ability [
<xref rid="B109-jfb-06-01099" ref-type="bibr">109</xref>
], which in turn controls their mechanical properties and lowers the sintering temperature. The process of sintering takes place in three identifiable stages [
<xref rid="B110-jfb-06-01099" ref-type="bibr">110</xref>
,
<xref rid="B111-jfb-06-01099" ref-type="bibr">111</xref>
,
<xref rid="B112-jfb-06-01099" ref-type="bibr">112</xref>
], as indicated in
<xref ref-type="fig" rid="jfb-06-01099-f003">Figure 3</xref>
. In the first stage, the powder is compacted; the particles are in contact with one another, but are not physically bonded in any way. The compacted powder is heated to a temperature that is generally about 2/3 of
<italic>T</italic>
<sub>m</sub>
, the melting point. At this stage, “necks” begin to form between the particles, bonding them together. The small contact areas between the particles expand, and at the same time, the density of the compact increases, as well as the total void volume decreases. Small diameter particles will have a high surface area and a high surface free energy. The high surface free energy of the particles is the driving force of the sintering process [
<xref rid="B113-jfb-06-01099" ref-type="bibr">113</xref>
]. Therefore, there is a strong thermodynamic drive to decrease the surface area by bonding particles together.</p>
<p>As the number of bonds grows, the surface area and, thus, energy are reduced. In the final stage (
<xref ref-type="fig" rid="jfb-06-01099-f003">Figure 3</xref>
), individual particles can no longer be seen, as they are fully bonded together, leaving residual porosity in the form of closed-off pores that are of a sufficiently small diameter, so as not to have a detrimental effect on the mechanical properties of the final material. The original powder particle size will control the final pore size and distribution: the smaller the particle size, the smaller the pores and the better the mechanical properties will be. As the powder is sintered, the grains will grow such that the final grain size will often exceed the initial powder particle size. Ideally, to optimize strength, the powder needs to be densified quickly to allow minimal grain growth. For dense ceramics, the strength is a function of the grain size. Ceramic materials with a fine grain size will have smaller flaws at the grain boundaries and, thus, be stronger than ceramics with larger grain sizes.</p>
<fig id="jfb-06-01099-f003" position="float">
<label>Figure 3</label>
<caption>
<p>Sintering stages from powder to densification.</p>
</caption>
<graphic xlink:href="jfb-06-01099-g003"></graphic>
</fig>
<p>The sintering mechanism is controlled by diffusion at the grain boundaries [
<xref rid="B114-jfb-06-01099" ref-type="bibr">114</xref>
]. A combination of rapid grain boundary diffusion with slower lattice diffusion allows the atoms to diffuse towards the pores. Vacancies tend to flow away from the surface of the sharply-curved neck; this is equivalent to the flow of material towards the neck that grows as the void shrinks. The flow is always from a source to a sink. The source can be a sharply-curved neck; the sink can be a grain boundary, a dislocation or the surface of the particle. Vacancies can follow different paths, resulting in various diffusion mechanisms. The path can be through the lattice, along the surface, along the grain boundaries or via dislocations, resulting in volume, surface and grain boundary diffusion, respectively. The flow of vacancies to any of the sinks is equivalent to the flow of material in the opposite direction. Although one mechanism will usually dominate, the rate of sintering will depend on the totality of all of the available mechanisms.</p>
<p>Sintering of CaP is carried out by various processes. Sintering is intended to cause densification and to increase the mechanical strength of the bioceramics. Sintering of bioceramics containing apatite has been investigated [
<xref rid="B115-jfb-06-01099" ref-type="bibr">115</xref>
,
<xref rid="B116-jfb-06-01099" ref-type="bibr">116</xref>
], as well, and characterization studies have been carried out [
<xref rid="B117-jfb-06-01099" ref-type="bibr">117</xref>
,
<xref rid="B118-jfb-06-01099" ref-type="bibr">118</xref>
]. Sintered biological apatites [
<xref rid="B119-jfb-06-01099" ref-type="bibr">119</xref>
] are reported to contain higher Ca/P than the stoichiometric HAp. The parameters of sintering, such as the sintering temperature, dwell time and pressure, influence the density, porosity, grain size and strength of the scaffolds [
<xref rid="B120-jfb-06-01099" ref-type="bibr">120</xref>
]. Densification is found to depend on the sintering temperature, whereas the degree of ionic diffusion is controlled by the sintering dwell time [
<xref rid="B120-jfb-06-01099" ref-type="bibr">120</xref>
]. Furthermore, various additives are added to CaP bioceramics to enhance densification [
<xref rid="B121-jfb-06-01099" ref-type="bibr">121</xref>
,
<xref rid="B122-jfb-06-01099" ref-type="bibr">122</xref>
,
<xref rid="B123-jfb-06-01099" ref-type="bibr">123</xref>
,
<xref rid="B124-jfb-06-01099" ref-type="bibr">124</xref>
]. The application of magnetic fields during sintering is reported to align the grains, which seem to have a strong effect on the growth of HAp grains [
<xref rid="B125-jfb-06-01099" ref-type="bibr">125</xref>
].</p>
</sec>
<sec id="sec2dot3-jfb-06-01099">
<title>2.3. Nano-HAp</title>
<p>Various methodologies [
<xref rid="B126-jfb-06-01099" ref-type="bibr">126</xref>
,
<xref rid="B127-jfb-06-01099" ref-type="bibr">127</xref>
,
<xref rid="B128-jfb-06-01099" ref-type="bibr">128</xref>
,
<xref rid="B129-jfb-06-01099" ref-type="bibr">129</xref>
,
<xref rid="B130-jfb-06-01099" ref-type="bibr">130</xref>
,
<xref rid="B131-jfb-06-01099" ref-type="bibr">131</xref>
,
<xref rid="B132-jfb-06-01099" ref-type="bibr">132</xref>
,
<xref rid="B133-jfb-06-01099" ref-type="bibr">133</xref>
,
<xref rid="B134-jfb-06-01099" ref-type="bibr">134</xref>
,
<xref rid="B135-jfb-06-01099" ref-type="bibr">135</xref>
,
<xref rid="B136-jfb-06-01099" ref-type="bibr">136</xref>
,
<xref rid="B137-jfb-06-01099" ref-type="bibr">137</xref>
,
<xref rid="B138-jfb-06-01099" ref-type="bibr">138</xref>
,
<xref rid="B139-jfb-06-01099" ref-type="bibr">139</xref>
,
<xref rid="B140-jfb-06-01099" ref-type="bibr">140</xref>
,
<xref rid="B141-jfb-06-01099" ref-type="bibr">141</xref>
,
<xref rid="B142-jfb-06-01099" ref-type="bibr">142</xref>
,
<xref rid="B143-jfb-06-01099" ref-type="bibr">143</xref>
,
<xref rid="B144-jfb-06-01099" ref-type="bibr">144</xref>
,
<xref rid="B145-jfb-06-01099" ref-type="bibr">145</xref>
] have been used to prepare nanosized HAp with different sizes and morphologies [
<xref rid="B126-jfb-06-01099" ref-type="bibr">126</xref>
]. Sol-gel [
<xref rid="B127-jfb-06-01099" ref-type="bibr">127</xref>
,
<xref rid="B128-jfb-06-01099" ref-type="bibr">128</xref>
,
<xref rid="B129-jfb-06-01099" ref-type="bibr">129</xref>
], co-precipitation [
<xref rid="B130-jfb-06-01099" ref-type="bibr">130</xref>
], wet-chemical synthesis [
<xref rid="B131-jfb-06-01099" ref-type="bibr">131</xref>
,
<xref rid="B132-jfb-06-01099" ref-type="bibr">132</xref>
], hydrothermal synthesis [
<xref rid="B133-jfb-06-01099" ref-type="bibr">133</xref>
,
<xref rid="B134-jfb-06-01099" ref-type="bibr">134</xref>
], mechano-chemical synthesis [
<xref rid="B135-jfb-06-01099" ref-type="bibr">135</xref>
], mechanical alloying [
<xref rid="B135-jfb-06-01099" ref-type="bibr">135</xref>
], ball milling [
<xref rid="B136-jfb-06-01099" ref-type="bibr">136</xref>
], radiofrequency induction plasma [
<xref rid="B137-jfb-06-01099" ref-type="bibr">137</xref>
], vibro-milling of bones [
<xref rid="B138-jfb-06-01099" ref-type="bibr">138</xref>
], liquid-solid synthesis [
<xref rid="B139-jfb-06-01099" ref-type="bibr">139</xref>
,
<xref rid="B140-jfb-06-01099" ref-type="bibr">140</xref>
,
<xref rid="B141-jfb-06-01099" ref-type="bibr">141</xref>
], electrocrystallization [
<xref rid="B142-jfb-06-01099" ref-type="bibr">142</xref>
], solvothermal [
<xref rid="B143-jfb-06-01099" ref-type="bibr">143</xref>
], hydrolysis of calcium orthophosphates, laser-induced fragmentation of HAp micro-particles in water, the electrospinning technique [
<xref rid="B144-jfb-06-01099" ref-type="bibr">144</xref>
] and radiofrequency magnetron sputtering [
<xref rid="B145-jfb-06-01099" ref-type="bibr">145</xref>
] are some of the techniques. Nano-HAp is reported [
<xref rid="B146-jfb-06-01099" ref-type="bibr">146</xref>
] to have better bioactivity than microsized HAp. Dorozhkin has reviewed nanosized and nanocrystalline calcium orthophosphates [
<xref rid="B147-jfb-06-01099" ref-type="bibr">147</xref>
]. The sintering methodology is dependent on various parameters, such as powder properties, such as particle size and their distribution, morphology, uniformity, agglomeration, purity, degree of crystallinity and surface area. Hongjian
<italic>et al.</italic>
[
<xref rid="B148-jfb-06-01099" ref-type="bibr">148</xref>
] have reviewed various preparation methodologies for the fabrication of nanopowders, such as co-precipitation, hydrothermal, microwave and ultrasound-assisted approaches, emulsion and template synthesis of Hap, and found that the hydrothermal method is efficient in the preparation of pure, high crystalline powders with appropriate morphology and size control. Based on the type of grain shape/crystallite morphology in the starting powder, the growth process of the grains and the microstructure of the ceramics change. In the case of plastic deformation [
<xref rid="B149-jfb-06-01099" ref-type="bibr">149</xref>
] of intermediate products during sintering, crystallographically-oriented, rapidly-growing facets develop. The morphology of the HAp nanopowders either belongs to the needle-like shape, elongated shape or round shape. If the particle size of HAp is ~50 nm or <50 nm, the sintering is enhanced. Non-agglomerated, equiaxed [
<xref rid="B150-jfb-06-01099" ref-type="bibr">150</xref>
] particles of HAp will have a high sintering ability in comparison to a rod-like and acicular morphology. Spherical morphology powders will have high packing density. A lower sintering temperature will assist in retaining OH
<sup></sup>
ions and bioactivity. The low sintering temperature of HAp will help with keeping the initial composition intact after sintering and avoid microstructure coarsening.</p>
<p>Kim
<italic>et al.</italic>
[
<xref rid="B151-jfb-06-01099" ref-type="bibr">151</xref>
] have reported that osteoblasts attached better to HAp-gelatin nano-biocomposites in comparison to their micro-biocomposite counterpart. Better biocompatibility and osteointegration of HAp nano-biocomposites have been observed. Currently, various commercial products [
<xref rid="B152-jfb-06-01099" ref-type="bibr">152</xref>
] of nano-HAp have been used. Other than the fabrication of nano-bioceramics, nanosized HAp has been employed by Du
<italic>et al.</italic>
[
<xref rid="B153-jfb-06-01099" ref-type="bibr">153</xref>
] to study the tissue response of nano-HAp-collagen implants in marrow cavities. Muller-Mai
<italic>et al.</italic>
[
<xref rid="B154-jfb-06-01099" ref-type="bibr">154</xref>
] employed nano-apatite (nanocrystalline hydroxyapatite) with inorganic implants
<italic>in vivo</italic>
to study the suitability of such nano-apatites equipped with antibiotics and growth factors. Further nano-HAp composites [
<xref rid="B155-jfb-06-01099" ref-type="bibr">155</xref>
], like chitosan, collagen and polymers, have been used to improve osteoconduction, acting as a scaffold for tissue engineering. Drug delivery systems and gene therapy for tumors [
<xref rid="B156-jfb-06-01099" ref-type="bibr">156</xref>
,
<xref rid="B157-jfb-06-01099" ref-type="bibr">157</xref>
,
<xref rid="B158-jfb-06-01099" ref-type="bibr">158</xref>
,
<xref rid="B159-jfb-06-01099" ref-type="bibr">159</xref>
] have also been studied with nano-HAp. Improved cytophilicity of nano-HAp in comparison to micro-grain HAp has been reported by Cai
<italic>et al.</italic>
[
<xref rid="B160-jfb-06-01099" ref-type="bibr">160</xref>
]. Sun
<italic>et al.</italic>
[
<xref rid="B161-jfb-06-01099" ref-type="bibr">161</xref>
] reported that the nano-HAp favors the formation of periodontal ligament cell regeneration through the reconstruction of alveolar bone.</p>
<p>Conventional sintering has not been successful in yielding fully-dense nanostructured CaP ceramics because of the accelerated and uncontrolled grain growth in the final stage. However, Wang
<italic>et al.</italic>
[
<xref rid="B162-jfb-06-01099" ref-type="bibr">162</xref>
], reported on morphology-enhanced nanostructured HAp by conventional sintering with a dwell time of 24 h at 850 °C. The coalescence of fine particles is said to happen during calcination, which is touted to help reduce the grain growth during sintering and allow easy molding for better shaping. Average grain sizes of 100 nm and 200 nm with improved mechanical properties by microwave sintering [
<xref rid="B163-jfb-06-01099" ref-type="bibr">163</xref>
] have been reported. Spark plasma sintering (SPS) [
<xref rid="B164-jfb-06-01099" ref-type="bibr">164</xref>
] has been helpful in yielding nanostructured HAp bioceramics with translucency with grain sizes below 200 nm. Pressure-assisted sintering [
<xref rid="B165-jfb-06-01099" ref-type="bibr">165</xref>
,
<xref rid="B166-jfb-06-01099" ref-type="bibr">166</xref>
,
<xref rid="B167-jfb-06-01099" ref-type="bibr">167</xref>
,
<xref rid="B168-jfb-06-01099" ref-type="bibr">168</xref>
,
<xref rid="B169-jfb-06-01099" ref-type="bibr">169</xref>
,
<xref rid="B170-jfb-06-01099" ref-type="bibr">170</xref>
] was also used to obtain nanostructured HAp bioceramics. Various reports are available in the literature for optimizing the microstructure by sintering processes. A controlled heating rate has been employed by Uskokovic
<italic>et al.</italic>
[
<xref rid="B167-jfb-06-01099" ref-type="bibr">167</xref>
] to obtain densification. Chen and Wang
<italic>et al.</italic>
[
<xref rid="B171-jfb-06-01099" ref-type="bibr">171</xref>
] used a two-step sintering method to obtain dense ceramic with the final stage of sintering through grain boundary diffusion and grain boundary migration. Fully-dense bioceramics with suppressed grain growth have been reported by Lukic
<italic>et al.</italic>
[
<xref rid="B165-jfb-06-01099" ref-type="bibr">165</xref>
]. Misiek
<italic>et al.</italic>
[
<xref rid="B166-jfb-06-01099" ref-type="bibr">166</xref>
] has reported on the effect of different soft tissue responses to HAp particles of different shapes and sizes. The inflammatory response of the implants in Beagle dogs showed that the rate of soft tissue response was faster in spherical HAp particles in comparison to the irregularly-shaped HAp particles.</p>
<p>Furthermore, HAp powders are reported to be sintered up to a theoretical density by pressureless sintering [
<xref rid="B167-jfb-06-01099" ref-type="bibr">167</xref>
,
<xref rid="B168-jfb-06-01099" ref-type="bibr">168</xref>
,
<xref rid="B169-jfb-06-01099" ref-type="bibr">169</xref>
,
<xref rid="B170-jfb-06-01099" ref-type="bibr">170</xref>
,
<xref rid="B172-jfb-06-01099" ref-type="bibr">172</xref>
,
<xref rid="B173-jfb-06-01099" ref-type="bibr">173</xref>
] at 1000–1200 °C. However, the drawback is that the processing/holding at high temperatures leads to grain growth and decomposition, because HAp is unstable when the temperature exceeds 1300 °C. The processing of HAp under vacuum leads to the decomposition of HAp, while processing under high partial pressure of water prevents decomposition. On the other hand, the presence of water in the sintering atmosphere inhibits densification of HAp and accelerates the grain growth [
<xref rid="B174-jfb-06-01099" ref-type="bibr">174</xref>
]. A correlation between hardness, density and grain size in sintered HAp bioceramics is also reported [
<xref rid="B175-jfb-06-01099" ref-type="bibr">175</xref>
]. Hot pressing [
<xref rid="B176-jfb-06-01099" ref-type="bibr">176</xref>
,
<xref rid="B177-jfb-06-01099" ref-type="bibr">177</xref>
,
<xref rid="B178-jfb-06-01099" ref-type="bibr">178</xref>
], hot isostatic pressing (HIP) [
<xref rid="B179-jfb-06-01099" ref-type="bibr">179</xref>
,
<xref rid="B180-jfb-06-01099" ref-type="bibr">180</xref>
] or hot pressing with post-sintering [
<xref rid="B181-jfb-06-01099" ref-type="bibr">181</xref>
,
<xref rid="B182-jfb-06-01099" ref-type="bibr">182</xref>
] processes have been widely pursued to decrease the temperature of the densification process, as well as to achieve better properties. Additionally, microwave or spark plasma sintering techniques [
<xref rid="B183-jfb-06-01099" ref-type="bibr">183</xref>
,
<xref rid="B184-jfb-06-01099" ref-type="bibr">184</xref>
,
<xref rid="B185-jfb-06-01099" ref-type="bibr">185</xref>
,
<xref rid="B186-jfb-06-01099" ref-type="bibr">186</xref>
,
<xref rid="B187-jfb-06-01099" ref-type="bibr">187</xref>
,
<xref rid="B188-jfb-06-01099" ref-type="bibr">188</xref>
] are used as an alternative processing route to conventional sintering, hot pressing and HIP. Scaffolds with a pore structure >250 μm and those with smooth surfaces with no defined scaffold structure will lead to differentiation of fibroblasts rather than bone cells.</p>
<p>The densification of HAp attains a saturation limit between 1100 °C and 1300 °C. The sintering characteristics are dependent on the surface area of the powder, heating rate, Ca/P ratio and the mode of heating. Sintering of HAp is difficult due to the presence of the OH content, which decomposes to form TCP and anhydrous calcium phosphates at ~1200–1450 °C. The decomposed phases will trigger different dissolution rates, when present in physiological conditions. Dehydroxylation [
<xref rid="B188-jfb-06-01099" ref-type="bibr">188</xref>
] leads to decomposition, and this OH
<sup></sup>
ion loss can be recuperated during cooling to ambient temperature. In general, dehydroxylation tends to occur at the temperatures <800 °C, followed by accelerating dehydroxylation between 800 and 1350 °C. At a temperature >1350 °C, irreversible dehydroxylation accompanied by decomposition occurs; whereas densification at a temperature >900 °C takes place, but it widely depends on the type of powder used. The densification saturates at ~1150–1200 °C with closed porosity. At a temperature >1350 °C, the large number of closed pores increases. To reduce the sintering temperature and increase the densification, various sintering techniques, such as hot isostatic pressing (HIP) and spark plasma sintering (SPS), are used.</p>
<p>These processes [
<xref rid="B183-jfb-06-01099" ref-type="bibr">183</xref>
,
<xref rid="B184-jfb-06-01099" ref-type="bibr">184</xref>
,
<xref rid="B185-jfb-06-01099" ref-type="bibr">185</xref>
,
<xref rid="B186-jfb-06-01099" ref-type="bibr">186</xref>
,
<xref rid="B187-jfb-06-01099" ref-type="bibr">187</xref>
,
<xref rid="B188-jfb-06-01099" ref-type="bibr">188</xref>
] lead to fine microstructures, high thermal stability of CaPs and, subsequently, better mechanical properties of the bulk bioceramics. CaP bioceramics are brittle. Furthermore, the mechanical properties decrease significantly with increasing amorphous phase, micro-porosity and grain size. In addition, high crystallinity, low porosity and small grain size tend to give a high compressive and tensile strength and greater fracture toughness. Thus, CaP has poor mechanical strength and has high fracture toughness, which forbids its usage in load-bearing applications [
<xref rid="B62-jfb-06-01099" ref-type="bibr">62</xref>
,
<xref rid="B63-jfb-06-01099" ref-type="bibr">63</xref>
]. The fracture toughness of HAp bioceramics does not exceed ~1.2 MPa·m
<sup>1/2</sup>
[
<xref rid="B189-jfb-06-01099" ref-type="bibr">189</xref>
], where natural human bone has a toughness of 2–12 MPa·m
<sup>1/2</sup>
[
<xref rid="B189-jfb-06-01099" ref-type="bibr">189</xref>
,
<xref rid="B190-jfb-06-01099" ref-type="bibr">190</xref>
,
<xref rid="B191-jfb-06-01099" ref-type="bibr">191</xref>
]. With the increasing porosity, the mechanical strength decreases. Bending, compressive and tensile strengths of dense HAp bioceramics are in the range of 38–250 MPa, 120–900 MPa and 38–300 MPa, respectively, whereas those values for the porous HAp bioceramics are 2–11 MPa, 2–100 MPa and ~3 MPa, respectively [
<xref rid="B192-jfb-06-01099" ref-type="bibr">192</xref>
]. Further, strength was found to increase with increasing Ca/P ratio, reaching a maximum value with the stoichiometric ratio, and decreases when Ca/P > 1.67 [
<xref rid="B193-jfb-06-01099" ref-type="bibr">193</xref>
]. The strength decreases exponentially with increasing porosity [
<xref rid="B194-jfb-06-01099" ref-type="bibr">194</xref>
]. Furthermore, by changing the pore geometry, it is possible to influence the strength of the bioceramics. It has been reported that the porous HAp bioceramics have considerably less fatigue and are more resistant than their dense counterparts. Due to brittleness, CaP bioceramics are mostly employed in non-load-bearing implants. The electrical properties of CaP bioceramics have an interesting aspect with respect to evaluating their applicability for biomedical applications. The brittleness of CaP can be partially circumvented by producing composites with a viscoelastic matrix, like collagen.</p>
</sec>
<sec id="sec2dot4-jfb-06-01099">
<title>2.4. Porous Bioceramics</title>
<p>Porosity is another major factor that provides excellent mechanical fixation and allows chemical bonding between bioceramics and bones [
<xref rid="B195-jfb-06-01099" ref-type="bibr">195</xref>
,
<xref rid="B196-jfb-06-01099" ref-type="bibr">196</xref>
]. The open porosity is directly related to bone formation and provides the surface and space for cell attachment and bone ingrowth. Pore interconnection provides the way for migration, as well as for
<italic>in vivo</italic>
blood vessel formation for bone tissue remodeling [
<xref rid="B195-jfb-06-01099" ref-type="bibr">195</xref>
,
<xref rid="B196-jfb-06-01099" ref-type="bibr">196</xref>
,
<xref rid="B197-jfb-06-01099" ref-type="bibr">197</xref>
,
<xref rid="B198-jfb-06-01099" ref-type="bibr">198</xref>
,
<xref rid="B199-jfb-06-01099" ref-type="bibr">199</xref>
,
<xref rid="B200-jfb-06-01099" ref-type="bibr">200</xref>
]. Interconnecting micropores [
<xref rid="B201-jfb-06-01099" ref-type="bibr">201</xref>
] (size > 100 μm) are usually formed due to the gaseous porogen in bioceramics. Several techniques are used for the formation of porosity, such as polymer foams by impregnation, dual-phase mixing, particulate leaching, freeze casting, slip casting and stereolithography. The foaming of gel casting suspensions has been used to fabricate porous CaP bioceramics [
<xref rid="B202-jfb-06-01099" ref-type="bibr">202</xref>
,
<xref rid="B203-jfb-06-01099" ref-type="bibr">203</xref>
,
<xref rid="B204-jfb-06-01099" ref-type="bibr">204</xref>
]. There are numerous reports about the formation of porous HAp bioceramics [
<xref rid="B205-jfb-06-01099" ref-type="bibr">205</xref>
,
<xref rid="B206-jfb-06-01099" ref-type="bibr">206</xref>
]. The control of the pore formation, pore dimensions and internal pore architecture of bioceramics at different length scales is essential in assessing the structure-bioactivity relationship and the rational design of bone-forming biomaterials [
<xref rid="B207-jfb-06-01099" ref-type="bibr">207</xref>
,
<xref rid="B208-jfb-06-01099" ref-type="bibr">208</xref>
,
<xref rid="B209-jfb-06-01099" ref-type="bibr">209</xref>
]. For medical applications, it is significant to consider the biological properties of fabricated bioceramics and
<italic>in vivo</italic>
behavior. As the implanted biomaterial will chemically react with their environment, they should not create undesired effects on their adjacent or distant tissues. Though there are some reports on the inflammatory reaction by implanting CaP bioceramics [
<xref rid="B210-jfb-06-01099" ref-type="bibr">210</xref>
,
<xref rid="B211-jfb-06-01099" ref-type="bibr">211</xref>
,
<xref rid="B212-jfb-06-01099" ref-type="bibr">212</xref>
,
<xref rid="B213-jfb-06-01099" ref-type="bibr">213</xref>
], still, CaP bioceramics with a Ca/P ionic ratio within 1.0–1.7 are reported to be non-toxic. Osteoinduction of CaP bioceramics is observed in the porous structures or well-defined structures. Scientific studies have shown an estimation of the minimum pore size of ~50 μm for blood vessel formation and ~200 μm for osteonal ingrowth [
<xref rid="B213-jfb-06-01099" ref-type="bibr">213</xref>
]. Both porosity and their architecture are critical in gauging biological fluids’ transport rate through porous bioceramics, which determines the rate and the degree of bone growth
<italic>in vivo</italic>
[
<xref rid="B214-jfb-06-01099" ref-type="bibr">214</xref>
]. Irrespective of the macropore size in the porous CaP bioceramics, no difference in
<italic>in vivo</italic>
response was observed. However, there also reports on the variation in the mesenchymal stem cell differentiation, when using pore sizes of 200 and 500 μm. It was concluded that when the pore sizes are big, this reduces the cell confluency, causing cell differentiation. The optimal size that aids bone formation is widely considered as ~300–400 μm. Variation of the type of porogen causes a difference in the size/morphology of the pore. Other types of porous structures, such as micropores and nanopores, are also studied in HAp bioceramics.</p>
</sec>
<sec id="sec2dot5-jfb-06-01099">
<title>2.5. Bioactive Glasses</title>
<p>Bioactive glasses are considered as attractive materials for biomedical applications [
<xref rid="B215-jfb-06-01099" ref-type="bibr">215</xref>
]. Materials consisting of calcium, phosphorous and silicate are classified as bioactive glasses (BG). These BGs are dense and hard. The possibility to vary the concentrations of the components can make it either resorbable or non-resorbable [
<xref rid="B62-jfb-06-01099" ref-type="bibr">62</xref>
,
<xref rid="B63-jfb-06-01099" ref-type="bibr">63</xref>
]. Most of the bioactive glasses have the characteristics of osteointegration and osteoconduction. Bioactive glasses have shown a strong interfacial bonding with the bone. A mechanically-strong bond is formed between the bioactive glass and the surrounding bone due to the bone-like HAp crystals/hydroxyl carbonated apatite that is deposited. Though mechanically stronger than HAp, it has poor fracture toughness; hence, it is not used for load-bearing applications. The strength of bioactive glasses with stainless steel fibers embedded into the glass ceramics has been reported to increase the bending strength. Cao
<italic>et al.</italic>
[
<xref rid="B186-jfb-06-01099" ref-type="bibr">186</xref>
] reported on the increase in bending strength and toughness by incorporation of ZrO
<sub>2</sub>
particles in the glass. Amongst the currently available BGs, 45S5
<sup>®</sup>
is reported to be the most bioactive and can promote stem cell differentiation and the formation of blood vessels
<italic>in vitro</italic>
. A change in the porous architecture by bioactive glasses is possible through sintering for potential applications in bone substitution and tissue engineering. During sintering of these bioglasses through the control of crystallization sizes, phases and grain sizes, the mechanical hardness of bioglasses can be varied. Ordered template mesoporous glasses through their higher contact surface facilitate the formation of the apatite [
<xref rid="B216-jfb-06-01099" ref-type="bibr">216</xref>
]. Ordered template mesoporous glasses aid in the development of nanocrystalline apatite particles; which has been reported by Izquierdo-Barba
<italic>et al.</italic>
[
<xref rid="B217-jfb-06-01099" ref-type="bibr">217</xref>
]. There are also magnetic bioactive glasses and glass ceramics, which help to treat cancer cells and to regenerate bones through hyperthermia treatment of osseous tumors. Fujita
<italic>et al.</italic>
[
<xref rid="B210-jfb-06-01099" ref-type="bibr">210</xref>
] witnessed the bone binding mechanisms in calcite and β-TCP. Walker [
<xref rid="B211-jfb-06-01099" ref-type="bibr">211</xref>
] explained that the possible mechanisms for calcite bonding are through chemisorption of carboxylate and sulfate containing polymers. Jarcho [
<xref rid="B212-jfb-06-01099" ref-type="bibr">212</xref>
] and Driskell [
<xref rid="B213-jfb-06-01099" ref-type="bibr">213</xref>
] demonstrated the chemical bonding between β-TCP and bone.</p>
</sec>
<sec id="sec2dot6-jfb-06-01099">
<title>2.6. Metal Implants, Thin Films and Functionally-Gradient Materials of Bioceramics</title>
<p>The usage of dense HAp has been reported [
<xref rid="B206-jfb-06-01099" ref-type="bibr">206</xref>
,
<xref rid="B207-jfb-06-01099" ref-type="bibr">207</xref>
,
<xref rid="B208-jfb-06-01099" ref-type="bibr">208</xref>
,
<xref rid="B209-jfb-06-01099" ref-type="bibr">209</xref>
,
<xref rid="B210-jfb-06-01099" ref-type="bibr">210</xref>
,
<xref rid="B211-jfb-06-01099" ref-type="bibr">211</xref>
,
<xref rid="B212-jfb-06-01099" ref-type="bibr">212</xref>
,
<xref rid="B213-jfb-06-01099" ref-type="bibr">213</xref>
,
<xref rid="B214-jfb-06-01099" ref-type="bibr">214</xref>
,
<xref rid="B215-jfb-06-01099" ref-type="bibr">215</xref>
,
<xref rid="B216-jfb-06-01099" ref-type="bibr">216</xref>
,
<xref rid="B217-jfb-06-01099" ref-type="bibr">217</xref>
,
<xref rid="B218-jfb-06-01099" ref-type="bibr">218</xref>
,
<xref rid="B219-jfb-06-01099" ref-type="bibr">219</xref>
,
<xref rid="B220-jfb-06-01099" ref-type="bibr">220</xref>
,
<xref rid="B221-jfb-06-01099" ref-type="bibr">221</xref>
,
<xref rid="B222-jfb-06-01099" ref-type="bibr">222</xref>
] to be used in various load-bearing bone substitutes. Metals as the implant materials date back to the 15th century, where the gold plate was used for cleft palate. The use of metals such as silver, platinum, stainless steel and cobalt based alloys became prevalent in the 1950s. Currently, various metals [
<xref rid="B223-jfb-06-01099" ref-type="bibr">223</xref>
] such as pure titanium and their alloys and 316L stainless steel are used. Ti-based alloys have found wide applications for load-bearing parts due to its inertness, compatibility with biomaterials, corrosion resistance and its mechanical properties. Ti-6Al-4V alloy is one of the widely-known alloys of Ti. Ti alloys have been reported to have no/minimal cytotoxicity compared to other metallic implants. However, the aspects of fretting require biomedical coatings to enable the bone-implant interface. The other metal that is used is an iron-based alloy that has shown significant resistance to rust/corrosion (due to the presence of chromium (Cr)). The presence of Cr in steel results in an increase of the mechanical strength. Further, stainless steel is well known for its superior ductility over Ti. However, localized corrosion and leaching of metal ions in the body are the current drawbacks of these implants.</p>
<p>Al
<sub>2</sub>
O
<sub>3</sub>
has been used in load-bearing hip prostheses [
<xref rid="B224-jfb-06-01099" ref-type="bibr">224</xref>
] and dental implants [
<xref rid="B225-jfb-06-01099" ref-type="bibr">225</xref>
] due to its high density. Femoral head components from Al
<sub>2</sub>
O
<sub>3</sub>
have been also reported [
<xref rid="B226-jfb-06-01099" ref-type="bibr">226</xref>
]. Due to its moderate flexural strength and low toughness, the diameter of femoral head prostheses is limited to 32 mm [
<xref rid="B227-jfb-06-01099" ref-type="bibr">227</xref>
]. The characteristics above inhibit the usage of Al
<sub>2</sub>
O
<sub>3</sub>
for huge loads and long-term applications. In the case of ZrO
<sub>2</sub>
ceramics, it has better fracture toughness, flexural strength and elasticity than Al
<sub>2</sub>
O
<sub>3</sub>
[
<xref rid="B228-jfb-06-01099" ref-type="bibr">228</xref>
], which is why they are used in knee and hip joints. There are reports on the decrease of the mechanical strength when in contact with biological fluids [
<xref rid="B229-jfb-06-01099" ref-type="bibr">229</xref>
]. As ZrO
<sub>2</sub>
and Al
<sub>2</sub>
O
<sub>3</sub>
have disadvantages, composites of ZrO
<sub>2</sub>
particles embedded in Al
<sub>2</sub>
O
<sub>3</sub>
, called zirconia-toughened alumina, and alumina embedded in ZrO
<sub>2</sub>
, called alumina-toughened zirconia (ATZ) [
<xref rid="B227-jfb-06-01099" ref-type="bibr">227</xref>
], are widely studied. All of the metal implants in the body are encapsulated by a thin layer, causing no direct contact between the bones and the implants. Hence, the bonding is weak due to the bio-inertness. There are also reports on the silicon and trivalent cation [
<xref rid="B230-jfb-06-01099" ref-type="bibr">230</xref>
,
<xref rid="B231-jfb-06-01099" ref-type="bibr">231</xref>
] substituted HAp and TCP for various orthopedic applications. HAp is well known for its biocompatibility and bioactivity; though in the form of dense blocks, it lacks mechanical strength, it is currently also used in the form of thin film coatings on metallic implants.</p>
<p>Plasma spraying or arc plasma spraying is the currently-used commercial process for coating. The aforesaid process is chosen for its rapid deposition rate and low cost. The other types of coating methods employed are electrophoretic co-deposition, ion beam sputter deposition and high velocity oxy-fuel combustion spray deposition. The coating of HAp on the implant protects the metal from corrosion, shielding the metal from the biological fluid, helps the biological cells to adhere to the surface of the implant and accelerates the healing of the local site and fixation of the prosthesis. Bone bonding with HAp coating has been demonstrated in the case of Ti implants [
<xref rid="B229-jfb-06-01099" ref-type="bibr">229</xref>
], where the HAp coating on the passive layer of TiO
<sub>2</sub>
is more susceptible to bone formation. Currently, Ti-6Al-4V [
<xref rid="B232-jfb-06-01099" ref-type="bibr">232</xref>
] is one of the commonly-used materials with HAp coating for prosthesis applications, due to its excellent mechanical properties. The thickness of the coating of HAp on the implant has to be controlled, because beyond an increase in the thickness of HAp, it causes failure of the metal implant due to the brittleness of HAp. The thickness of the HAp coating is mostly limited to being <70 μm. Ti-6Al-4V coated with HAp with a high weight percentage exhibited brittleness, and the bond strength decreased. Various composite coatings of HAp with different weight percentages ranging from 20 to 80 wt% have been reported [
<xref rid="B233-jfb-06-01099" ref-type="bibr">233</xref>
,
<xref rid="B234-jfb-06-01099" ref-type="bibr">234</xref>
].</p>
<p>As HAp is not biodegradable, it is coated with degradable polymers [
<xref rid="B235-jfb-06-01099" ref-type="bibr">235</xref>
,
<xref rid="B236-jfb-06-01099" ref-type="bibr">236</xref>
], such as poly(
<sc>d,l</sc>
-lactic-
<italic>co</italic>
-glycolic acid), poly(L-lactic acid) and poly(glycolic acid), which promotes bone cell propagation and ingrowth. Furuzano
<italic>et al.</italic>
[
<xref rid="B234-jfb-06-01099" ref-type="bibr">234</xref>
] reported on a CaP complex from sintered HAp to be chemically bonded to a polymer based on an isocyanate group and/or an alkoxy silyl group. Jui
<italic>et al.</italic>
[
<xref rid="B237-jfb-06-01099" ref-type="bibr">237</xref>
] explained the protein-mediated hydroxyapatite coating on metal substrate, stainless steel using supersaturated SBF, which shows the capability to result in rapid osteointegration with the host tissues. Zhang
<italic>et al.</italic>
[
<xref rid="B238-jfb-06-01099" ref-type="bibr">238</xref>
] presented the functionally-graded bioactive glass/ceramic/bioactive glass sandwich structure for applications such as endodontic posts, orthopedic stems, bone screws, bone plates, missing bone parts, spinal fusion, maxilla-facial reconstruction and orthopedic applications.</p>
<p>Various functionally-gradient materials (FGMs) have a gradient in structure or composition, either partially or wholly according to the requirements for mechanical strength and biocompatibility. Various FGMs based on CaP, such as dense ceramics with gradual deviations in the composition, such as TCP and HAp, were obtained by sintering diamond-coated HAp in a reduced atmosphere [
<xref rid="B178-jfb-06-01099" ref-type="bibr">178</xref>
]. Based on the bone cross-section, bone graft materials with variable porosity have been fabricated as FGMs. Different sizes and shapes of FGMs are available based on the requirements, such as porous top to dense bottom, or other comple forms required for implants for high mechanical strength, drug delivery systems or mimicking skull. HAp coatings improve the bone strength and initial osseointegration [
<xref rid="B239-jfb-06-01099" ref-type="bibr">239</xref>
,
<xref rid="B240-jfb-06-01099" ref-type="bibr">240</xref>
,
<xref rid="B241-jfb-06-01099" ref-type="bibr">241</xref>
,
<xref rid="B242-jfb-06-01099" ref-type="bibr">242</xref>
,
<xref rid="B243-jfb-06-01099" ref-type="bibr">243</xref>
]. HAp-coated titanium implants are used in the anterior maxilla and posterior mandible based on the thickness of the cortical layer [
<xref rid="B240-jfb-06-01099" ref-type="bibr">240</xref>
].</p>
</sec>
<sec id="sec2dot7-jfb-06-01099">
<title>2.7. Mechanical Properties</title>
<p>CaPs are in general brittle in nature due to their high strength ionic bonds [
<xref rid="B241-jfb-06-01099" ref-type="bibr">241</xref>
]. The mechanical properties of CaPs are defined by their crystallinity, grain size, grain boundaries, porosity and stoichiometry. When the microstructure is comprised of small grains, the number of grain boundaries also decreases significantly, leading to increased mechanical strength. The current state of the art shows that the HAp ceramics have fracture toughness at a maximum of 1.2 MPa·m
<sup>1/2</sup>
[
<xref rid="B242-jfb-06-01099" ref-type="bibr">242</xref>
]. There are also other articles on the state of the art showing the excellent mechanical properties of CaPs [
<xref rid="B244-jfb-06-01099" ref-type="bibr">244</xref>
,
<xref rid="B245-jfb-06-01099" ref-type="bibr">245</xref>
,
<xref rid="B246-jfb-06-01099" ref-type="bibr">246</xref>
,
<xref rid="B247-jfb-06-01099" ref-type="bibr">247</xref>
,
<xref rid="B248-jfb-06-01099" ref-type="bibr">248</xref>
]. Halouani
<italic>et al.</italic>
[
<xref rid="B249-jfb-06-01099" ref-type="bibr">249</xref>
] reported the fracture toughness of hot pressed HAp with micrometric grain sizes and found that the pattern of the variation of fracture toughness decreases with increasing grain sizes more than 0.4 μm and decreases further with a decrease in grain size. Tensile strength, compressive strength and bending strength of dense HAp ceramics are in the range of 38–300 MPa, 120–900 MPa and 38–250 MPa, respectively. Young’s modulus of dense bioceramics is in the range of 35–120 GPa, which is similar to calcified tissues. The mechanical resistance of dense HAp is thrice lesser than natural human bone [
<xref rid="B240-jfb-06-01099" ref-type="bibr">240</xref>
]. The Vickers hardness of dense HAp is ~3–7 GPa, and Poisson’s ratio is reported to be closer to that of natural bone. A superplastic deformation [
<xref rid="B241-jfb-06-01099" ref-type="bibr">241</xref>
] accompanied by grain boundary sliding is reported in the temperature range of 1000–1100 °C. The mechanical properties of various HAp composites increasing in conjunction with ceramics, metals and polymers have been investigated. Polymeric coating of HAp ceramics has also been reported to increase the mechanical properties of HAp [
<xref rid="B235-jfb-06-01099" ref-type="bibr">235</xref>
].</p>
<p>In addition to advanced densification technologies, there are other processing routes, such as the incorporation of reinforcing agents in different forms, such as whiskers, fibers and platelets [
<xref rid="B236-jfb-06-01099" ref-type="bibr">236</xref>
,
<xref rid="B250-jfb-06-01099" ref-type="bibr">250</xref>
,
<xref rid="B251-jfb-06-01099" ref-type="bibr">251</xref>
,
<xref rid="B252-jfb-06-01099" ref-type="bibr">252</xref>
,
<xref rid="B253-jfb-06-01099" ref-type="bibr">253</xref>
,
<xref rid="B254-jfb-06-01099" ref-type="bibr">254</xref>
,
<xref rid="B255-jfb-06-01099" ref-type="bibr">255</xref>
]. Various reports [
<xref rid="B256-jfb-06-01099" ref-type="bibr">256</xref>
] on the alumina (Al
<sub>2</sub>
O
<sub>3</sub>
) and titania (TiO
<sub>2</sub>
) composites with HAp have been done. Viswanath
<italic>et al.</italic>
[
<xref rid="B250-jfb-06-01099" ref-type="bibr">250</xref>
] have studied the interfacial reactions in HAp/Al and inferred that the reaction kinetics leads to the formation of alumina-rich calcium aluminates and β-TCP phases at temperatures <1000 °C. Structural effects on HAp have been observed due to the addition of Ti. However, due to the addition of the secondary phases, the sintering temperature of the composite increases. The increase of sintering temperature leads to decomposition and, hence, avoiding decomposition. Nath
<italic>et al.</italic>
[
<xref rid="B253-jfb-06-01099" ref-type="bibr">253</xref>
] proposed studying the HAp-mullite system, but reported a decrease in mechanical strength above 1400 °C. Aminzare
<italic>et al.</italic>
[
<xref rid="B254-jfb-06-01099" ref-type="bibr">254</xref>
] reported on the enhancement of bending strength and the increase in hardness due to the reinforcement of TiO
<sub>2</sub>
and Al
<sub>2</sub>
O
<sub>3</sub>
particles in HAp. Other materials, such as polyethylene and yttrium-doped zirconia [
<xref rid="B256-jfb-06-01099" ref-type="bibr">256</xref>
], are also prevalently used. White
<italic>et al.</italic>
[
<xref rid="B239-jfb-06-01099" ref-type="bibr">239</xref>
] has reported on HA/carbon nanotube composites.</p>
</sec>
<sec id="sec2dot8-jfb-06-01099">
<title>2.8. HAp Bio-Piezocomposites</title>
<p>The ionic conductivity of dense HAp ceramics [
<xref rid="B257-jfb-06-01099" ref-type="bibr">257</xref>
,
<xref rid="B258-jfb-06-01099" ref-type="bibr">258</xref>
,
<xref rid="B259-jfb-06-01099" ref-type="bibr">259</xref>
,
<xref rid="B260-jfb-06-01099" ref-type="bibr">260</xref>
,
<xref rid="B261-jfb-06-01099" ref-type="bibr">261</xref>
,
<xref rid="B262-jfb-06-01099" ref-type="bibr">262</xref>
,
<xref rid="B263-jfb-06-01099" ref-type="bibr">263</xref>
,
<xref rid="B264-jfb-06-01099" ref-type="bibr">264</xref>
,
<xref rid="B265-jfb-06-01099" ref-type="bibr">265</xref>
,
<xref rid="B266-jfb-06-01099" ref-type="bibr">266</xref>
,
<xref rid="B267-jfb-06-01099" ref-type="bibr">267</xref>
,
<xref rid="B268-jfb-06-01099" ref-type="bibr">268</xref>
,
<xref rid="B269-jfb-06-01099" ref-type="bibr">269</xref>
,
<xref rid="B270-jfb-06-01099" ref-type="bibr">270</xref>
] has been studied for its possible application in alcohol, CO
<sub>2</sub>
and CO gas sensors. The presence of surface charges [
<xref rid="B263-jfb-06-01099" ref-type="bibr">263</xref>
] on HAp bioceramics has shown a significant effect on the crystallization of biological apatite in
<italic>in vitro</italic>
and
<italic>in vivo</italic>
conditions. Natural bone possesses significant piezoelectricity [
<xref rid="B264-jfb-06-01099" ref-type="bibr">264</xref>
], streaming potential and pyroelectricity [
<xref rid="B261-jfb-06-01099" ref-type="bibr">261</xref>
]. The electric potential generated due to the piezoelectric effect has an important role in new bone formation [
<xref rid="B262-jfb-06-01099" ref-type="bibr">262</xref>
]. Accelerated bone growth [
<xref rid="B262-jfb-06-01099" ref-type="bibr">262</xref>
] was observed in the case of a negatively-charged surface and decreased on a positively-charged surface. Electrical polarization of HAp bioceramics increases the cytoskeleton reorganization of osteoblast-like cells [
<xref rid="B230-jfb-06-01099" ref-type="bibr">230</xref>
,
<xref rid="B258-jfb-06-01099" ref-type="bibr">258</xref>
,
<xref rid="B259-jfb-06-01099" ref-type="bibr">259</xref>
,
<xref rid="B260-jfb-06-01099" ref-type="bibr">260</xref>
,
<xref rid="B261-jfb-06-01099" ref-type="bibr">261</xref>
,
<xref rid="B262-jfb-06-01099" ref-type="bibr">262</xref>
,
<xref rid="B263-jfb-06-01099" ref-type="bibr">263</xref>
,
<xref rid="B264-jfb-06-01099" ref-type="bibr">264</xref>
,
<xref rid="B265-jfb-06-01099" ref-type="bibr">265</xref>
,
<xref rid="B266-jfb-06-01099" ref-type="bibr">266</xref>
,
<xref rid="B267-jfb-06-01099" ref-type="bibr">267</xref>
,
<xref rid="B268-jfb-06-01099" ref-type="bibr">268</xref>
,
<xref rid="B269-jfb-06-01099" ref-type="bibr">269</xref>
,
<xref rid="B270-jfb-06-01099" ref-type="bibr">270</xref>
,
<xref rid="B271-jfb-06-01099" ref-type="bibr">271</xref>
,
<xref rid="B272-jfb-06-01099" ref-type="bibr">272</xref>
]. There are also other reports [
<xref rid="B258-jfb-06-01099" ref-type="bibr">258</xref>
,
<xref rid="B259-jfb-06-01099" ref-type="bibr">259</xref>
,
<xref rid="B260-jfb-06-01099" ref-type="bibr">260</xref>
,
<xref rid="B261-jfb-06-01099" ref-type="bibr">261</xref>
,
<xref rid="B262-jfb-06-01099" ref-type="bibr">262</xref>
,
<xref rid="B263-jfb-06-01099" ref-type="bibr">263</xref>
,
<xref rid="B264-jfb-06-01099" ref-type="bibr">264</xref>
,
<xref rid="B265-jfb-06-01099" ref-type="bibr">265</xref>
,
<xref rid="B266-jfb-06-01099" ref-type="bibr">266</xref>
,
<xref rid="B267-jfb-06-01099" ref-type="bibr">267</xref>
,
<xref rid="B268-jfb-06-01099" ref-type="bibr">268</xref>
,
<xref rid="B269-jfb-06-01099" ref-type="bibr">269</xref>
,
<xref rid="B270-jfb-06-01099" ref-type="bibr">270</xref>
] on the extended bioactivity, enhanced bone ingrowth and interaction of the blood coagulation factor on the electrically-polarized HAp surface. The presence of surface charges on HAp bioceramics has a significant effect on both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
crystallization of the apatite phase [
<xref rid="B273-jfb-06-01099" ref-type="bibr">273</xref>
,
<xref rid="B274-jfb-06-01099" ref-type="bibr">274</xref>
]. The negatively-charged surface enhances the growth of biomimetic CaP and bones rather than the positively-charged surfaces [
<xref rid="B249-jfb-06-01099" ref-type="bibr">249</xref>
].</p>
<p>Though HAp has none of the properties of ferroelectricity or piezoelectricity, polarization can be induced in HAp ceramics. During heating of HAp ceramics, ion carriers in the ceramics are free to move, and if an electric field is applied, then the applied electric field is channeled towards one direction with the movement of H
<sup>+</sup>
ions in the material.
<italic>In vitro</italic>
tests have proved that improved osteoblast-like cells were found on the negatively-charged surface. In all of the HAp-BT (BaTiO
<sub>3</sub>
) composites [
<xref rid="B273-jfb-06-01099" ref-type="bibr">273</xref>
,
<xref rid="B275-jfb-06-01099" ref-type="bibr">275</xref>
], the piezoelectricity value is dependent on the quantity of BT. An improved biological response has been reported [
<xref rid="B273-jfb-06-01099" ref-type="bibr">273</xref>
] with the HAp-BT composites. All of the results obtained until now have varied results due to the different types of measurements employed to measure piezoelectric coefficients. In the case of HAp-BT ceramics, mechanical loading is expected to increase the biological responses.</p>
<p>In addition to the inherent CaP’s osteoconduction [
<xref rid="B272-jfb-06-01099" ref-type="bibr">272</xref>
] and osteoinduction [
<xref rid="B271-jfb-06-01099" ref-type="bibr">271</xref>
], various methodologies are employed to improve their performance further. The biological response to CaP is increased by the incorporation of minerals or silicon ions to aid in replicating a composition similar to the mineral phase of bone. Substitution by silicon “Si” [
<xref rid="B230-jfb-06-01099" ref-type="bibr">230</xref>
] and magnesium “Mg” [
<xref rid="B231-jfb-06-01099" ref-type="bibr">231</xref>
,
<xref rid="B276-jfb-06-01099" ref-type="bibr">276</xref>
] in HAp has induced improved osteoconductivity and resorption
<italic>in vivo</italic>
. Another strategy to improve the biological response of the HAp components is by using electrical charges or stress-generated potentials. Improved bone growth around an implant has been reported upon usage of the composites containing a piezoelectric or ferroelectric element, such as BaTiO
<sub>3</sub>
(BT) [
<xref rid="B277-jfb-06-01099" ref-type="bibr">277</xref>
] or KNaNbO
<sub>3</sub>
[
<xref rid="B278-jfb-06-01099" ref-type="bibr">278</xref>
] (KNN) [
<xref rid="B171-jfb-06-01099" ref-type="bibr">171</xref>
] or KLiNbO
<sub>3</sub>
(KLN) [
<xref rid="B171-jfb-06-01099" ref-type="bibr">171</xref>
]. Bone displays a piezoelectric character that triggers the bone remodeling upon the induced stress potentials in the bones. By benefiting from the natural bone’s piezoresponse, it is possible to design the HAp-piezoelectric composite ceramics as synthetic bone grafts. To conceptualize the synthetic bone graft substitutes, it is mandatory to have clear details of the grain size, composition, synthesis and consolidation technique, microstructure and piezoelectric properties.</p>
<p>It is, therefore, possible that the addition of a biocompatible piezoelectric component to HAp may improve the host response to the implant material. In this perspective, BT, a piezoelectric material, seems to be a potential biomaterial, as it can enhance bone formation in a complex physiological environment. Apart from improving the electrical properties with the addition of the ferroelectric phase, Chen
<italic>et al.</italic>
[
<xref rid="B171-jfb-06-01099" ref-type="bibr">171</xref>
] suggested that a piezoelectric secondary phase can improve the toughness of the composite due to the energy dissipation and the domain wall’s motion. It is, therefore, expected that the addition of BT to HAp may improve the mechanical and electrical response of the developed biocomposite. BT has been shown to be biocompatible in canine subjects
<italic>in vivo</italic>
and to generate electric currents after implantation in bone, though it has not been shown that the growth of bone in these implants was induced by stress-generated potentials [
<xref rid="B279-jfb-06-01099" ref-type="bibr">279</xref>
,
<xref rid="B280-jfb-06-01099" ref-type="bibr">280</xref>
]. Until now, various research groups [
<xref rid="B279-jfb-06-01099" ref-type="bibr">279</xref>
,
<xref rid="B280-jfb-06-01099" ref-type="bibr">280</xref>
] have established two well-developed composite structures, HAp60-BT40 and HAp40-BT60. The dielectric constant of the human cortical bone has been found to be a very sensitive function of water content. The dielectric constant of dry human cortical bone is around 10. However, the room temperature values of the dielectric constant and loss for both of the developed composites, HAp60-BT40 and HAp40-BT60, are 21 and 38 and 0.01 and 0.02, respectively. Dubey
<italic>et al.</italic>
[
<xref rid="B281-jfb-06-01099" ref-type="bibr">281</xref>
] sintered HAp-BT composites at low temperature by SPS, but because of the momentary generation of the spark of plasma, the local temperature is high [
<xref rid="B279-jfb-06-01099" ref-type="bibr">279</xref>
,
<xref rid="B280-jfb-06-01099" ref-type="bibr">280</xref>
]. Due to this, a small loss of oxygen from BT or OH
<sup></sup>
ions from HAp is possible. Such defects potentially rise to the localized energy levels between the valence and conduction band. BT-based ceramics are believed to exhibit modest piezoelectric activity, with a piezoelectric co-efficient (d
<sub>33</sub>
) of ~191 pC/N. Recent studies revealed that the values of piezoelectric properties, namely d
<sub>33</sub>
, the planar electromechanical coupling factor (Kp) and relative permittivity, increased by controlling the grain size. To retain the cubic phase of BT, it has been found that when the grain size >80 nm, the tetragonality decreases, implying that the tetragonality decreases with the increase in grain size. Further, a maximum dielectric constant is obtained at ambient temperature for grains with dimensions of around 700–800 nm, and these values of the dielectric constant are relatively higher in comparison to its micrometric counterparts. The other influence of grain size on the ferroelectric characteristics of the BT is observed through the evolution of the ferroelectric domains. The piezoelectric coefficient reduces with an increase of HAp content, due to the rigidity of HAp causing the clamping effect. Reports show piezoelectricity with a content of BT of more than 70%, but it has been demonstrated that the piezoelectric co-efficiency can be increased by optimizing the sintering parameters. It has been reported that the cell viability, morphology and metabolic activity of the cells are not affected by BT content in the ceramics.</p>
</sec>
<sec id="sec2dot9-jfb-06-01099">
<title>2.9. Transparent Bioceramics</title>
<p>Currently, transparent ceramics are used for various applications [
<xref rid="B282-jfb-06-01099" ref-type="bibr">282</xref>
,
<xref rid="B283-jfb-06-01099" ref-type="bibr">283</xref>
], such as the viewport for an aggressive atmosphere, high mechanical strength, windows/domes/lens, lasers, scintillators, Faraday rotators, refractories, biomedical applications, laser cutting tools,
<italic>etc.</italic>
Though HAp single crystals [
<xref rid="B284-jfb-06-01099" ref-type="bibr">284</xref>
] are available, transparent ceramics of HAp have increased mechanical strength due to their polycrystalline nature [
<xref rid="B285-jfb-06-01099" ref-type="bibr">285</xref>
,
<xref rid="B286-jfb-06-01099" ref-type="bibr">286</xref>
]. However, polycrystallinity could induce translucency due to the random orientation of the grains. Transparent bioceramics have potential applications to be used for direct viewing of living cells [
<xref rid="B287-jfb-06-01099" ref-type="bibr">287</xref>
] by replicating conditions similar to those
<italic>in vivo</italic>
, by avoiding the sacrifice of animals for experiments. Transparent bioceramics can be also employed as the viewport for surgery in delicate areas, such as skull [
<xref rid="B288-jfb-06-01099" ref-type="bibr">288</xref>
,
<xref rid="B289-jfb-06-01099" ref-type="bibr">289</xref>
], to pass a laser beam through to operate on the injured site (
<xref ref-type="fig" rid="jfb-06-01099-f004">Figure 4</xref>
). Recent experiments have also successfully shown the potential applications of bioceramics [
<xref rid="B290-jfb-06-01099" ref-type="bibr">290</xref>
]. To date, transparent dense bioceramics have been obtained at temperatures ~800 °C. Based on the techniques used, the grain sizes vary in the range of 50 nm–250 μm and with minimum porosity. Various research groups [
<xref rid="B287-jfb-06-01099" ref-type="bibr">287</xref>
,
<xref rid="B288-jfb-06-01099" ref-type="bibr">288</xref>
,
<xref rid="B289-jfb-06-01099" ref-type="bibr">289</xref>
,
<xref rid="B290-jfb-06-01099" ref-type="bibr">290</xref>
,
<xref rid="B291-jfb-06-01099" ref-type="bibr">291</xref>
,
<xref rid="B292-jfb-06-01099" ref-type="bibr">292</xref>
,
<xref rid="B293-jfb-06-01099" ref-type="bibr">293</xref>
,
<xref rid="B294-jfb-06-01099" ref-type="bibr">294</xref>
,
<xref rid="B295-jfb-06-01099" ref-type="bibr">295</xref>
,
<xref rid="B296-jfb-06-01099" ref-type="bibr">296</xref>
,
<xref rid="B297-jfb-06-01099" ref-type="bibr">297</xref>
,
<xref rid="B298-jfb-06-01099" ref-type="bibr">298</xref>
,
<xref rid="B299-jfb-06-01099" ref-type="bibr">299</xref>
,
<xref rid="B300-jfb-06-01099" ref-type="bibr">300</xref>
,
<xref rid="B301-jfb-06-01099" ref-type="bibr">301</xref>
,
<xref rid="B302-jfb-06-01099" ref-type="bibr">302</xref>
,
<xref rid="B303-jfb-06-01099" ref-type="bibr">303</xref>
,
<xref rid="B304-jfb-06-01099" ref-type="bibr">304</xref>
,
<xref rid="B305-jfb-06-01099" ref-type="bibr">305</xref>
,
<xref rid="B306-jfb-06-01099" ref-type="bibr">306</xref>
,
<xref rid="B307-jfb-06-01099" ref-type="bibr">307</xref>
,
<xref rid="B308-jfb-06-01099" ref-type="bibr">308</xref>
] also reported on obtaining translucent HAp ceramics.</p>
<p>In contrast to traditional ceramics with respect to the porous or nearly dense structure, transparent ceramics have nearly zero porosity. The transparency of the ceramics permits the different wavelengths to pass through and, at the same time, to retain their inherent properties. Light transmission, in the absence of porosity, makes the surface have high purity and, with the absence of vitreous phases significantly, expands the applications of these transparent bioceramics. As with other ceramic fabrication methodologies, the fabrication of transparent ceramics involves sintering of nanopowders under pressure and temperature. Fabrication processes involve the usage of the shaping of the powder with techniques such as tape casting, slip casting, uniaxial pressing, cold isostatic pressing and compaction in the presence of a magnetic field. The shaping process is followed by sintering processes with the use of conventional sintering, hot pressing, hot isostatic pressing, microwave sintering, spark plasma sintering, hydrothermal sintering and vacuum sintering. To increase the density, various additives are used.</p>
<fig id="jfb-06-01099-f004" position="float">
<label>Figure 4</label>
<caption>
<p>Viewport with and yttria-stabilized ZrO
<sub>2</sub>
(YSZ) transparent ceramic for a human skull.</p>
</caption>
<graphic xlink:href="jfb-06-01099-g004"></graphic>
</fig>
<p>To obtain high transparency in sintered ceramics, the electron transition into the orbitals and the inherent birefringence of the material play a vital role. The influence of pore size in transparent ceramics affecting the transparency depends on the refractive index. In the case of cubic structured materials, the scattering around the pore does not affect the transparency, unless the material has high inherent birefringence. Whereas for non-cubic structured materials, if at all, having porosity, the pore size should be less than the wavelength of light, due to the additional light scattering that would arise from the grain boundaries and the optical inhomogeneity from the birefringence. Furthermore, the scattering or absorption also increases with the thickness and the grain size of the sintered body.</p>
<p>As discussed in the previous section, the porosity in ceramics plays a significant role in yielding transparency. If the density is high (>99.50%) with fewer pores, then the resulting ceramics will be transparent. The pores present in transparent ceramics could be either intercrystalline or intracrystalline. Intercrystalline pores occur at crystal boundaries, which are sinks of vacancies, and can be removed much more easily in comparison to intracrystalline pores. Intracrystalline pores acquire equilibrium faceting and trap gaseous phase impurities that make the pores difficult to remove. The size of the crystals in the transparent ceramics should be small to minimize the chances of the growing crystallites trapping the pores. Dwell time at the final sintering temperature causes the coalescence of vacancies into intracrystalline pores. Interest in transparent ceramics grew since the successful demonstration of obtaining transparent ceramics of high melting temperature materials. By combining the advanced technology of nanopowders with sintering, various transparent polycrystalline ceramics, such as Al
<sub>2</sub>
O
<sub>3</sub>
, MgO, MgAl
<sub>2</sub>
O
<sub>4</sub>
, Y
<sub>3</sub>
Al
<sub>5</sub>
O
<sub>12</sub>
(YAG), Y
<sub>2</sub>
O
<sub>3</sub>
and yttria-stabilized ZrO
<sub>2</sub>
(YSZ), have been fabricated by spark plasma sintering [
<xref rid="B309-jfb-06-01099" ref-type="bibr">309</xref>
,
<xref rid="B310-jfb-06-01099" ref-type="bibr">310</xref>
,
<xref rid="B311-jfb-06-01099" ref-type="bibr">311</xref>
,
<xref rid="B312-jfb-06-01099" ref-type="bibr">312</xref>
].</p>
<p>Single crystals are generally preferred for optical applications, but since the development of sintering technology to fabricate ceramics, transparent ceramics are considered to be an alternative to single crystals. It is possible to control the sintering parameters and realize transparent ceramics with optical properties similar to single crystals. Single crystal fabrication is time consuming and complicated; usually, the size of the sample is predetermined by the crystal structure of the material. Hence, crystal growth is expensive and less productive. Transparent ceramics are one of the viable options to replace single crystals, which is obtained by controlling the grain size to be less than 100 nm. The transparency at a certain wavelength (λ) is directly correlated to the size of the grains (ϕ
<sub>grain</sub>
) of the ceramic (λ < ϕ
<sub>grain</sub>
). To achieve smaller grain sizes in the microstructure of the ceramic, there are various sintering parameters, such as sintering temperature, applied pressure, dwell time, heating/cooling rate and the atmosphere (gas, vacuum), which are very important to optimize. The sintering also ensures a homogeneous and fine microstructure. Achieving small grains ensures a transparency similar to single crystals, but also, finer grains have a number of grain boundaries [
<xref rid="B310-jfb-06-01099" ref-type="bibr">310</xref>
,
<xref rid="B311-jfb-06-01099" ref-type="bibr">311</xref>
] that impedes the dislocation motion. Grain size reduction improves toughness, as well. Then, ceramics with large grains exhibit poor mechanical strength in comparison to materials with smaller grains. The average size of the grain increases rapidly with increasing heating rate, leading to an inhomogeneous grain size distribution inhibiting the transparency of the ceramic. Significant stress formed among the grains leads to an inhomogeneous and large average grain size at a higher heating rate.</p>
<p>Conventional polycrystalline ceramic materials have many light-scattering centers (refractive index modulation and optical diffusion around the grain boundary; index changes by inclusions or pores; segregations of the different phases; birefringence; and surface scattering by roughness), giving less transparency. Optically-transparent ceramics [
<xref rid="B311-jfb-06-01099" ref-type="bibr">311</xref>
,
<xref rid="B312-jfb-06-01099" ref-type="bibr">312</xref>
,
<xref rid="B313-jfb-06-01099" ref-type="bibr">313</xref>
] are often fabricated by either hot pressing (HP), hot isostatic pressing (HIP) or vacuum sintering/very high temperatures, all using ultrapure ultrafine powders. These processes are expensive, complicated and long. Another interest in our spark plasma sintering process is the capability to assemble some materials that are impossible to bond (metal/metal, ceramic/metal, single crystal/ceramic, ceramic/ceramic, single crystal/single crystal) with another technique without any binder or additive.</p>
<p>However, these polycrystalline oxides, with nanometric grains, did not exhibit the expected theoretical inline transmittance (~85%), especially in the ultraviolet and the low visible wavelengths. This optical behavior may be explained by the presence of pores that are often observed at the grain junctions of ceramics subjected to SPS. These residual pores are in the same size range as the incident wavelengths and act as efficient scattering sources at a corresponding wavelength. In transparent ceramics, 100 ppm of porosity may reduce the intensity of the transmitted light by 50%–70%, with an increase in the ceramic refraction index. Consequently, this low volume fraction of pores should be eliminated, when highly transparent polycrystalline ceramics in the visible range are desired. Recently, highly transparent ceramics with controlled microstructures have been prepared by a two-step pressure profile,
<italic>i.e.</italic>
, a low pre-loading pressure at low temperatures and high pressure at high temperatures. The heating rate is another important sintering parameter for densification in the second and third stages. Although a fast heating rate >30 °C/min is widely used in SPS, a lower heating rate was applied to fabricate highly transparent Al
<sub>2</sub>
O
<sub>3</sub>
and MgAl
<sub>2</sub>
O
<sub>4</sub>
[
<xref rid="B314-jfb-06-01099" ref-type="bibr">314</xref>
].</p>
<p>The optical transparency of HAp ceramics has been reported by various researchers [
<xref rid="B315-jfb-06-01099" ref-type="bibr">315</xref>
,
<xref rid="B316-jfb-06-01099" ref-type="bibr">316</xref>
,
<xref rid="B317-jfb-06-01099" ref-type="bibr">317</xref>
,
<xref rid="B318-jfb-06-01099" ref-type="bibr">318</xref>
,
<xref rid="B319-jfb-06-01099" ref-type="bibr">319</xref>
], despite its non-cubic crystal symmetry. Jarcho
<italic>et al.</italic>
[
<xref rid="B212-jfb-06-01099" ref-type="bibr">212</xref>
,
<xref rid="B314-jfb-06-01099" ref-type="bibr">314</xref>
] reported on the transparent HAp ceramics of a slip cast sample followed by pressureless sintering, where the temperature is ~1000–1100 °C for a duration of 1 h. Uematsu
<italic>et al.</italic>
[
<xref rid="B176-jfb-06-01099" ref-type="bibr">176</xref>
] reported on the transparent ceramics obtained by slip casting followed by HIP at 800 °C for 2 h at 100 MPa. The slip cast samples yielded high transparency in comparison to the dry powder compacts of HAp. Ioku
<italic>et al.</italic>
[
<xref rid="B320-jfb-06-01099" ref-type="bibr">320</xref>
] reported on the hydrothermal hot pressing of amorphous calcium phosphate, and Fang
<italic>et al.</italic>
[
<xref rid="B315-jfb-06-01099" ref-type="bibr">315</xref>
] reported on cold isostatic pressed samples followed by microwave sintering. Watanabe
<italic>et al.</italic>
[
<xref rid="B291-jfb-06-01099" ref-type="bibr">291</xref>
] and Ioku
<italic>et al.</italic>
[
<xref rid="B320-jfb-06-01099" ref-type="bibr">320</xref>
] reported on SPS sintering of dry powders. It is believed that SPS causes a texturing effect in the sample, leading to high transparency in the sample. Fang
<italic>et al.</italic>
[
<xref rid="B315-jfb-06-01099" ref-type="bibr">315</xref>
] used needle-formed powders with an average particle size of ~25 nm, which were isostatically cold pressed at 350 MPa and densified rapidly by using microwave sintering, resulting into a densified compact with ~0.25 μm. Nakahira
<italic>et al.</italic>
[
<xref rid="B317-jfb-06-01099" ref-type="bibr">317</xref>
] reported on the improvement of the bioactivity in the samples sintered by SPS in comparison to hot pressing, due to the OH
<sup></sup>
deficiency and Ca
<sup>2+</sup>
deficiency at the grain boundaries in addition to the electrical poling caused during SPS. Gu
<italic>et al.</italic>
[
<xref rid="B182-jfb-06-01099" ref-type="bibr">182</xref>
] reported on the effect of different temperatures from 850 to 1100 °C. Majling
<italic>et al.</italic>
[
<xref rid="B305-jfb-06-01099" ref-type="bibr">305</xref>
] reported on the highly densified HAp monolithic xerogels by using temperatures below 900 °C with pre-consolidation by cold isostatic pressing. Benaqqa
<italic>et al.</italic>
[
<xref rid="B319-jfb-06-01099" ref-type="bibr">319</xref>
] reported on the crack growth behavior of HAp ceramics, and the influence of aging has been discussed. Sintering in a narrow temperature range is said to increase the mechanical properties and sintering temperatures; >1200 °C is said to decrease the crack resistance due to transgranular failure and micro-cracking. Gandhi
<italic>et al.</italic>
[
<xref rid="B321-jfb-06-01099" ref-type="bibr">321</xref>
] reported a high level of transparency >65% for HAp ceramics with the combination of texture along the c-axis and physical density. Samples sintered at 900 °C have been reported to have high transparency. Varma
<italic>et al.</italic>
[
<xref rid="B292-jfb-06-01099" ref-type="bibr">292</xref>
] reported on the fabrication of transparent HAp ceramics by sintering gel-cast powders at 1000 °C for 2 h, where the grain sizes were in the range of 250 μm with high mechanical hardness. Eriksson
<italic>et al.</italic>
[
<xref rid="B164-jfb-06-01099" ref-type="bibr">164</xref>
] reported on the fabrication of transparent ceramics of HAp with nanograins in the rod form by SPS with the application of high pressure up to 500 MPa. Applying high pressures has led to reducing the sintering temperature. The transparent HAp nanoceramics are suitable for direct observation of bio-interfacial reactions with improved spatial and temporal resolution by confocal microscopy.</p>
<p>Uehira
<italic>et al.</italic>
[
<xref rid="B322-jfb-06-01099" ref-type="bibr">322</xref>
] reported on the preparation and characterization of low crystalline hydroxyapatite nanoporous plates and granules by assembling and without the use of any template/binder/high temperature-high pressure conditions. The assembled transparent HAp ceramics had 60 vol% of porosity and exhibited excellent cell adhesion due to porosity. Zhong
<italic>et al.</italic>
[
<xref rid="B323-jfb-06-01099" ref-type="bibr">323</xref>
] reported on obtaining transparent ceramics with three different types of grain shapes, such as micro-spheres, nano-rods and nano-spheres. Although the samples of nano-rods and nano-spheres were reported to have high mechanical strength, these samples exhibited low transparency/opaqueness; whereas the samples sintered with micro-spheres resulted in a transparency >85% in the visible spectrum. At Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), France two different types of powders were used for the fabrication of transparent ceramics of HAp by spark plasma sintering. One of the powders was a commercially available powder of 50 nm, and the other type of powder synthesized by Riga Technical University (RTU), Latvia, had an average grain size around 15–20 nm. The sintering conditions were optimized to avoid porosity and reach the maximum density for HAp by spark plasma sintering. Based on the optimized sintering conditions for HAp by SPS, a sintering temperature of 900 °C was used with a dwell time of 10 min, a heating/cooling rate of 20 °C/min and the maximum pressure of 100 MPa applied at ambient temperature under a vacuum. The X-ray diffraction patterns of sintered ceramics (
<xref ref-type="fig" rid="jfb-06-01099-f005">Figure 5</xref>
) of different powders show that there is no phase transformation/decomposition after sintering at different temperatures. However, the powder with a grain size in the range of 15–20 nm leads to low crystallinity in comparison to the powder with a grain size of 50 nm. The microstructures of the sintered HAp (
<xref ref-type="fig" rid="jfb-06-01099-f006">Figure 6</xref>
) under similar conditions at 900 °C show that the grain size after sintering leads to grain growth to 200 nm and 100 nm for powders with initial grain sizes of 50 nm and 15–20 nm, respectively. Regarding the transparency of the sintered samples (
<xref ref-type="fig" rid="jfb-06-01099-f007">Figure 7</xref>
) of HAp, the samples corresponding to initial grain sizes of 50 nm yield high transparency and trap less carbon into the pores; whereas the samples of an initial grain size of 15–20 nm are fragile and yield 30% less transparency in the visible spectrum than samples of an initial grain size of 50 nm. Agglomeration of the particles causes the porosity, whereas the high surface area of the nanoparticles traps the carbon and, hence, makes the ceramics dark in comparison to the sample with an initial grain size of 50 nm, indicating a critical size limit of the starting nanopowders and the powder preparation methodology.</p>
<fig id="jfb-06-01099-f005" position="float">
<label>Figure 5</label>
<caption>
<p>Comparison of the X-ray diffractograms of commercial HAp powders with a grain size of 50 nm and their sintered pellets in addition to HAp sintered pellets from synthesized HAp powders (~20 nm). SPS, spark plasma sintering.</p>
</caption>
<graphic xlink:href="jfb-06-01099-g005"></graphic>
</fig>
<fig id="jfb-06-01099-f006" position="float">
<label>Figure 6</label>
<caption>
<p>(
<bold>a</bold>
) Commercial HAp-SPS sintered at 900 °C, 10 min; (
<bold>b</bold>
) synthesized needle-shaped HAp-SPS sintered at 900 °C, 10 min.</p>
</caption>
<graphic xlink:href="jfb-06-01099-g006"></graphic>
</fig>
<fig id="jfb-06-01099-f007" position="float">
<label>Figure 7</label>
<caption>
<p>Fabricated transparent ceramics of hydroxyapatite with different grain morphologies.</p>
</caption>
<graphic xlink:href="jfb-06-01099-g007"></graphic>
</fig>
</sec>
</sec>
<sec id="sec3-jfb-06-01099">
<title>3. Conclusions</title>
<p>Hydroxyapatite bioceramics are of growing interest due to their biological activity and their biocompatibility. With the advancement of nanotechnology and sintering technology, it is possible to obtain high strength bioceramics with the required enforcements or combinations, such as ceramic/polymer, ceramic/ceramic, ceramic/metal or a combination of dense/porous ceramics, based on the application and implant site. The current shaping technology/sintering enables us to obtain dense or porous bioceramics. The procedure of synthesizing the nanopowders, the shape and size of the grain play a major role in the final properties of the ceramics. The advanced sintering technology can help in designing the required properties of the bioceramics by altering the microstructure, composition and surface chemistry. However, the details on the thermal stability of various sintering processes are not clear. The thermal behavior of the sintered bioceramics by various processes is important in analyzing the decomposition and the solubility in the biological system. The current state of the art shows the various applications of dense bioceramics; however, to ascertain the essential applications, such as bone bonding and resorbability, more research has to be diverted in this direction. Since Aoki [
<xref rid="B324-jfb-06-01099" ref-type="bibr">324</xref>
] reported on the usage of HAp in the field of orthopedic surgery, this has opened vistas to study
<italic>in vivo</italic>
animal models. Despite the excellent biocompatibility of HAp, significant rates of implant collapse also have been reported in anterior cervical fusion. Few reports show the resorbability of dense, compact HAp in the adjacent healing site. Mechanical aspects, such as compressive strength and tensile strength, are reported to be higher in dense HAp in comparison to cortical bone and porous HAp. Yamamuro
<italic>et al.</italic>
[
<xref rid="B325-jfb-06-01099" ref-type="bibr">325</xref>
] reported on
<italic>in vivo</italic>
animal investigation of dense HAp and wollastonite/apatite glass, a ceramic that bound strongly to the bone, and the bonding strength did not decrease even after 25 weeks after implantation. The fusion rate of the dense HAp was found to be similar to that of autogenous bone, and the rate is better in lumbar spine than in the cervical spine, which was reported by Pintar
<italic>et al.</italic>
[
<xref rid="B326-jfb-06-01099" ref-type="bibr">326</xref>
] in an
<italic>in vitro</italic>
animal study. Short-term clinical results until now have shown promising results of dense HAp, but due to the lack of long-term experimental data on the usage of dense HAp ceramics, much of the potential applications of dense HAp remain unexplored. The details on the solubility of various levels of crystallization and the stoichiometry of HAp play a significant role in the determination of the degradation and solubility under biological conditions. There are very limited reports on the degradation and solubility of various chemical components of HAp and their stoichiometry. Currently, various forms, such as macro-granules, cylinders, cubes, rectangular parallelepipeds, screws and dense blocks of HAp, are used. The mechanical property of dense HAp is superior to the artificial materials that are employed in the intervertebral spacer. However, further additional improvements are needed to improve the mechanical strength of HAp. The current state of the art warrants further research in this direction. HAp composites either with metals or polymers have increased mechanical strength [
<xref rid="B327-jfb-06-01099" ref-type="bibr">327</xref>
], as well, but further efforts are required to cater to the needs of load-bearing bones.</p>
<p>The investigations of bio-piezocomposites are in the initial stages, where the influence of the material composition on the piezoelectric properties is yet to be analyzed. Currently, BaTiO
<sub>3</sub>
is one of the key material used in bio-piezocomposites. However, BaTiO
<sub>3</sub>
is influenced by the critical grain size effect to yield good ferroelectric properties. There are other materials based on alkali elements and with core shells that could help with increasing the piezoelectric effect of the artificial graft. More research has to be also diverted towards the increase of the density of bio-piezocomposites. The other aspect of potential interest is the transparency of the bioceramics, which has been recently successfully employed in passing laser radiation to reach crucial regions, like brain, for surgery. Further, due to the high strength and flexibility, recently, a transparent skull mimicking the human skull has been successfully tested. Due to the bioactivity and similarity to the human bone mineral, the tests done on the transparent HAp can be helpful to study
<italic>in vivo</italic>
conditions
<italic>in vitro</italic>
by avoiding the huge number of animal sacrifices done for the same. Further investigations are necessary to validate the type of grains required for sintering and to yield transparency. The add-on benefits, such as the gradient porosity or minimum porosity, could help in incorporating some of the growth-assisting drugs for bone growth. The current state of the art on the biodegradation and bioresorbability of dense HAp requires more details to know the activity of dense HAp in the long-term in SBF. To use the synthesized bioceramics for practical applications, they have to be sterilized. Based on the different chemical components of the bioceramics, different sterilization methods are used. Hence, we cannot generalize about any one particular technique/method to sterilize bioceramics. Sterilization of bioceramics could be done principally by heat (steam: 20 min/121 °C/~2 bar; or flash heating: 6 min/134 °C/~2 bar; dry: 2 h/160 °C/~1 bar), chemical (ethylene oxide gas: 18 h/50 °C/1 bar; hydrogen peroxide vapor: 1 h/50 °C/1 bar; peracetic acid liquid: 30 min/55 °C/1 bar) or radiation (γ rays from Co
<sub>60</sub>
: 20 h/40 °C/1 bar) treatment. The process can be adapted depending on the composition of the bioceramics, in particular if few of the constituent compounds are more or less sensitive to temperature, such as certain polymers. If the biomaterial is constituted by only inorganic material, such as bioceramics, the most suited treatment is heating by steam autoclaving, because it is the oldest, safest and least expensive effective process. In a few cases, common sterilization processes could not be applied for biocomposites, such as the inorganic phase for the ceramic structure + organic phase for the hydrogel + therapeutic molecule for the drug. In such a case, a new emerging non-thermal sterilizing process could be applied, which is high hydrostatic pressure (HHP) at 20 min/20 °C/4000 bar), also known as cold sterilization or pascalization [
<xref rid="B328-jfb-06-01099" ref-type="bibr">328</xref>
,
<xref rid="B329-jfb-06-01099" ref-type="bibr">329</xref>
].</p>
<p>To conclude the review, more research is required for the validation of dense and compact bioceramics for biomedical applications.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work has been supported by the European Social Fund within the project “Involvement of new scientist group for synergistic investigation to development of nanostructured composite materials for bone tissue regeneration”, No. 2013/0007/1DP/1.1.1.2.0/13/APIA/VIAA/024.</p>
</ack>
<notes>
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="B1-jfb-06-01099">
<label>1.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>LeGeros</surname>
<given-names>R.Z.</given-names>
</name>
<name>
<surname>LeGeros</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<article-title>Dense Hydroxyapaite</article-title>
<source>An Introduction to Bioceramics</source>
<person-group person-group-type="editor">
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>J.</given-names>
</name>
</person-group>
<publisher-name>World Scientific Publishing Co.</publisher-name>
<publisher-loc>Singapore; River Edge, NJ, USA</publisher-loc>
<year>1993</year>
<fpage>139</fpage>
<lpage>179</lpage>
</element-citation>
</ref>
<ref id="B2-jfb-06-01099">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petit</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The use of hydroxyapatite in orthopaedic surgery, a ten year review</article-title>
<source>Eur. J. Orthop. Surg. Traumatol.</source>
<year>1999</year>
<volume>9</volume>
<fpage>71</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1007/BF01695730</pub-id>
</element-citation>
</ref>
<ref id="B3-jfb-06-01099">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramesh</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Grain size—Properties correlation in polycrystalline hydroxypatite bioceramic</article-title>
<source>Malays. J. Chem.</source>
<year>2001</year>
<volume>3</volume>
<fpage>35</fpage>
<lpage>40</lpage>
</element-citation>
</ref>
<ref id="B4-jfb-06-01099">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sinha</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ravishankar</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Polymer assisted hydroxyapatite microspheres suitable for biomedical application</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2008</year>
<volume>19</volume>
<fpage>2009</fpage>
<lpage>2013</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-007-3286-0</pub-id>
<pub-id pub-id-type="pmid">17952563</pub-id>
</element-citation>
</ref>
<ref id="B5-jfb-06-01099">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Correia</surname>
<given-names>R.N.</given-names>
</name>
<name>
<surname>Magalh</surname>
<given-names>M.C.F.</given-names>
</name>
<name>
<surname>Marques</surname>
<given-names>P.A.A.P.</given-names>
</name>
<name>
<surname>Senos</surname>
<given-names>A.M.R.</given-names>
</name>
</person-group>
<article-title>Wet synthesis and characterization of modified hydroxyapatite powders</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1996</year>
<volume>7</volume>
<fpage>501</fpage>
<lpage>505</lpage>
<pub-id pub-id-type="doi">10.1007/BF00705432</pub-id>
</element-citation>
</ref>
<ref id="B6-jfb-06-01099">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Best</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Thian</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Bioceramics, past, present and for the future</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2008</year>
<volume>28</volume>
<fpage>1319</fpage>
<lpage>1327</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2007.12.001</pub-id>
</element-citation>
</ref>
<ref id="B7-jfb-06-01099">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dubok</surname>
<given-names>V.A.</given-names>
</name>
</person-group>
<article-title>Bioceramics ¾ yesterday, today, tomorrow</article-title>
<source>Powder Metall. Metal Ceram.</source>
<year>2000</year>
<volume>39</volume>
<fpage>7</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1023/A:1026617607548</pub-id>
</element-citation>
</ref>
<ref id="B8-jfb-06-01099">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hench</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Bioceramics, from concept to clinic</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1991</year>
<volume>74</volume>
<fpage>1487</fpage>
<lpage>1510</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1991.tb07132.x</pub-id>
</element-citation>
</ref>
<ref id="B9-jfb-06-01099">
<label>9.</label>
<element-citation publication-type="thesis">
<person-group person-group-type="author">
<name>
<surname>Hickman</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Bioceramics</article-title>
<source>Ph.D. Thesis</source>
<year>1999</year>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.csa.com/discoveryguides/archives/bceramics.php">http://www.csa.com/discoveryguides/archives/bceramics.php</ext-link>
</comment>
</element-citation>
</ref>
<ref id="B10-jfb-06-01099">
<label>10.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hulbert</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Bokros</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Heimke</surname>
<given-names>G.</given-names>
</name>
</person-group>
<source>Ceramics in Clinical Applications Past, Present and Future</source>
<publisher-name>High Tech Ceramics; Elsevier</publisher-name>
<publisher-loc>Amsterdam, The Netherlands</publisher-loc>
<year>1987</year>
<fpage>189</fpage>
<lpage>213</lpage>
</element-citation>
</ref>
<ref id="B11-jfb-06-01099">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>George</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Exploring and engineering the cell surface interface</article-title>
<source>Science</source>
<year>2005</year>
<volume>310</volume>
<fpage>1135</fpage>
<lpage>1138</lpage>
<pub-id pub-id-type="doi">10.1126/science.1106587</pub-id>
<pub-id pub-id-type="pmid">16293749</pub-id>
</element-citation>
</ref>
<ref id="B12-jfb-06-01099">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jager</surname>
<given-names>M.Z.C.</given-names>
</name>
<name>
<surname>Zanger</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Krauspe</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Significance of nano- and microtopography for cell-surface interactions in orthopaedic implants</article-title>
<source>J. Biomed. Biotech.</source>
<year>2007</year>
<volume>8</volume>
<fpage>1</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1155/2007/69036</pub-id>
<pub-id pub-id-type="pmid">18274618</pub-id>
</element-citation>
</ref>
<ref id="B13-jfb-06-01099">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gaston</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>A.H.R.W.</given-names>
</name>
</person-group>
<article-title>Inhibition of fracture healing</article-title>
<source>J. Bone Joint Surg. Br.</source>
<year>2007</year>
<volume>89B</volume>
<fpage>1553</fpage>
<lpage>1560</lpage>
<pub-id pub-id-type="doi">10.1302/0301-620X.89B12.19671</pub-id>
<pub-id pub-id-type="pmid">18057352</pub-id>
</element-citation>
</ref>
<ref id="B14-jfb-06-01099">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brydone</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Meek</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Maclaine</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Bone grafting, orthopedic biomaterials and the clinical need for bone engineering</article-title>
<source>Proc. IMechE H J. Eng. Med.</source>
<year>2010</year>
<volume>224</volume>
<fpage>1329</fpage>
<lpage>1343</lpage>
<pub-id pub-id-type="doi">10.1243/09544119JEIM770</pub-id>
</element-citation>
</ref>
<ref id="B15-jfb-06-01099">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Champion</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Sintering of calcium phosphate bioceramics</article-title>
<source>Acta Biomater.</source>
<year>2013</year>
<volume>9</volume>
<fpage>5855</fpage>
<lpage>5875</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2012.11.029</pub-id>
<pub-id pub-id-type="pmid">23212081</pub-id>
</element-citation>
</ref>
<ref id="B16-jfb-06-01099">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veljović</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Jokić</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Petrović</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Palcevskis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Dindune</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mihailescu</surname>
<given-names>I.N.</given-names>
</name>
<name>
<surname>Janaćković</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>Processing of dense nanostructured HAP ceramics by sintering and hot pressing</article-title>
<source>Ceram. Int.</source>
<year>2009</year>
<volume>35</volume>
<fpage>1407</fpage>
<lpage>1413</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2008.07.007</pub-id>
</element-citation>
</ref>
<ref id="B17-jfb-06-01099">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorozhkin</surname>
<given-names>S.V.</given-names>
</name>
</person-group>
<article-title>Calcium orthophosphate-containing biocomposites and hybrid biomaterials for biomedical applications</article-title>
<source>J. Funct. Biomater.</source>
<year>2015</year>
<volume>6</volume>
<fpage>708</fpage>
<lpage>832</lpage>
<pub-id pub-id-type="doi">10.3390/jfb6030708</pub-id>
<pub-id pub-id-type="pmid">26262645</pub-id>
</element-citation>
</ref>
<ref id="B18-jfb-06-01099">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurien</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pearson</surname>
<given-names>R.G.</given-names>
</name>
<name>
<surname>Scammell</surname>
<given-names>B.E.</given-names>
</name>
</person-group>
<article-title>Bone graft substitutes currently available in orthopaedic practice, the evidence for their use</article-title>
<source>Bone Joint J.</source>
<year>2013</year>
<volume>95-B</volume>
<fpage>583</fpage>
<lpage>597</lpage>
<pub-id pub-id-type="doi">10.1302/0301-620X.95B5.30286</pub-id>
<pub-id pub-id-type="pmid">23632666</pub-id>
</element-citation>
</ref>
<ref id="B19-jfb-06-01099">
<label>19.</label>
<element-citation publication-type="gov">
<article-title>Structure of Bone Tissue</article-title>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="http://training.seer.cancer.gov/anatomy/skeletal/tissue.html">http://training.seer.cancer.gov/anatomy/skeletal/tissue.html</ext-link>
</comment>
<date-in-citation>(accessed on 10 December 2015)</date-in-citation>
</element-citation>
</ref>
<ref id="B20-jfb-06-01099">
<label>20.</label>
<element-citation publication-type="webpage">
<person-group person-group-type="author">
<name>
<surname>Baggett</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Bone Tissue</article-title>
<comment>Available online:
<ext-link ext-link-type="uri" xlink:href="http://slideplayer.com/slide/1704473/">http://slideplayer.com/slide/1704473/</ext-link>
</comment>
<date-in-citation>(accessed on 10 December 2015)</date-in-citation>
</element-citation>
</ref>
<ref id="B21-jfb-06-01099">
<label>21.</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The Mechanical Properties of Bone Tissue Engineering Scaffold Fabricating via Selective Laser Sintering</article-title>
<source>Life System Modeling and Simulation, Proceedings of the International Conference, LSMS 2007</source>
<conf-loc>Shanghai, China</conf-loc>
<conf-date>14–17 September, 2007</conf-date>
<person-group person-group-type="editor">
<name>
<surname>Li</surname>
<given-names>K.</given-names>
</name>
</person-group>
<publisher-name>Springer</publisher-name>
<publisher-loc>Berlin, Germnay</publisher-loc>
<year>2007</year>
<fpage>146</fpage>
<lpage>152</lpage>
</element-citation>
</ref>
<ref id="B22-jfb-06-01099">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rho</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Kuhn-Spearing</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Zioupos</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Mechanical properties and the hierarchical structure of bone</article-title>
<source>Med. Eng. Phys.</source>
<year>1998</year>
<volume>20</volume>
<fpage>92</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.1016/S1350-4533(98)00007-1</pub-id>
<pub-id pub-id-type="pmid">9679227</pub-id>
</element-citation>
</ref>
<ref id="B23-jfb-06-01099">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rho</surname>
<given-names>J.-Y.</given-names>
</name>
<name>
<surname>Tsui</surname>
<given-names>T.Y.</given-names>
</name>
<name>
<surname>Pharr</surname>
<given-names>G.M.</given-names>
</name>
</person-group>
<article-title>Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation</article-title>
<source>Biomaterials</source>
<year>1997</year>
<volume>18</volume>
<fpage>1325</fpage>
<lpage>1330</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(97)00073-2</pub-id>
<pub-id pub-id-type="pmid">9363331</pub-id>
</element-citation>
</ref>
<ref id="B24-jfb-06-01099">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kokubo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-M.</given-names>
</name>
<name>
<surname>Kawashita</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Novel bioactive materials with different mechanical properties</article-title>
<source>Biomaterials</source>
<year>2003</year>
<volume>24</volume>
<fpage>2161</fpage>
<lpage>2175</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(03)00044-9</pub-id>
<pub-id pub-id-type="pmid">12699652</pub-id>
</element-citation>
</ref>
<ref id="B25-jfb-06-01099">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kong</surname>
<given-names>Y.-M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-E.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>I.-S.</given-names>
</name>
</person-group>
<article-title>Reinforcement of hydroxyapatite bioceramic by addition of ZrO
<sub>2</sub>
coated with Al
<sub>2</sub>
O
<sub>3</sub>
</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1999</year>
<volume>82</volume>
<fpage>2963</fpage>
<lpage>2968</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1999.tb02189.x</pub-id>
</element-citation>
</ref>
<ref id="B26-jfb-06-01099">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suchanek</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yoshimura</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants</article-title>
<source>J. Mater. Res.</source>
<year>1998</year>
<volume>13</volume>
<fpage>94</fpage>
<lpage>117</lpage>
<pub-id pub-id-type="doi">10.1557/JMR.1998.0015</pub-id>
</element-citation>
</ref>
<ref id="B27-jfb-06-01099">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kokubo</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Bioactive glass ceramics, properties and applications</article-title>
<source>Biomaterials</source>
<year>1991</year>
<volume>12</volume>
<fpage>155</fpage>
<lpage>163</lpage>
<pub-id pub-id-type="doi">10.1016/0142-9612(91)90194-F</pub-id>
<pub-id pub-id-type="pmid">1878450</pub-id>
</element-citation>
</ref>
<ref id="B28-jfb-06-01099">
<label>28.</label>
<element-citation publication-type="patent">
<person-group person-group-type="author">
<name>
<surname>Bechtold</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Camisa</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>A.L.</given-names>
</name>
<name>
<surname>Gustilo</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Sasing</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Bone Compactor</article-title>
<source>Patent</source>
<patent>A61F5/00</patent>
<year>2012</year>
</element-citation>
</ref>
<ref id="B29-jfb-06-01099">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorozhkin</surname>
<given-names>S.V.</given-names>
</name>
</person-group>
<article-title>Calcium orthophosphates and human beings A historical perspective from the 1770s until 1940</article-title>
<source>Biomatter</source>
<year>2012</year>
<volume>2</volume>
<fpage>53</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.4161/biom.21340</pub-id>
<pub-id pub-id-type="pmid">23507803</pub-id>
</element-citation>
</ref>
<ref id="B30-jfb-06-01099">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nery</surname>
<given-names>E.B.</given-names>
</name>
<name>
<surname>LeGeros</surname>
<given-names>R.Z.</given-names>
</name>
<name>
<surname>Lynch</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kalbfleisch</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/β-TCP in periodontal osseous defects</article-title>
<source>J. Periodontol.</source>
<year>1992</year>
<volume>63</volume>
<fpage>729</fpage>
<lpage>735</lpage>
<pub-id pub-id-type="doi">10.1902/jop.1992.63.9.729</pub-id>
<pub-id pub-id-type="pmid">1335498</pub-id>
</element-citation>
</ref>
<ref id="B31-jfb-06-01099">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gouin</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Delecrin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Passuti</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Touchais</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Poirier</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bainvel</surname>
<given-names>J.V.</given-names>
</name>
</person-group>
<article-title>Comblement osseux par céramique phosphocalcique biphasée macroporeuse, à propos de 23 cas</article-title>
<source>Rev. Chir. Orthop.</source>
<year>1995</year>
<volume>81</volume>
<fpage>59</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">7569179</pub-id>
</element-citation>
</ref>
<ref id="B32-jfb-06-01099">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ransford</surname>
<given-names>A.O.</given-names>
</name>
<name>
<surname>Morley</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Edgar</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Webb</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Passuti</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Chopin</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Morin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Michel</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Garin</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pries</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Synthetic porous ceramic compared with autograft in scoliosis surgery. A prospective, randomized study of 341 patients</article-title>
<source>J. Bone Joint Surg. Br.</source>
<year>1998</year>
<volume>80</volume>
<fpage>13</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1302/0301-620X.80B1.7276</pub-id>
<pub-id pub-id-type="pmid">9460945</pub-id>
</element-citation>
</ref>
<ref id="B33-jfb-06-01099">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavagna</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Macroporous calcium phosphate ceramic: A prospective study of 106 cases in lumbar spinal fusion</article-title>
<source>J. Long term Eff. Med. Implant.</source>
<year>1999</year>
<volume>9</volume>
<fpage>403</fpage>
<lpage>412</lpage>
</element-citation>
</ref>
<ref id="B34-jfb-06-01099">
<label>34.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Soares</surname>
<given-names>E.J.C.</given-names>
</name>
<name>
<surname>Franca</surname>
<given-names>V.P.</given-names>
</name>
<name>
<surname>Wykrota</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Stumpf</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Clinical Evaluation of A new Bioaceramic Ophthalmic Implant</article-title>
<source>Bioceramics</source>
<person-group person-group-type="editor">
<name>
<surname>LeGeros</surname>
<given-names>R.Z.</given-names>
</name>
<name>
<surname>LeGeros</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<publisher-name>World Scientific</publisher-name>
<publisher-loc>Singapore</publisher-loc>
<year>1998</year>
<volume>Volume 11</volume>
<fpage>633</fpage>
<lpage>636</lpage>
</element-citation>
</ref>
<ref id="B35-jfb-06-01099">
<label>35.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wykrota</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Garrido</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Wykrota</surname>
<given-names>F.H.I.</given-names>
</name>
</person-group>
<article-title>Clinical Evaluation of Biphasic Calcium Phosphate Ceramic Use in Orthopaedic Lesions</article-title>
<source>Bioceramics</source>
<person-group person-group-type="editor">
<name>
<surname>LeGeros</surname>
<given-names>R.Z.</given-names>
</name>
<name>
<surname>LeGeros</surname>
<given-names>J.P.</given-names>
</name>
</person-group>
<publisher-name>World Scientific</publisher-name>
<publisher-loc>Singapore</publisher-loc>
<year>1998</year>
<volume>Volume 11</volume>
<fpage>641</fpage>
<lpage>644</lpage>
</element-citation>
</ref>
<ref id="B36-jfb-06-01099">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malard</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Guicheux</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Gauthier</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Beauvillain de Montreuil</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Aguado</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pilet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>LeGeros</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area, a dog study</article-title>
<source>Bone</source>
<year>2005</year>
<volume>36</volume>
<fpage>323</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="doi">10.1016/j.bone.2004.07.018</pub-id>
<pub-id pub-id-type="pmid">15780959</pub-id>
</element-citation>
</ref>
<ref id="B37-jfb-06-01099">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meffert</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Brownstein</surname>
<given-names>C.N.</given-names>
</name>
</person-group>
<article-title>Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects</article-title>
<source>J. Periodontol.</source>
<year>1985</year>
<volume>56</volume>
<fpage>63</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1902/jop.1985.56.2.63</pub-id>
<pub-id pub-id-type="pmid">2984403</pub-id>
</element-citation>
</ref>
<ref id="B38-jfb-06-01099">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yukna</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Harrison</surname>
<given-names>B.G.</given-names>
</name>
<name>
<surname>Caudill</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>G.H.</given-names>
</name>
<name>
<surname>Mayer</surname>
<given-names>E.T.</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Evaluation of durapatite ceramic as an alloplastic implant in periodontal osseous defects. II. Twelve month reentry results</article-title>
<source>J. Periodontol.</source>
<year>1985</year>
<volume>56</volume>
<fpage>540</fpage>
<lpage>547</lpage>
<pub-id pub-id-type="doi">10.1902/jop.1985.56.9.540</pub-id>
<pub-id pub-id-type="pmid">2993578</pub-id>
</element-citation>
</ref>
<ref id="B39-jfb-06-01099">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piecuch</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>Augmentation of the atrophic edentulous ridge with porous replamine form hydroxyapatite (Interpore 200)</article-title>
<source>Dent. Clin. N. Am.</source>
<year>1986</year>
<volume>30</volume>
<fpage>291</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="pmid">2870941</pub-id>
</element-citation>
</ref>
<ref id="B40-jfb-06-01099">
<label>40.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Munting</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Verhelpen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Vincent</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Contribution of Hydroxyapatite Coatings to Implant Fixations</article-title>
<source>CRC Handbook of Bioactive Ceramics</source>
<person-group person-group-type="editor">
<name>
<surname>Yamamuro</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>J.</given-names>
</name>
</person-group>
<publisher-name>CRC Press</publisher-name>
<publisher-loc>Boca Raton, FL, USA</publisher-loc>
<year>1990</year>
<volume>Volume 2</volume>
<fpage>143</fpage>
<lpage>148</lpage>
</element-citation>
</ref>
<ref id="B41-jfb-06-01099">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B.C.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.Y.</given-names>
</name>
</person-group>
<article-title>Plasma spraying of zirconia reinforced hydroxyapatite composite coatings on titanium, Part I, Phase, microstructure and bonding strength</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1997</year>
<volume>8</volume>
<fpage>193</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1023/A:1018583522322</pub-id>
<pub-id pub-id-type="pmid">15348759</pub-id>
</element-citation>
</ref>
<ref id="B42-jfb-06-01099">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rigo</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Boschi</surname>
<given-names>A.O.</given-names>
</name>
<name>
<surname>Yoshimoto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Allegrini</surname>
<given-names>S.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Kong</surname>
<given-names>B.</given-names>
<suffix>Jr.</suffix>
</name>
<name>
<surname>Corbani</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Evaluation
<italic>in vitro</italic>
and
<italic>in vivo</italic>
of biomimetic hydroxyapatite coated on titanium dental implants</article-title>
<source>Mater. Sci. Eng.</source>
<year>2004</year>
<volume>C24</volume>
<fpage>647</fpage>
<pub-id pub-id-type="doi">10.1016/j.msec.2004.08.044</pub-id>
</element-citation>
</ref>
<ref id="B43-jfb-06-01099">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jean</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kerebel</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kerebel</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Legeros</surname>
<given-names>R.Z.</given-names>
</name>
<name>
<surname>Hamel</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Effects of various calcium phosphate biomaterials on reparative dentin bridge formation</article-title>
<source>J. Endod.</source>
<year>1988</year>
<volume>14</volume>
<fpage>83</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1016/S0099-2399(88)80006-2</pub-id>
<pub-id pub-id-type="pmid">3162944</pub-id>
</element-citation>
</ref>
<ref id="B44-jfb-06-01099">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pissiotis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Spangberg</surname>
<given-names>L.S.</given-names>
</name>
</person-group>
<article-title>Biological evaluation of collagen gels containing calcium hydroxide and hydroxyapatite</article-title>
<source>J. Endod.</source>
<year>1990</year>
<volume>16</volume>
<fpage>468</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="doi">10.1016/S0099-2399(07)80175-0</pub-id>
<pub-id pub-id-type="pmid">2084200</pub-id>
</element-citation>
</ref>
<ref id="B45-jfb-06-01099">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chohayeb</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Adrian</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Salamat</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Pulpal response to tricalcium phosphate as a capping agent</article-title>
<source>Oral Surg. Oral Med. Oral Pathol.</source>
<year>1991</year>
<volume>71</volume>
<fpage>343</fpage>
<lpage>345</lpage>
<pub-id pub-id-type="doi">10.1016/0030-4220(91)90312-Z</pub-id>
<pub-id pub-id-type="pmid">2011359</pub-id>
</element-citation>
</ref>
<ref id="B46-jfb-06-01099">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wahl</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Czernuszka</surname>
<given-names>J.T.</given-names>
</name>
</person-group>
<article-title>Collagen-hydroxyapatite composites for hard tissue repair</article-title>
<source>Eur. Cells Mater.</source>
<year>2006</year>
<volume>11</volume>
<fpage>43</fpage>
<lpage>56</lpage>
</element-citation>
</ref>
<ref id="B47-jfb-06-01099">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jarcho</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Calcium phosphate ceramics as hard tissue prosthetics</article-title>
<source>Clin. Orthop. Rel. Res.</source>
<year>1981</year>
<volume>157</volume>
<fpage>259</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1097/00003086-198106000-00037</pub-id>
</element-citation>
</ref>
<ref id="B48-jfb-06-01099">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Proton transport polarization and depolarization of hydroxyapatite ceramics</article-title>
<source>J. Appl. Phys.</source>
<year>2001</year>
<volume>89</volume>
<fpage>5386</fpage>
<lpage>5392</lpage>
<pub-id pub-id-type="doi">10.1063/1.1357783</pub-id>
</element-citation>
</ref>
<ref id="B49-jfb-06-01099">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gittings</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>I.G.</given-names>
</name>
<name>
<surname>Baxter</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Chaudhuri</surname>
<given-names>J.B.</given-names>
</name>
</person-group>
<article-title>Polarisation behaviour of calcium phosphate based ceramics</article-title>
<source>Mater. Sci. Forum</source>
<year>2008</year>
<volume>587–588</volume>
<fpage>91</fpage>
<lpage>95</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/MSF.587-588.91</pub-id>
</element-citation>
</ref>
<ref id="B50-jfb-06-01099">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotobuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kawagoe</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Nomura</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Katou</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Muraki</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Fujimori</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ioku</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ohgushi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Observation and quantitative analysis of rat bone marrow stromal cells cultured
<italic>in vitro</italic>
on newly formed transparent beta-tricalcium phosphate</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2006</year>
<volume>17</volume>
<fpage>33</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-006-6327-1</pub-id>
<pub-id pub-id-type="pmid">16389470</pub-id>
</element-citation>
</ref>
<ref id="B51-jfb-06-01099">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weissman</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Snyderman</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Hirsch</surname>
<given-names>B.E.</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite cement to repair skull base defects, radiologic appearance</article-title>
<source>Am. J. Neuroradiol.</source>
<year>1996</year>
<volume>17</volume>
<fpage>1569</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="pmid">8883658</pub-id>
</element-citation>
</ref>
<ref id="B52-jfb-06-01099">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Bioactive Glasses and Glass-Ceramics</article-title>
<source>Mater. Sci. Forum</source>
<year>1998</year>
<volume>293</volume>
<fpage>37</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/MSF.293.37</pub-id>
</element-citation>
</ref>
<ref id="B53-jfb-06-01099">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asazuma</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Masuoka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Motosuneya</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yasuoka</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Fujikawa</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Posterior lumbar interbody fusion using dense hydroxyapatite blocks and autogenous iliac bone, clinical and radiographic examinations</article-title>
<source>J. Spinal Disord. Tech.</source>
<year>2005</year>
<volume>18</volume>
<fpage>41</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="doi">10.1097/01.bsd.0000112043.70321.1a</pub-id>
</element-citation>
</ref>
<ref id="B54-jfb-06-01099">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>J.E.</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
modeling of the bone/implant interface</article-title>
<source>Anat. Rec.</source>
<year>1996</year>
<volume>245</volume>
<fpage>426</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-0185(199606)245:2<426::AID-AR21>3.0.CO;2-Q</pub-id>
<pub-id pub-id-type="pmid">8769677</pub-id>
</element-citation>
</ref>
<ref id="B55-jfb-06-01099">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anselme</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Osteoblast adhesion on biomaterials</article-title>
<source>Biomaterials</source>
<year>2000</year>
<volume>21</volume>
<fpage>667</fpage>
<lpage>681</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(99)00242-2</pub-id>
<pub-id pub-id-type="pmid">10711964</pub-id>
</element-citation>
</ref>
<ref id="B56-jfb-06-01099">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rivera</surname>
<given-names>E.M.</given-names>
</name>
<name>
<surname>Araiza</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Brostow</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Castaño</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Díaz-Estrada</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Hernández</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Rodríguez</surname>
<given-names>J.R.</given-names>
</name>
</person-group>
<article-title>Synthesis of hydroxyapatite from eggshells</article-title>
<source>Mater. Lett.</source>
<year>1999</year>
<volume>41</volume>
<fpage>128</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-577X(99)00118-4</pub-id>
</element-citation>
</ref>
<ref id="B57-jfb-06-01099">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S.H.</given-names>
</name>
</person-group>
<article-title>Fabrication of Calcium Phosphate bioceramics by using eggshell and phosphoric acid</article-title>
<source>Mater. Lett.</source>
<year>2003</year>
<volume>57</volume>
<fpage>4570</fpage>
<lpage>4574</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-577X(03)00363-X</pub-id>
</element-citation>
</ref>
<ref id="B58-jfb-06-01099">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Balazsi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Kover</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Horvath</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Nemeth</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Preparation of Calcium-Phosphate bioceramics from natural resources</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2007</year>
<volume>27</volume>
<fpage>1601</fpage>
<lpage>1606</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2006.04.016</pub-id>
</element-citation>
</ref>
<ref id="B59-jfb-06-01099">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murugan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ramakrishna</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Crystallographic study of hydroxyapatite bioceramics derived from various sources</article-title>
<source>Cryst. Growth Des.</source>
<year>2005</year>
<volume>5</volume>
<fpage>111</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="doi">10.1021/cg034227s</pub-id>
</element-citation>
</ref>
<ref id="B60-jfb-06-01099">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vallet-Regí</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>González-Calbet</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Calcium Phosphates as substitution of bone tissues</article-title>
<source>Prog. Solid State Chem.</source>
<year>2004</year>
<volume>32</volume>
<fpage>1</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="doi">10.1016/j.progsolidstchem.2004.07.001</pub-id>
</element-citation>
</ref>
<ref id="B61-jfb-06-01099">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lecomte</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gautier</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Gouyette</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pegon</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Merle</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Biphasic Calcium Phosphate, A comparative study of interconnected porosity in two ceramics</article-title>
<source>J. Biomed. Mater. Res. B Appl. Biomater.</source>
<year>2008</year>
<volume>84</volume>
<fpage>1</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.b.30569</pub-id>
<pub-id pub-id-type="pmid">17907206</pub-id>
</element-citation>
</ref>
<ref id="B62-jfb-06-01099">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tancret</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Chamousset</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Minois</surname>
<given-names>L.M.</given-names>
</name>
</person-group>
<article-title>Modelling the mechanical properties of microporous and macroporous biphasic Calcium Phosphate bioceramics</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2006</year>
<volume>26</volume>
<fpage>3647</fpage>
<lpage>3656</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2005.12.015</pub-id>
</element-citation>
</ref>
<ref id="B63-jfb-06-01099">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Trecant</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Delecrin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Royer</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Passuti</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Macroporous biphasic Calcium Phosphate ceramics, Influence of five synthesis parameters on compressive strength</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1996</year>
<volume>32</volume>
<fpage>603</fpage>
<lpage>609</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-4636(199612)32:4<603::AID-JBM13>3.0.CO;2-E</pub-id>
<pub-id pub-id-type="pmid">8953150</pub-id>
</element-citation>
</ref>
<ref id="B64-jfb-06-01099">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O’Neill</surname>
<given-names>W.C.</given-names>
</name>
</person-group>
<article-title>The fallacy of the Calcium—Phosphorus product</article-title>
<source>Kidney Int.</source>
<year>2007</year>
<volume>72</volume>
<fpage>792</fpage>
<lpage>796</lpage>
<pub-id pub-id-type="doi">10.1038/sj.ki.5002412</pub-id>
<pub-id pub-id-type="pmid">17609689</pub-id>
</element-citation>
</ref>
<ref id="B65-jfb-06-01099">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Da Silva</surname>
<given-names>R.V.</given-names>
</name>
<name>
<surname>Bertran</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Kawachi</surname>
<given-names>E.Y.</given-names>
</name>
<name>
<surname>Camilli</surname>
<given-names>J.A.</given-names>
</name>
</person-group>
<article-title>Repair of cranial bone defects with Calcium Phosphate ceramic implant or autogenous bone graft</article-title>
<source>J. Craniofac. Surg.</source>
<year>2007</year>
<volume>18</volume>
<fpage>281</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="doi">10.1097/scs.0b013e31802d8ac4</pub-id>
<pub-id pub-id-type="pmid">17414276</pub-id>
</element-citation>
</ref>
<ref id="B66-jfb-06-01099">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rodríguez-Lorenzo</surname>
<given-names>L.M.</given-names>
</name>
<name>
<surname>Vallet-Regí</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ferreira</surname>
<given-names>J.M.F.</given-names>
</name>
</person-group>
<article-title>Fabrication of hydroxyapatite bodies by uniaxial pressing from a precipitated powder</article-title>
<source>Biomaterials</source>
<year>2001</year>
<volume>22</volume>
<fpage>583</fpage>
<lpage>588</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(00)00218-0</pub-id>
<pub-id pub-id-type="pmid">11219723</pub-id>
</element-citation>
</ref>
<ref id="B67-jfb-06-01099">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nazarpak</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Solati-Hashjin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moztarzadeh</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Preparation of hydroxyapatite ceramics for biomedical applications</article-title>
<source>J. Ceram. Proc. Res.</source>
<year>2009</year>
<volume>10</volume>
<fpage>54</fpage>
<lpage>57</lpage>
</element-citation>
</ref>
<ref id="B68-jfb-06-01099">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itoh</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Wakisaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ohnuma</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kuboki</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder</article-title>
<source>Dental Mater.</source>
<year>1994</year>
<volume>13</volume>
<fpage>25</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.4012/dmj.13.25</pub-id>
</element-citation>
</ref>
<ref id="B69-jfb-06-01099">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gautier</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Merle</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Auget</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Isostatic compression, a new process for incorporating vancomycin into biphasic Calcium Phosphate, Comparison with a classical method</article-title>
<source>Biomaterials</source>
<year>2000</year>
<volume>21</volume>
<fpage>243</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(99)00139-8</pub-id>
<pub-id pub-id-type="pmid">10646940</pub-id>
</element-citation>
</ref>
<ref id="B70-jfb-06-01099">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tadic</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Epple</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Mechanically stable implants of synthetic bone mineral by cold isostatic pressing</article-title>
<source>Biomaterials</source>
<year>2003</year>
<volume>24</volume>
<fpage>4565</fpage>
<lpage>4571</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(03)00281-3</pub-id>
<pub-id pub-id-type="pmid">12950999</pub-id>
</element-citation>
</ref>
<ref id="B71-jfb-06-01099">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pecqueux</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Tancret</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Payraudeau</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>Influence of microporosity and macroporosity on the mechanical properties of biphasic calcium phosphate bioceramics: Modelling and experiment</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2010</year>
<volume>30</volume>
<fpage>819</fpage>
<lpage>829</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2009.09.017</pub-id>
</element-citation>
</ref>
<ref id="B72-jfb-06-01099">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viana</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Désiré</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chevalier</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Champion</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Chotard</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Chulia</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Interest of high shear wet granulation to produce drug loaded porous calcium phosphate pellets for bone filling</article-title>
<source>Key Eng. Mater.</source>
<year>2009</year>
<volume>396–398</volume>
<fpage>535</fpage>
<lpage>538</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/KEM.396-398.535</pub-id>
</element-citation>
</ref>
<ref id="B73-jfb-06-01099">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reikerås</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>C.B.</given-names>
</name>
<name>
<surname>Sundfeldt</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Bone ingrowths to press-fit and loose-fit implants, Comparisons between titanium and hydroxyapatite</article-title>
<source>J. Long Term Eff. Med. Implants</source>
<year>2006</year>
<volume>16</volume>
<fpage>157</fpage>
<lpage>164</lpage>
<pub-id pub-id-type="doi">10.1615/JLongTermEffMedImplants.v16.i2.40</pub-id>
<pub-id pub-id-type="pmid">16700655</pub-id>
</element-citation>
</ref>
<ref id="B74-jfb-06-01099">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rao</surname>
<given-names>R.R.</given-names>
</name>
<name>
<surname>Kannan</surname>
<given-names>T.S.</given-names>
</name>
</person-group>
<article-title>Dispersion and slip casting of hydroxyapatite</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2001</year>
<volume>84</volume>
<fpage>1710</fpage>
<lpage>1716</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2001.tb00903.x</pub-id>
</element-citation>
</ref>
<ref id="B75-jfb-06-01099">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sakka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>T.S.</given-names>
</name>
</person-group>
<article-title>Effect of milling treatment on texture development of hydroxyapatite ceramics by slip casting in high magnetic field</article-title>
<source>Mater. Trans.</source>
<year>2007</year>
<volume>48</volume>
<fpage>2861</fpage>
<lpage>2866</lpage>
<pub-id pub-id-type="doi">10.2320/matertrans.MI200708</pub-id>
</element-citation>
</ref>
<ref id="B76-jfb-06-01099">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yokogawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Preparation and properties of bimodal porous apatite ceramics through slip casting using different hydroxyapatite powders</article-title>
<source>Ceram. Int.</source>
<year>2010</year>
<volume>36</volume>
<fpage>107</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2009.07.008</pub-id>
</element-citation>
</ref>
<ref id="B77-jfb-06-01099">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sepulveda</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ortega</surname>
<given-names>F.S.</given-names>
</name>
<name>
<surname>Innocentini</surname>
<given-names>M.D.M.</given-names>
</name>
<name>
<surname>Pandolfelli</surname>
<given-names>V.C.</given-names>
</name>
</person-group>
<article-title>Properties of highly porous hydroxyapatite obtained by the gel casting of foams</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2000</year>
<volume>83</volume>
<fpage>3021</fpage>
<lpage>3024</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2000.tb01677.x</pub-id>
</element-citation>
</ref>
<ref id="B78-jfb-06-01099">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Padilla</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vallet-Regí</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ginebra</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Gil</surname>
<given-names>F.J.</given-names>
</name>
</person-group>
<article-title>Processing and mechanical properties of hydroxyapatite pieces obtained by the gel-casting method</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2005</year>
<volume>25</volume>
<fpage>375</fpage>
<lpage>383</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2004.02.017</pub-id>
</element-citation>
</ref>
<ref id="B79-jfb-06-01099">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sánchez-Salcedo</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Vallet-Regí</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Hierarchical pore structure of Calcium Phosphate scaffolds by a combination of gel-casting and multiple tape-casting methods</article-title>
<source>Acta Biomater.</source>
<year>2008</year>
<volume>4</volume>
<fpage>913</fpage>
<lpage>922</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2008.02.005</pub-id>
<pub-id pub-id-type="pmid">18346947</pub-id>
</element-citation>
</ref>
<ref id="B80-jfb-06-01099">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fomin</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Barinov</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Ievlev</surname>
<given-names>V.M.</given-names>
</name>
<name>
<surname>Smirnov</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Mikhailov</surname>
<given-names>B.P.</given-names>
</name>
<name>
<surname>Belonogov</surname>
<given-names>E.K.</given-names>
</name>
<name>
<surname>Drozdova</surname>
<given-names>N.A.</given-names>
</name>
</person-group>
<article-title>Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment</article-title>
<source>Dokl. Chem.</source>
<year>2008</year>
<volume>418</volume>
<fpage>22</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="doi">10.1134/S0012500808010084</pub-id>
</element-citation>
</ref>
<ref id="B81-jfb-06-01099">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kankawa</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kaneko</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Saitou</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Injection molding of highly-purified hydroxylapatite and TCP utilizing solid phase reaction method</article-title>
<source>J. Ceram. Soc. Jpn.</source>
<year>1991</year>
<volume>99</volume>
<fpage>438</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="doi">10.2109/jcersj.99.452</pub-id>
</element-citation>
</ref>
<ref id="B82-jfb-06-01099">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kwon</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Jun</surname>
<given-names>Y.K.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Won</surname>
<given-names>Y.Y.</given-names>
</name>
</person-group>
<article-title>Calcium Phosphate bioceramics with various porosities and dissolution rates</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2002</year>
<volume>85</volume>
<fpage>3129</fpage>
<lpage>3131</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2002.tb00599.x</pub-id>
</element-citation>
</ref>
<ref id="B83-jfb-06-01099">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fooki</surname>
<given-names>A.C.B.M.</given-names>
</name>
<name>
<surname>Aparecida</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Fideles</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Costa</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Fook</surname>
<given-names>M.V.L.</given-names>
</name>
</person-group>
<article-title>Porous hydroxyapatite scaffolds by polymer sponge method</article-title>
<source>Key Eng. Mater.</source>
<year>2009</year>
<volume>396–398</volume>
<fpage>703</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/KEM.396-398.703</pub-id>
</element-citation>
</ref>
<ref id="B84-jfb-06-01099">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sopyan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Preparation and characterization of porous hydroxyapatite through polymeric sponge method</article-title>
<source>Ceram. Int.</source>
<year>2009</year>
<volume>35</volume>
<fpage>3161</fpage>
<lpage>3168</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2009.05.012</pub-id>
</element-citation>
</ref>
<ref id="B85-jfb-06-01099">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Velayudhan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ramesh</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Sunny</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Varma</surname>
<given-names>H.K.</given-names>
</name>
</person-group>
<article-title>Extrusion of hydroxyapatite to clinically significant shapes</article-title>
<source>Mater. Lett.</source>
<year>2000</year>
<volume>46</volume>
<fpage>142</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-577X(00)00157-9</pub-id>
</element-citation>
</ref>
<ref id="B86-jfb-06-01099">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>Chi</surname>
<given-names>X.P.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>J.R.G.</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Dissolution characteristics of extrusion freeformed hydroxyapatite—Tricalcium Phosphate scaffolds</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2008</year>
<volume>19</volume>
<fpage>3345</fpage>
<lpage>3353</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-008-3473-7</pub-id>
<pub-id pub-id-type="pmid">18545944</pub-id>
</element-citation>
</ref>
<ref id="B87-jfb-06-01099">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthutantri</surname>
<given-names>A.I.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Edirisinghe</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Bretcanu</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Boccaccini</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>Dipping and electrospraying for the preparation of hydroxyapatite foams for bone tissue engineering</article-title>
<source>Biomed. Mater.</source>
<year>2008</year>
<volume>3</volume>
<fpage>25009</fpage>
<lpage>25022</lpage>
<pub-id pub-id-type="doi">10.1088/1748-6041/3/2/025009</pub-id>
<pub-id pub-id-type="pmid">18458366</pub-id>
</element-citation>
</ref>
<ref id="B88-jfb-06-01099">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roncari</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Galassi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Pinasco</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Tape casting of porous hydroxyapatite ceramics</article-title>
<source>J. Mater. Sci. Lett.</source>
<year>2000</year>
<volume>19</volume>
<fpage>33</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1023/A:1006743513318</pub-id>
</element-citation>
</ref>
<ref id="B89-jfb-06-01099">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tian</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>Q.</given-names>
</name>
</person-group>
<article-title>Aqueous tape casting process for hydroxyapatite</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2007</year>
<volume>27</volume>
<fpage>2671</fpage>
<lpage>2677</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2006.10.009</pub-id>
</element-citation>
</ref>
<ref id="B90-jfb-06-01099">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorozhkin</surname>
<given-names>S.V.</given-names>
</name>
</person-group>
<article-title>Calcium orthophosphates</article-title>
<source>J. Mater. Sci.</source>
<year>2007</year>
<volume>42</volume>
<fpage>1061</fpage>
<lpage>1095</lpage>
<pub-id pub-id-type="doi">10.1007/s10853-006-1467-8</pub-id>
</element-citation>
</ref>
<ref id="B91-jfb-06-01099">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorozhkin</surname>
<given-names>S.V.</given-names>
</name>
</person-group>
<article-title>Calcium orthophosphates in nature, biology and medicine</article-title>
<source>Materials</source>
<year>2009</year>
<volume>2</volume>
<fpage>399</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="doi">10.3390/ma2020399</pub-id>
</element-citation>
</ref>
<ref id="B92-jfb-06-01099">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shiota</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kasugai</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of α- and β-tricalcium phosphate in block grafts</article-title>
<source>J. Biomed. Mater. Res. B Appl. Biomater.</source>
<year>2007</year>
<volume>82B</volume>
<fpage>139</fpage>
<lpage>148</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.b.30715</pub-id>
<pub-id pub-id-type="pmid">17106891</pub-id>
</element-citation>
</ref>
<ref id="B93-jfb-06-01099">
<label>93.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Elliot</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<source>Structure and Chemistry of the Apatites and Other Calcium Orthophosphates</source>
<publisher-name>Elsevier Science</publisher-name>
<publisher-loc>Amsterdam, The Netherland</publisher-loc>
<year>1994</year>
<fpage>34</fpage>
</element-citation>
</ref>
<ref id="B94-jfb-06-01099">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zeng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de groot</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>High temperature characteristics of synthetic hydroxyapatite</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1993</year>
<volume>4</volume>
<fpage>83</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1007/BF00122983</pub-id>
</element-citation>
</ref>
<ref id="B95-jfb-06-01099">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Famery</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Richard</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Boch</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Preparation of α and β-tricalcium phosphate ceramics, with and without magnesium addition</article-title>
<source>Ceram. Int.</source>
<year>1994</year>
<volume>20</volume>
<fpage>327</fpage>
<lpage>336</lpage>
<pub-id pub-id-type="doi">10.1016/0272-8842(94)90050-7</pub-id>
</element-citation>
</ref>
<ref id="B96-jfb-06-01099">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>K.-T.</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>S.-F.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Chiou</surname>
<given-names>S.-Y.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>H.-H.</given-names>
</name>
<name>
<surname>Ou</surname>
<given-names>K.-L.</given-names>
</name>
</person-group>
<article-title>Research of phase transformation induced biodegradable properties on hydroxyapatite and tricalcium phosphate based bioceramic</article-title>
<source>Ceram. Int.</source>
<year>2013</year>
<volume>39</volume>
<fpage>1455</fpage>
<lpage>1462</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2012.07.089</pub-id>
</element-citation>
</ref>
<ref id="B97-jfb-06-01099">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruseska</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fidancevska</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bossert</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mechanical and thermal-expansion characteristics of Ca
<sub>10</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(OH)
<sub>2</sub>
-Ca
<sub>3</sub>
(PO
<sub>4</sub>
)
<sub>2</sub>
composites</article-title>
<source>Sci. Sinter.</source>
<year>2006</year>
<volume>38</volume>
<fpage>245</fpage>
<lpage>253</lpage>
<pub-id pub-id-type="doi">10.2298/SOS0603245R</pub-id>
</element-citation>
</ref>
<ref id="B98-jfb-06-01099">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Patel</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Best</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Bonfield</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>I.R.</given-names>
</name>
<name>
<surname>Hing</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Damien</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Revell</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>A comparative study on the
<italic>in vivo</italic>
behavior of hydroxyapatite and silicon substituted hydroxyapatite granules</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2002</year>
<volume>13</volume>
<fpage>1199</fpage>
<lpage>1206</lpage>
<pub-id pub-id-type="doi">10.1023/A:1021114710076</pub-id>
<pub-id pub-id-type="pmid">15348666</pub-id>
</element-citation>
</ref>
<ref id="B99-jfb-06-01099">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Landi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Logroscino</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Proietti</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Tampieri</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sandri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sprio</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Biomimetic Mg-substituted hydroxyapatite, from synthesis to
<italic>in vivo</italic>
behavior</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2008</year>
<volume>19</volume>
<fpage>239</fpage>
<lpage>247</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-006-0032-y</pub-id>
<pub-id pub-id-type="pmid">17597369</pub-id>
</element-citation>
</ref>
<ref id="B100-jfb-06-01099">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>T.N.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Q.L.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.C.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>F.Z.</given-names>
</name>
</person-group>
<article-title>Antimicrobial effects of metal ions (Ag
<sup>+</sup>
, Cu
<sup>2+</sup>
, Zn
<sup>2+</sup>
) in hydroxyapatite</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1998</year>
<volume>9</volume>
<fpage>129</fpage>
<lpage>134</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008811501734</pub-id>
<pub-id pub-id-type="pmid">15348901</pub-id>
</element-citation>
</ref>
<ref id="B101-jfb-06-01099">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boanini</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gazzano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bigi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Ionic substitutions in calcium phosphates synthesized at low temperature</article-title>
<source>Acta Biomater.</source>
<year>2010</year>
<volume>6</volume>
<fpage>1882</fpage>
<lpage>1894</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2009.12.041</pub-id>
<pub-id pub-id-type="pmid">20040384</pub-id>
</element-citation>
</ref>
<ref id="B102-jfb-06-01099">
<label>102.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Turner</surname>
<given-names>I.G.</given-names>
</name>
</person-group>
<article-title>Ceramics and Glasses</article-title>
<source>Biomedical Materials</source>
<person-group person-group-type="editor">
<name>
<surname>Narayanan</surname>
<given-names>R.</given-names>
</name>
</person-group>
<publisher-name>Springer</publisher-name>
<publisher-loc>New York, NY, USA</publisher-loc>
<year>2009</year>
<fpage>3</fpage>
<lpage>39</lpage>
</element-citation>
</ref>
<ref id="B103-jfb-06-01099">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bowen</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Carry</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>From powders to sintered pieces, forming, transformations and sintering of nanostructured ceramic oxides</article-title>
<source>Powder Technol.</source>
<year>2002</year>
<volume>128</volume>
<fpage>248</fpage>
<lpage>255</lpage>
<pub-id pub-id-type="doi">10.1016/S0032-5910(02)00183-3</pub-id>
</element-citation>
</ref>
<ref id="B104-jfb-06-01099">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munir</surname>
<given-names>Z.A.</given-names>
</name>
<name>
<surname>Anselmi-Tamburini</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Ohyanagi</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method</article-title>
<source>J. Mater. Sci.</source>
<year>2006</year>
<volume>41</volume>
<fpage>763</fpage>
<lpage>777</lpage>
<pub-id pub-id-type="doi">10.1007/s10853-006-6555-2</pub-id>
</element-citation>
</ref>
<ref id="B105-jfb-06-01099">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>I.-W.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.H.</given-names>
</name>
</person-group>
<article-title>Sintering dense nanocrystalline ceramics without final-stage grain growth</article-title>
<source>Nature</source>
<year>2000</year>
<volume>404</volume>
<fpage>168</fpage>
<lpage>171</lpage>
<pub-id pub-id-type="doi">10.1038/35004548</pub-id>
<pub-id pub-id-type="pmid">10724165</pub-id>
</element-citation>
</ref>
<ref id="B106-jfb-06-01099">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dynys</surname>
<given-names>F.W.</given-names>
</name>
<name>
<surname>Halloran</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>Influence of aggregates on sintering</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1984</year>
<volume>67</volume>
<fpage>596</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1984.tb19601.x</pub-id>
</element-citation>
</ref>
<ref id="B107-jfb-06-01099">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuan</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Gilbart</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Brook</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Sintering of heterogeneous ceramic compacts</article-title>
<source>J. Mater. Sci.</source>
<year>1989</year>
<volume>24</volume>
<fpage>1062</fpage>
<lpage>1068</lpage>
<pub-id pub-id-type="doi">10.1007/BF01148799</pub-id>
</element-citation>
</ref>
<ref id="B108-jfb-06-01099">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>D.-M.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>J.-T.</given-names>
</name>
</person-group>
<article-title>Influence of ceramic powders of different characteristics on particle packing structure and sintering behavior</article-title>
<source>J. Mater. Sci.</source>
<year>1999</year>
<volume>34</volume>
<fpage>1959</fpage>
<lpage>1972</lpage>
<pub-id pub-id-type="doi">10.1023/A:1004500418038</pub-id>
</element-citation>
</ref>
<ref id="B109-jfb-06-01099">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaim</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Levin</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shlayer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Estournès</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Sintering and densification of nanocrystalline ceramic oxide powders: A review</article-title>
<source>Adv. Appl. Ceram. Struct. Funct. Bioceram. J. Adv. Psychiatr. Treat.</source>
<year>2008</year>
<volume>107</volume>
<fpage>159</fpage>
<lpage>169</lpage>
<pub-id pub-id-type="doi">10.1179/174367508X297812</pub-id>
</element-citation>
</ref>
<ref id="B110-jfb-06-01099">
<label>110.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Arunachalam</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Sundaresan</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Powder Metallurgy</article-title>
<source>Materials Science and Technology</source>
<person-group person-group-type="editor">
<name>
<surname>Cahn</surname>
<given-names>R.W.</given-names>
</name>
</person-group>
<publisher-name>Wiley-VCH</publisher-name>
<publisher-loc>Weinheim, Germany</publisher-loc>
<year>2006</year>
</element-citation>
</ref>
<ref id="B111-jfb-06-01099">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coble</surname>
<given-names>R.L.</given-names>
</name>
</person-group>
<article-title>Sintering crystalline solids. I. Intermediate and final state diffusion models</article-title>
<source>J. Appl. Phys.</source>
<year>1961</year>
<volume>32</volume>
<fpage>787</fpage>
<lpage>792</lpage>
<pub-id pub-id-type="doi">10.1063/1.1736107</pub-id>
</element-citation>
</ref>
<ref id="B112-jfb-06-01099">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Braginsky</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tikare</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Olevsky</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Numerical simulation of solid state sintering</article-title>
<source>Int. J. Solids Struct.</source>
<year>2005</year>
<volume>42</volume>
<fpage>621</fpage>
<lpage>636</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijsolstr.2004.06.022</pub-id>
</element-citation>
</ref>
<ref id="B113-jfb-06-01099">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Porosity dependence of mechanical properties of solid materials</article-title>
<source>J. Mater. Sci.</source>
<year>2006</year>
<volume>41</volume>
<fpage>1757</fpage>
<lpage>1768</lpage>
<pub-id pub-id-type="doi">10.1007/s10853-006-2871-9</pub-id>
</element-citation>
</ref>
<ref id="B114-jfb-06-01099">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynn Johnson</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>New method of obtaining volume, grain-boundary, and surface diffusion coefficients from sintering data</article-title>
<source>J. Appl. Phys.</source>
<year>1996</year>
<volume>40</volume>
<fpage>192</fpage>
<lpage>200</lpage>
<pub-id pub-id-type="doi">10.1063/1.1657030</pub-id>
</element-citation>
</ref>
<ref id="B115-jfb-06-01099">
<label>115.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haberko</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bućko</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Brzezińska-Miecznik</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Haberko</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Mozgawa</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Panz</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Pyda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Zarebski</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Natural hydroxyapatite—Its behaviour during heat treatment</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2006</year>
<volume>26</volume>
<fpage>537</fpage>
<lpage>542</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2005.07.033</pub-id>
</element-citation>
</ref>
<ref id="B116-jfb-06-01099">
<label>116.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haberko</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Bućko</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Mozgawa</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Pyda</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Brzezińska-Miecznik</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Carpentier</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres</article-title>
<source>Ceram. Int.</source>
<year>2009</year>
<volume>35</volume>
<fpage>2537</fpage>
<lpage>2540</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2009.02.008</pub-id>
</element-citation>
</ref>
<ref id="B117-jfb-06-01099">
<label>117.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Janus</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Faryna</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Haberko</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rakowska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Panz</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones</article-title>
<source>Mikrochim. Acta</source>
<year>2008</year>
<volume>161</volume>
<fpage>349</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="doi">10.1007/s00604-007-0864-2</pub-id>
</element-citation>
</ref>
<ref id="B118-jfb-06-01099">
<label>118.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahrololoom</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Javidi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Javadpour</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash</article-title>
<source>J. Ceram. Proc. Res.</source>
<year>2009</year>
<volume>10</volume>
<fpage>129</fpage>
<lpage>138</lpage>
</element-citation>
</ref>
<ref id="B119-jfb-06-01099">
<label>119.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matinlinna</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Pan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Insight into biological apatite, physiochemical properties and preparation approaches</article-title>
<source>BioMed Res. Int.</source>
<year>2013</year>
<volume>2013</volume>
<fpage>1</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1155/2013/929748</pub-id>
<pub-id pub-id-type="pmid">24078928</pub-id>
</element-citation>
</ref>
<ref id="B120-jfb-06-01099">
<label>120.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mostafa</surname>
<given-names>N.Y.</given-names>
</name>
</person-group>
<article-title>Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes</article-title>
<source>Mater. Chem. Phys.</source>
<year>2005</year>
<volume>94</volume>
<fpage>333</fpage>
<lpage>341</lpage>
<pub-id pub-id-type="doi">10.1016/j.matchemphys.2005.05.011</pub-id>
</element-citation>
</ref>
<ref id="B121-jfb-06-01099">
<label>121.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suchanek</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yashima</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kakihana</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yoshimura</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite ceramics with selected sintering additives</article-title>
<source>Biomaterials</source>
<year>1997</year>
<volume>18</volume>
<fpage>923</fpage>
<lpage>933</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(97)00019-7</pub-id>
<pub-id pub-id-type="pmid">9199762</pub-id>
</element-citation>
</ref>
<ref id="B122-jfb-06-01099">
<label>122.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalita</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Bose</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hosick</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Oxide based sintering additives for HAp ceramics</article-title>
<source>Ceram. Trans.</source>
<year>2003</year>
<volume>147</volume>
<fpage>63</fpage>
<lpage>72</lpage>
</element-citation>
</ref>
<ref id="B123-jfb-06-01099">
<label>123.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kalita</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Bose</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hosick</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>CaO-P
<sub>2</sub>
O
<sub>5</sub>
-Na
<sub>2</sub>
O-based sintering additives for hydroxyapatite (HAp) ceramics</article-title>
<source>Biomaterials</source>
<year>2004</year>
<volume>25</volume>
<fpage>2331</fpage>
<lpage>2339</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2003.09.012</pub-id>
<pub-id pub-id-type="pmid">14741598</pub-id>
</element-citation>
</ref>
<ref id="B124-jfb-06-01099">
<label>124.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Safronova</surname>
<given-names>T.V.</given-names>
</name>
<name>
<surname>Putlyaev</surname>
<given-names>V.I.</given-names>
</name>
<name>
<surname>Shekhirev</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Tretyakov</surname>
<given-names>Y.D.</given-names>
</name>
<name>
<surname>Kuznetsov</surname>
<given-names>A.V.</given-names>
</name>
<name>
<surname>Belyakov</surname>
<given-names>A.V.</given-names>
</name>
</person-group>
<article-title>Densification additives for hydroxyapatite ceramics</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2009</year>
<volume>29</volume>
<fpage>1925</fpage>
<lpage>1932</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2008.12.012</pub-id>
</element-citation>
</ref>
<ref id="B125-jfb-06-01099">
<label>125.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kono</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sassa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Asai</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic field</article-title>
<source>J. Cryst. Growth</source>
<year>2010</year>
<volume>312</volume>
<fpage>323</fpage>
<lpage>326</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcrysgro.2009.09.039</pub-id>
</element-citation>
</ref>
<ref id="B126-jfb-06-01099">
<label>126.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sadat-Shojai</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Khorasani</surname>
<given-names>M.-T.</given-names>
</name>
<name>
<surname>Dinpanah-Khoshdargi</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jamshidi</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Synthesis methods for nanosized hydroxyapatite with diverse structures</article-title>
<source>Acta Biomater.</source>
<year>2013</year>
<volume>9</volume>
<fpage>7591</fpage>
<lpage>7621</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2013.04.012</pub-id>
<pub-id pub-id-type="pmid">23583646</pub-id>
</element-citation>
</ref>
<ref id="B127-jfb-06-01099">
<label>127.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cihlar</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Castkova</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Direct synthesis of nanocrystalline hydroxyapatite by hydrothermal hydrolysis of alkylphosphates</article-title>
<source>Monatshefte. Chem.</source>
<year>2002</year>
<volume>133</volume>
<fpage>761</fpage>
<lpage>771</lpage>
<pub-id pub-id-type="doi">10.1007/s007060200048</pub-id>
</element-citation>
</ref>
<ref id="B128-jfb-06-01099">
<label>128.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vijayalakshmi</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Rajeswari</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Influence of process parameters on the sol-gel synthesis of nano hydroxyapatite using various phosphorus precursors</article-title>
<source>J. Sol-Gel Sci. Technol.</source>
<year>2012</year>
<volume>63</volume>
<fpage>45</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1007/s10971-012-2762-2</pub-id>
</element-citation>
</ref>
<ref id="B129-jfb-06-01099">
<label>129.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Costa</surname>
<given-names>D.O.</given-names>
</name>
<name>
<surname>Dixon</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Rizkalla</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>One- and three-dimensional growth of hydroxyapatite nanowires during sol-gel-hydrothermal synthesis</article-title>
<source>ACS Appl. Mater. Interfaces</source>
<year>2012</year>
<volume>4</volume>
<fpage>1490</fpage>
<lpage>1499</lpage>
<pub-id pub-id-type="doi">10.1021/am201735k</pub-id>
<pub-id pub-id-type="pmid">22296410</pub-id>
</element-citation>
</ref>
<ref id="B130-jfb-06-01099">
<label>130.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>J.C.C.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>C.Y.</given-names>
</name>
</person-group>
<article-title>Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation</article-title>
<source>Adv. Funct. Mater.</source>
<year>2005</year>
<volume>15</volume>
<fpage>2005</fpage>
<lpage>2010</lpage>
<pub-id pub-id-type="doi">10.1002/adfm.200500274</pub-id>
</element-citation>
</ref>
<ref id="B131-jfb-06-01099">
<label>131.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The transformation of single-crystal calcium phosphate ribbon-like fibres to hydroxyapatite spheres assembled from nanorods</article-title>
<source>Nanotechnology</source>
<year>2008</year>
<volume>19</volume>
<fpage>155608</fpage>
<lpage>155618</lpage>
<pub-id pub-id-type="doi">10.1088/0957-4484/19/15/155608</pub-id>
<pub-id pub-id-type="pmid">21825622</pub-id>
</element-citation>
</ref>
<ref id="B132-jfb-06-01099">
<label>132.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>Y.X.</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2003</year>
<volume>23</volume>
<fpage>1697</fpage>
<lpage>1704</lpage>
<pub-id pub-id-type="doi">10.1016/S0955-2219(02)00413-2</pub-id>
</element-citation>
</ref>
<ref id="B133-jfb-06-01099">
<label>133.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q.Z.</given-names>
</name>
</person-group>
<article-title>Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method</article-title>
<source>Mater. Lett.</source>
<year>2011</year>
<volume>65</volume>
<fpage>572</fpage>
<lpage>574</lpage>
<pub-id pub-id-type="doi">10.1016/j.matlet.2010.10.078</pub-id>
</element-citation>
</ref>
<ref id="B134-jfb-06-01099">
<label>134.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>S.-F.</given-names>
</name>
</person-group>
<article-title>Synthesis and characterization of microporous hydroxyapatite via hydrothermal method</article-title>
<source>Synth. React. Inorg.</source>
<year>2011</year>
<volume>41</volume>
<fpage>31</fpage>
<lpage>35</lpage>
</element-citation>
</ref>
<ref id="B135-jfb-06-01099">
<label>135.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fathi</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Zahrani</surname>
<given-names>E.M.</given-names>
</name>
</person-group>
<article-title>Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying</article-title>
<source>J. Alloys Compd.</source>
<year>2009</year>
<volume>475</volume>
<fpage>408</fpage>
<lpage>414</lpage>
<pub-id pub-id-type="doi">10.1016/j.jallcom.2008.07.058</pub-id>
</element-citation>
</ref>
<ref id="B136-jfb-06-01099">
<label>136.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Graça</surname>
<given-names>M.P.F.</given-names>
</name>
<name>
<surname>Valente</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Sombra</surname>
<given-names>A.S.B.</given-names>
</name>
</person-group>
<article-title>Crystallite size study of nanocrystalline hydroxyapatite and ceramic system with titanium oxide obtained by dry ball milling</article-title>
<source>J. Mater. Sci.</source>
<year>2007</year>
<volume>42</volume>
<fpage>3851</fpage>
<lpage>3855</lpage>
<pub-id pub-id-type="doi">10.1007/s10853-006-0474-0</pub-id>
</element-citation>
</ref>
<ref id="B137-jfb-06-01099">
<label>137.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bandyopadhyay</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Bose</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Bulk processing of hydroxyapatite nanopowder using radio frequency induction plasma</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2010</year>
<volume>93</volume>
<fpage>3720</fpage>
<lpage>3725</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2010.03982.x</pub-id>
</element-citation>
</ref>
<ref id="B138-jfb-06-01099">
<label>138.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ruksudjarit</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pengpat</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rujijanagul</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Tunkasiri</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone</article-title>
<source>Curr. Appl. Phys.</source>
<year>2008</year>
<volume>8</volume>
<fpage>270</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="doi">10.1016/j.cap.2007.10.076</pub-id>
</element-citation>
</ref>
<ref id="B139-jfb-06-01099">
<label>139.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mhin</surname>
<given-names>S.W.</given-names>
</name>
<name>
<surname>Ryu</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>K.M.</given-names>
</name>
</person-group>
<article-title>Simple synthetic route for hydroxyapatite colloidal nanoparticles via a Nd:YAG laser ablation in liquid medium</article-title>
<source>Appl. Phys. A</source>
<year>2009</year>
<volume>96</volume>
<fpage>435</fpage>
<lpage>440</lpage>
<pub-id pub-id-type="doi">10.1007/s00339-009-5219-x</pub-id>
</element-citation>
</ref>
<ref id="B140-jfb-06-01099">
<label>140.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Musaev</surname>
<given-names>O.R.</given-names>
</name>
<name>
<surname>Dusevich</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Wieliecza</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Wrobel</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Kruger</surname>
<given-names>M.B.</given-names>
</name>
</person-group>
<article-title>Nanoparticle fabrication of hydroxyapatite by laser ablation in water</article-title>
<source>J. Appl. Phys.</source>
<year>2008</year>
<volume>104</volume>
<fpage>1</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1063/1.3000666</pub-id>
</element-citation>
</ref>
<ref id="B141-jfb-06-01099">
<label>141.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nelson</surname>
<given-names>D.G.A.</given-names>
</name>
<name>
<surname>Wefel Jongebloed</surname>
<given-names>W.L.</given-names>
</name>
<name>
<surname>Featherstone</surname>
<given-names>J.D.B.</given-names>
</name>
</person-group>
<article-title>Morphology, histology and crystallography of human dental enamel treated with pulsed low-energy infrared laser radiation</article-title>
<source>Caries Res.</source>
<year>1987</year>
<volume>21</volume>
<fpage>411</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="doi">10.1159/000261047</pub-id>
<pub-id pub-id-type="pmid">3477323</pub-id>
</element-citation>
</ref>
<ref id="B142-jfb-06-01099">
<label>142.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eliaz</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sridhar</surname>
<given-names>T.M.</given-names>
</name>
</person-group>
<article-title>Electrocrystallization of Hydroxyapatite and Its Dependence on Solution Conditions</article-title>
<source>Cryst. Growth Des.</source>
<year>2008</year>
<volume>8</volume>
<fpage>3965</fpage>
<lpage>3977</lpage>
<pub-id pub-id-type="doi">10.1021/cg800016h</pub-id>
</element-citation>
</ref>
<ref id="B143-jfb-06-01099">
<label>143.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smolen</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Chudoba</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Malka</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Kedzierska</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lojkowski</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Swieszkowski</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Kurzydlowski</surname>
<given-names>K.J.</given-names>
</name>
<name>
<surname>Mierzynska</surname>
<given-names>M.K.</given-names>
</name>
<name>
<surname>Szumiel</surname>
<given-names>M.L.</given-names>
</name>
</person-group>
<article-title>Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation</article-title>
<source>Int. J. Nanomed.</source>
<year>2013</year>
<volume>8</volume>
<fpage>653</fpage>
<lpage>668</lpage>
<pub-id pub-id-type="doi">10.2147/IJN.S39299</pub-id>
<pub-id pub-id-type="pmid">23431124</pub-id>
</element-citation>
</ref>
<ref id="B144-jfb-06-01099">
<label>144.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Choy</surname>
<given-names>K.-L.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Preparation of hydroxyapatite fibers by electrospinning technique</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2004</year>
<volume>87</volume>
<fpage>1988</fpage>
<lpage>1991</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2004.tb06351.x</pub-id>
</element-citation>
</ref>
<ref id="B145-jfb-06-01099">
<label>145.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Socol</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Macovei</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Miroiu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Stefan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Duta</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dorcioman</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Mihailescu</surname>
<given-names>I.N.</given-names>
</name>
<name>
<surname>Petrescu</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Stan</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Marcov</surname>
<given-names>D.A.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications</article-title>
<source>Mater. Sci. Eng. B</source>
<year>2010</year>
<volume>169</volume>
<fpage>159</fpage>
<lpage>168</lpage>
<pub-id pub-id-type="doi">10.1016/j.mseb.2010.01.011</pub-id>
</element-citation>
</ref>
<ref id="B146-jfb-06-01099">
<label>146.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>D’Elía</surname>
<given-names>N.L.</given-names>
</name>
<name>
<surname>Noel Gravina</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ruso</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Laiuppa</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Santillán</surname>
<given-names>G.E.</given-names>
</name>
<name>
<surname>Messina</surname>
<given-names>P.V.</given-names>
</name>
</person-group>
<article-title>Manipulating the bioactivity of hydroxyapatite nano-rods structured networks, Effects on mineral coating morphology and growth kinetic</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2013</year>
<volume>1830</volume>
<fpage>5014</fpage>
<lpage>5026</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbagen.2013.07.020</pub-id>
<pub-id pub-id-type="pmid">23891938</pub-id>
</element-citation>
</ref>
<ref id="B147-jfb-06-01099">
<label>147.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorozhkin</surname>
<given-names>S.V.</given-names>
</name>
</person-group>
<article-title>Nanosized and nanocrystalline calcium orthophosphates</article-title>
<source>Acta Biomater.</source>
<year>2010</year>
<volume>6</volume>
<fpage>715</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2009.10.031</pub-id>
<pub-id pub-id-type="pmid">19861183</pub-id>
</element-citation>
</ref>
<ref id="B148-jfb-06-01099">
<label>148.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Nanoscale hydroxyapatite particles for bone tissue engineering</article-title>
<source>Acta Biomater.</source>
<year>2011</year>
<volume>7</volume>
<fpage>2769</fpage>
<lpage>2781</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2011.03.019</pub-id>
<pub-id pub-id-type="pmid">21440094</pub-id>
</element-citation>
</ref>
<ref id="B149-jfb-06-01099">
<label>149.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thangamani</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Chinnakali</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gnanam</surname>
<given-names>F.D.</given-names>
</name>
</person-group>
<article-title>The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite</article-title>
<source>Ceram. Int.</source>
<year>2002</year>
<volume>28</volume>
<fpage>355</fpage>
<lpage>362</lpage>
<pub-id pub-id-type="doi">10.1016/S0272-8842(01)00102-X</pub-id>
</element-citation>
</ref>
<ref id="B150-jfb-06-01099">
<label>150.</label>
<element-citation publication-type="patent">
<person-group person-group-type="author">
<name>
<surname>Richard</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Eugene</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Dan</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite with Controllable Size and Morphology</article-title>
<patent>WO2006083418 A2</patent>
<year>2006</year>
</element-citation>
</ref>
<ref id="B151-jfb-06-01099">
<label>151.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Salih</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds</article-title>
<source>Biomaterials</source>
<year>2005</year>
<volume>26</volume>
<fpage>5221</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2005.01.047</pub-id>
<pub-id pub-id-type="pmid">15792549</pub-id>
</element-citation>
</ref>
<ref id="B152-jfb-06-01099">
<label>152.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mucalo</surname>
<given-names>M.</given-names>
</name>
</person-group>
<source>Hydroxyapatite (HAp) for Biomedical Applications, Technology & Engineering</source>
<publisher-name>Woodhead Publishing</publisher-name>
<publisher-loc>Cambridge, UK</publisher-loc>
<year>2015</year>
</element-citation>
</ref>
<ref id="B153-jfb-06-01099">
<label>153.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cui</surname>
<given-names>F.Z.</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Q.L.</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>X.D.</given-names>
</name>
<name>
<surname>de Groot</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Tissue response to nano hydroxyapatite/collagen composite implants in marrow cavity</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1998</year>
<volume>42</volume>
<fpage>540</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-4636(19981215)42:4<540::AID-JBM9>3.0.CO;2-2</pub-id>
<pub-id pub-id-type="pmid">9827677</pub-id>
</element-citation>
</ref>
<ref id="B154-jfb-06-01099">
<label>154.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Müller-Mai</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Stupp</surname>
<given-names>S.I.</given-names>
</name>
<name>
<surname>Voigt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Nanoapatite and organoapatite implants in bone: Histology and ultrastructure of the interface</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1995</year>
<volume>29</volume>
<fpage>9</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.820290103</pub-id>
<pub-id pub-id-type="pmid">7713964</pub-id>
</element-citation>
</ref>
<ref id="B155-jfb-06-01099">
<label>155.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pielichowska</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Blazewicz</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Bioactive polymer/hydroxyapatite (nano)composites for bone tissue regeneration</article-title>
<source>Biopolym. Adv. Polym. Sci.</source>
<year>2010</year>
<volume>232</volume>
<fpage>97</fpage>
<lpage>207</lpage>
</element-citation>
</ref>
<ref id="B156-jfb-06-01099">
<label>156.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Effect of hydroxyapatite nanoparticles on the growth and p53/c-Myc protein expression of implanted hepatic VX
<sub>2</sub>
tumor in rabbits by intravenous injection</article-title>
<source>World J. Gastroenterol.</source>
<year>2007</year>
<volume>13</volume>
<fpage>2798</fpage>
<lpage>2802</lpage>
<pub-id pub-id-type="pmid">17569114</pub-id>
</element-citation>
</ref>
<ref id="B157-jfb-06-01099">
<label>157.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauer</surname>
<given-names>I.W.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.C.</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>M.Z.</given-names>
</name>
</person-group>
<article-title>Internalization of hydroxyapatite nanoparticles in liver cancer cells</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2008</year>
<volume>19</volume>
<fpage>1091</fpage>
<lpage>1095</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-007-3124-4</pub-id>
<pub-id pub-id-type="pmid">17701307</pub-id>
</element-citation>
</ref>
<ref id="B158-jfb-06-01099">
<label>158.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pezzatini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Solito</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Morbidelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lamponi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Boanini</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bigi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ziche</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions</article-title>
<source>J. Biomed. Mater. Res. A</source>
<year>2006</year>
<volume>76</volume>
<fpage>656</fpage>
<lpage>663</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.30524</pub-id>
<pub-id pub-id-type="pmid">16294324</pub-id>
</element-citation>
</ref>
<ref id="B159-jfb-06-01099">
<label>159.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Effect of nano- and micro-hydroxyapatite/chitosan- gelatin network film on human gastric cancer cells</article-title>
<source>Mater. Lett.</source>
<year>2008</year>
<volume>62</volume>
<fpage>3220</fpage>
<lpage>3223</lpage>
<pub-id pub-id-type="doi">10.1016/j.matlet.2008.02.072</pub-id>
</element-citation>
</ref>
<ref id="B160-jfb-06-01099">
<label>160.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>Y.R.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>R.K.</given-names>
</name>
</person-group>
<article-title>Calcium phosphate nanoparticles in biomineralization and biomaterials</article-title>
<source>J. Mater. Chem.</source>
<year>2008</year>
<volume>18</volume>
<fpage>3775</fpage>
<lpage>3787</lpage>
<pub-id pub-id-type="doi">10.1039/b805407j</pub-id>
</element-citation>
</ref>
<ref id="B161-jfb-06-01099">
<label>161.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2007</year>
<volume>18</volume>
<fpage>677</fpage>
<lpage>683</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-006-0019-8</pub-id>
<pub-id pub-id-type="pmid">17143736</pub-id>
</element-citation>
</ref>
<ref id="B162-jfb-06-01099">
<label>162.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Morphology-Enhanced Low-Temperature Sintering of Nanocrystalline Hydroxyapatite</article-title>
<source>Adv. Mater.</source>
<year>2007</year>
<volume>19</volume>
<fpage>2364</fpage>
<lpage>2369</lpage>
<pub-id pub-id-type="doi">10.1002/adma.200602333</pub-id>
</element-citation>
</ref>
<ref id="B163-jfb-06-01099">
<label>163.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Veljovic</surname>
<given-names>Đ.</given-names>
</name>
<name>
<surname>Zalite</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Palcevskis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Smiciklas</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Petrovic</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Janackovic</surname>
<given-names>Đ.</given-names>
</name>
</person-group>
<article-title>Microwave Sintering of Fine Grained HAP and HAP/TCP Bioceramics</article-title>
<source>Ceram. Int.</source>
<year>2010</year>
<volume>36</volume>
<fpage>595</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2009.09.038</pub-id>
</element-citation>
</ref>
<ref id="B164-jfb-06-01099">
<label>164.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eriksson</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Nigren</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Transparent Hydroxyapatite Ceramics with Nanograin Structure Prepared by High Pressure Spark Plasma Sintering at the Minimized Sintering Temperature</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2011</year>
<volume>31</volume>
<fpage>1533</fpage>
<lpage>1540</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2011.03.021</pub-id>
</element-citation>
</ref>
<ref id="B165-jfb-06-01099">
<label>165.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lukic</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Veselinovic</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Stojanovic</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Macek-Krzmanc</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Bracko</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Skapin</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Markovic</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Uskokovic</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Peculiarities in Sintering Behavior of Ca-Deficient Hydroxyapatite Nanopowders</article-title>
<source>Mater. Lett.</source>
<year>2012</year>
<volume>68</volume>
<fpage>331</fpage>
<lpage>335</lpage>
<pub-id pub-id-type="doi">10.1016/j.matlet.2011.10.085</pub-id>
</element-citation>
</ref>
<ref id="B166-jfb-06-01099">
<label>166.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misiek</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Kent</surname>
<given-names>J.N.</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>R.F.</given-names>
</name>
</person-group>
<article-title>Soft tissue responses to hydroxylapatite particles of different shapes</article-title>
<source>J. Oral. Maxillofac. Surg.</source>
<year>1984</year>
<volume>42</volume>
<fpage>150</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="doi">10.1016/S0278-2391(84)80025-7</pub-id>
<pub-id pub-id-type="pmid">6321708</pub-id>
</element-citation>
</ref>
<ref id="B167-jfb-06-01099">
<label>167.</label>
<element-citation publication-type="book">
<person-group person-group-type="editor">
<name>
<surname>Uskokovic</surname>
<given-names>D.P.</given-names>
</name>
<name>
<surname>Palmour</surname>
<given-names>H.</given-names>
<suffix>III</suffix>
</name>
<name>
<surname>Spriggs</surname>
<given-names>R.M.</given-names>
</name>
</person-group>
<source>Science of Sintering, New Directions for Materials Processing and Microstructural Control</source>
<publisher-name>Plenum Press</publisher-name>
<publisher-loc>New York, NY, USA; London, UK</publisher-loc>
<year>1989</year>
</element-citation>
</ref>
<ref id="B168-jfb-06-01099">
<label>168.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>Y.M.</given-names>
</name>
<name>
<surname>Koh</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.M.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Pressureless Sintering and Mechanical and Biological Properties of Fluor-hydroxyapatite Composites with Zirconia</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2003</year>
<volume>86</volume>
<fpage>2019</fpage>
<lpage>2026</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2003.tb03602.x</pub-id>
</element-citation>
</ref>
<ref id="B169-jfb-06-01099">
<label>169.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bernache-Assollant</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ababou</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Champion</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Heughebaert</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Sintering of calcium phosphate hydroxyapatite Ca
<sub>10</sub>
(PO
<sub>4</sub>
)
<sub>6</sub>
(OH)
<sub>2</sub>
I. Calcination and particle growth</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2003</year>
<volume>23</volume>
<fpage>229</fpage>
<lpage>241</lpage>
<pub-id pub-id-type="doi">10.1016/S0955-2219(02)00186-3</pub-id>
</element-citation>
</ref>
<ref id="B170-jfb-06-01099">
<label>170.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kawai</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Wakayama</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The effect of pressure during sintering on the strength and the fracture toughness of hydroxyapatite ceramics</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2006</year>
<volume>17</volume>
<fpage>1089</fpage>
<lpage>1093</lpage>
<pub-id pub-id-type="doi">10.1007/s10856-006-0535-6</pub-id>
<pub-id pub-id-type="pmid">17122923</pub-id>
</element-citation>
</ref>
<ref id="B171-jfb-06-01099">
<label>171.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>X.M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>A new approach for toughening of ceramics</article-title>
<source>Mater. Lett.</source>
<year>1997</year>
<volume>33</volume>
<fpage>237</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-577X(97)00107-9</pub-id>
</element-citation>
</ref>
<ref id="B172-jfb-06-01099">
<label>172.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kasuga</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ota</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Abe</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Preparation of high-strength Calcium Phosphate ceramics with low modulus of elasticity containing β-Ca(PO
<sub>3</sub>
)
<sub>2</sub>
fibers</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1996</year>
<volume>79</volume>
<fpage>1821</fpage>
<lpage>1824</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1996.tb08001.x</pub-id>
</element-citation>
</ref>
<ref id="B173-jfb-06-01099">
<label>173.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Suchanek</surname>
<given-names>W.L.</given-names>
</name>
<name>
<surname>Yoshimura</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Preparation of fibrous, porous hydroxyapatite ceramics from hydroxyapatite whiskers</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1998</year>
<volume>81</volume>
<fpage>765</fpage>
<lpage>767</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1998.tb02408.x</pub-id>
</element-citation>
</ref>
<ref id="B174-jfb-06-01099">
<label>174.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Hashida</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>
<italic>In situ</italic>
formation of hydroxyapatite-whisker ceramics by hydrothermal hot-pressing method</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2006</year>
<volume>89</volume>
<fpage>3544</fpage>
<lpage>3546</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2006.01149.x</pub-id>
</element-citation>
</ref>
<ref id="B175-jfb-06-01099">
<label>175.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onoki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hashida</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>New method for hydroxyapatite coating of titanium by the hydrothermal hot isostatic pressing technique</article-title>
<source>Surf. Coat. Technol.</source>
<year>2006</year>
<volume>200</volume>
<fpage>6801</fpage>
<lpage>6807</lpage>
<pub-id pub-id-type="doi">10.1016/j.surfcoat.2005.10.016</pub-id>
</element-citation>
</ref>
<ref id="B176-jfb-06-01099">
<label>176.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uematsu</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Takagi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Honda</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Uchida</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Transparent hydroxyapatite prepared by hot isostatic pressing of filter cake</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1989</year>
<volume>72</volume>
<fpage>1476</fpage>
<lpage>1478</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1989.tb07680.x</pub-id>
</element-citation>
</ref>
<ref id="B177-jfb-06-01099">
<label>177.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakahira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Murakami</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Onoki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hashida</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Hosoi</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Fabrication of porous hydroxyapatite using hydrothermal hot pressing and post-sintering</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2005</year>
<volume>88</volume>
<fpage>1334</fpage>
<lpage>1336</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2005.00238.x</pub-id>
</element-citation>
</ref>
<ref id="B178-jfb-06-01099">
<label>178.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Auger</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Savoini</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Muñoz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Leguey</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Monge</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Pareja</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Victoria</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Mechanical characteristics of porous hydroxyapatite/oxide composites produced by post-sintering hot isostatic pressing</article-title>
<source>Ceram. Int.</source>
<year>2009</year>
<volume>35</volume>
<fpage>2373</fpage>
<lpage>2380</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2009.01.016</pub-id>
</element-citation>
</ref>
<ref id="B179-jfb-06-01099">
<label>179.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nath</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sinha</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>A comparative study of conventional sintering with microwave sintering of hydroxyapatite synthesized by chemical route</article-title>
<source>Trends Biomater. Artif. Organs</source>
<year>2006</year>
<volume>19</volume>
<fpage>93</fpage>
<lpage>98</lpage>
</element-citation>
</ref>
<ref id="B180-jfb-06-01099">
<label>180.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramesh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Bhaduri</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>W.D.</given-names>
</name>
</person-group>
<article-title>Rapid densification of nanocrystalline hydroxyapatite for biomedical applications</article-title>
<source>Ceram. Int.</source>
<year>2007</year>
<volume>33</volume>
<fpage>1363</fpage>
<lpage>1367</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2006.05.009</pub-id>
</element-citation>
</ref>
<ref id="B181-jfb-06-01099">
<label>181.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Silva</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Graça</surname>
<given-names>M.P.F.</given-names>
</name>
<name>
<surname>Sombra</surname>
<given-names>A.S.B.</given-names>
</name>
<name>
<surname>Valente</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Structural and electrical study of Calcium Phosphate obtained by a microwave radiation assisted procedure</article-title>
<source>Phys. Rev. B Condens. Matter.</source>
<year>2009</year>
<volume>404</volume>
<fpage>1503</fpage>
<lpage>1508</lpage>
<pub-id pub-id-type="doi">10.1016/j.physb.2009.01.015</pub-id>
</element-citation>
</ref>
<ref id="B182-jfb-06-01099">
<label>182.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>Y.W.</given-names>
</name>
<name>
<surname>Loh</surname>
<given-names>N.H.</given-names>
</name>
<name>
<surname>Khor</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Tor</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Cheang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Spark plasma sintering of hydroxyapatite powders</article-title>
<source>Biomaterials</source>
<year>2002</year>
<volume>23</volume>
<fpage>37</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(01)00076-X</pub-id>
<pub-id pub-id-type="pmid">11762852</pub-id>
</element-citation>
</ref>
<ref id="B183-jfb-06-01099">
<label>183.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2005</year>
<volume>88</volume>
<fpage>1026</fpage>
<lpage>1029</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2005.00198.x</pub-id>
</element-citation>
</ref>
<ref id="B184-jfb-06-01099">
<label>184.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drouet</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Largeot</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Raimbeaux</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Estournès</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dechambre</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Combes</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Bioceramics, spark plasma sintering (SPS) of calcium phosphates</article-title>
<source>Adv. Sci. Technol.</source>
<year>2006</year>
<volume>49</volume>
<fpage>45</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/AST.49.45</pub-id>
</element-citation>
</ref>
<ref id="B185-jfb-06-01099">
<label>185.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2012</year>
<volume>32</volume>
<fpage>2691</fpage>
<lpage>2696</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2012.02.025</pub-id>
</element-citation>
</ref>
<ref id="B186-jfb-06-01099">
<label>186.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Bioactive materials</article-title>
<source>Ceram. Int.</source>
<year>1996</year>
<volume>22</volume>
<fpage>493</fpage>
<lpage>507</lpage>
<pub-id pub-id-type="doi">10.1016/0272-8842(95)00126-3</pub-id>
</element-citation>
</ref>
<ref id="B187-jfb-06-01099">
<label>187.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hench</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Bioceramics</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1998</year>
<volume>81</volume>
<fpage>1705</fpage>
<lpage>1728</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1998.tb02540.x</pub-id>
</element-citation>
</ref>
<ref id="B188-jfb-06-01099">
<label>188.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ramesh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Sopyan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hamdi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>W.D.</given-names>
</name>
</person-group>
<article-title>Consolidation of nanocrystalline hydroxyapatite powder</article-title>
<source>Sci. Technol. Adv. Mater.</source>
<year>2007</year>
<volume>8</volume>
<fpage>124</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1016/j.stam.2006.11.002</pub-id>
</element-citation>
</ref>
<ref id="B189-jfb-06-01099">
<label>189.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tancred</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>McCormack</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Carr</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>A synthetic bone implant macroscopically identical to cancellous bone</article-title>
<source>Biomaterials</source>
<year>1998</year>
<volume>19</volume>
<fpage>2303</fpage>
<lpage>2311</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(98)00141-0</pub-id>
<pub-id pub-id-type="pmid">9884044</pub-id>
</element-citation>
</ref>
<ref id="B190-jfb-06-01099">
<label>190.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murugan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Ramakrishnan</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Development of nanocomposites for bone grafting</article-title>
<source>Compos. Sci. Technol.</source>
<year>2005</year>
<volume>65</volume>
<fpage>2385</fpage>
<lpage>2406</lpage>
<pub-id pub-id-type="doi">10.1016/j.compscitech.2005.07.022</pub-id>
</element-citation>
</ref>
<ref id="B191-jfb-06-01099">
<label>191.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sopyan</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Mel</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ramesh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Khalid</surname>
<given-names>K.A.</given-names>
</name>
</person-group>
<article-title>Porous hydroxyapatite for artificial bone applications</article-title>
<source>Sci. Technol. Adv. Mater.</source>
<year>2007</year>
<volume>8</volume>
<fpage>116</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="doi">10.1016/j.stam.2006.11.017</pub-id>
</element-citation>
</ref>
<ref id="B192-jfb-06-01099">
<label>192.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Karageorgiou</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Porosity of 3D biomaterial scaffolds and osteogenesis</article-title>
<source>Biomaterials</source>
<year>2005</year>
<volume>26</volume>
<fpage>5474</fpage>
<lpage>5491</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2005.02.002</pub-id>
<pub-id pub-id-type="pmid">15860204</pub-id>
</element-citation>
</ref>
<ref id="B193-jfb-06-01099">
<label>193.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bucholz</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Carlton</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures</article-title>
<source>Clin. Orthop.</source>
<year>1989</year>
<volume>240</volume>
<fpage>53</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1097/00003086-198903000-00008</pub-id>
<pub-id pub-id-type="pmid">2537166</pub-id>
</element-citation>
</ref>
<ref id="B194-jfb-06-01099">
<label>194.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>J.X.</given-names>
</name>
<name>
<surname>Flautre</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Anselme</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hardouin</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Gallur</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Descamps</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Thierry</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Role of interconnections in porous bioceramics on bone recolonization
<italic>in vitro</italic>
and
<italic>in vivo</italic>
</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1999</year>
<volume>10</volume>
<fpage>111</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008973120918</pub-id>
<pub-id pub-id-type="pmid">15347932</pub-id>
</element-citation>
</ref>
<ref id="B195-jfb-06-01099">
<label>195.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jones</surname>
<given-names>A.C.</given-names>
</name>
<name>
<surname>Arns</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Sheppard</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Hutmacher</surname>
<given-names>D.W.</given-names>
</name>
<name>
<surname>Milthorpe</surname>
<given-names>B.K.</given-names>
</name>
<name>
<surname>Knackstedt</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Assessment of bone ingrowth into porous biomaterials using MICRO-CT</article-title>
<source>Biomaterials</source>
<year>2007</year>
<volume>28</volume>
<fpage>2491</fpage>
<lpage>2504</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2007.01.046</pub-id>
<pub-id pub-id-type="pmid">17335896</pub-id>
</element-citation>
</ref>
<ref id="B196-jfb-06-01099">
<label>196.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ayers</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Simske</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Nunes</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Wolford</surname>
<given-names>L.M.</given-names>
</name>
</person-group>
<article-title>Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans</article-title>
<source>J. Oral Maxillof. Surg.</source>
<year>1998</year>
<volume>56</volume>
<fpage>1297</fpage>
<lpage>1302</lpage>
<pub-id pub-id-type="doi">10.1016/S0278-2391(98)90613-9</pub-id>
</element-citation>
</ref>
<ref id="B197-jfb-06-01099">
<label>197.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gauthier</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Bosco</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Aguado</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1999</year>
<volume>47</volume>
<fpage>28</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1097-4636(199910)47:1<28::AID-JBM4>3.0.CO;2-P</pub-id>
<pub-id pub-id-type="pmid">10400877</pub-id>
</element-citation>
</ref>
<ref id="B198-jfb-06-01099">
<label>198.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hing</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Best</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Bonfield</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Characterization of porous hydroxyapatite</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1999</year>
<volume>10</volume>
<fpage>135</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008929305897</pub-id>
<pub-id pub-id-type="pmid">15348161</pub-id>
</element-citation>
</ref>
<ref id="B199-jfb-06-01099">
<label>199.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carotenuto</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Spagnuolo</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ambrosio</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Nicolais</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Macroporous hydroxyapatite as alloplastic material for dental applications</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1999</year>
<volume>10</volume>
<fpage>671</fpage>
<lpage>676</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008952111545</pub-id>
<pub-id pub-id-type="pmid">15347984</pub-id>
</element-citation>
</ref>
<ref id="B200-jfb-06-01099">
<label>200.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Charriere</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lemaitre</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zysset</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite cement scaffolds with controlled macroporosity: Fabrication protocol and mechanical properties</article-title>
<source>Biomaterials</source>
<year>2003</year>
<volume>24</volume>
<fpage>809</fpage>
<lpage>817</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(02)00406-4</pub-id>
<pub-id pub-id-type="pmid">12485799</pub-id>
</element-citation>
</ref>
<ref id="B201-jfb-06-01099">
<label>201.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yan</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Highly ordered mesoporous bioactive glasses with superior
<italic>in vitro</italic>
bone-forming bioactivities</article-title>
<source>Angew. Chem. Int. Ed. Engl.</source>
<year>2004</year>
<volume>43</volume>
<fpage>5980</fpage>
<lpage>5984</lpage>
<pub-id pub-id-type="doi">10.1002/anie.200460598</pub-id>
<pub-id pub-id-type="pmid">15547911</pub-id>
</element-citation>
</ref>
<ref id="B202-jfb-06-01099">
<label>202.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kamitakahara</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ioku</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Preparation and characterization of periodic porous frame of hydroxyapatite</article-title>
<source>J. Ceram. Soc. Jpn.</source>
<year>2009</year>
<volume>117</volume>
<fpage>521</fpage>
<lpage>524</lpage>
<pub-id pub-id-type="doi">10.2109/jcersj2.117.521</pub-id>
</element-citation>
</ref>
<ref id="B203-jfb-06-01099">
<label>203.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munch</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Franco</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Deville</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hunger</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Saiz</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tomsia</surname>
<given-names>A.P.</given-names>
</name>
</person-group>
<article-title>Porous ceramic scaffolds with complex architectures</article-title>
<source>JOM</source>
<year>2008</year>
<volume>60</volume>
<fpage>54</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1007/s11837-008-0072-5</pub-id>
</element-citation>
</ref>
<ref id="B204-jfb-06-01099">
<label>204.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C.W.</given-names>
</name>
<name>
<surname>Riman</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>Ten Huisen</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Mechanochemical-hydrothemal synthesis of hydroxyapatite from no ionic surfactant emulsion precursors</article-title>
<source>J. Cryst. Growth</source>
<year>2004</year>
<volume>270</volume>
<fpage>615</fpage>
<lpage>623</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcrysgro.2004.06.051</pub-id>
</element-citation>
</ref>
<ref id="B205-jfb-06-01099">
<label>205.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nagase</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>D.G.</given-names>
</name>
<name>
<surname>Schumacher</surname>
<given-names>H.R.</given-names>
</name>
</person-group>
<article-title>Prolonged inflammatory reactions induced by artificial ceramics in the rat pouch model</article-title>
<source>J. Rheumatol.</source>
<year>1988</year>
<volume>15</volume>
<fpage>1334</fpage>
<lpage>1338</lpage>
<pub-id pub-id-type="pmid">3058969</pub-id>
</element-citation>
</ref>
<ref id="B206-jfb-06-01099">
<label>206.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rooney</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Berman</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Indersano</surname>
<given-names>A.T.</given-names>
</name>
</person-group>
<article-title>Evaluation of porous block hydroxylapatite for augmentation of alveolar ridges</article-title>
<source>J. Oral Maxillof. Surg.</source>
<year>1988</year>
<volume>46</volume>
<fpage>15</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1016/0278-2391(88)90294-7</pub-id>
</element-citation>
</ref>
<ref id="B207-jfb-06-01099">
<label>207.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prudhommeaux</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Schiltz</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Lioté</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Hina</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Champy</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bucki</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ortiz-Bravo</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Meunier</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bardin</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Variation in the inflammatory properties of basic Calcium Phosphate crystals according to crystal type</article-title>
<source>Arthritis Rheumatol.</source>
<year>1996</year>
<volume>39</volume>
<fpage>1319</fpage>
<lpage>1326</lpage>
<pub-id pub-id-type="doi">10.1002/art.1780390809</pub-id>
</element-citation>
</ref>
<ref id="B208-jfb-06-01099">
<label>208.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>LeGeros</surname>
<given-names>R.Z.</given-names>
</name>
</person-group>
<article-title>Properties of osteoconductive biomaterials: Calcium phosphates</article-title>
<source>Clin. Orthop. Rel. Res.</source>
<year>2002</year>
<volume>395</volume>
<fpage>81</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="doi">10.1097/00003086-200202000-00009</pub-id>
</element-citation>
</ref>
<ref id="B209-jfb-06-01099">
<label>209.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gauthier</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Bouler</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Aguado</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Pilet</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Daculsi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Macroporous biphasic calcium phosphate ceramics: Influence of macropore diameter and macroporosity percentage on bone ingrowth</article-title>
<source>Biomaterials</source>
<year>1998</year>
<volume>19</volume>
<fpage>133</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(97)00180-4</pub-id>
<pub-id pub-id-type="pmid">9678860</pub-id>
</element-citation>
</ref>
<ref id="B210-jfb-06-01099">
<label>210.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fujita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamamuro</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kotani</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ohtsuki</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The bonding behavior of calcite to bone</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1991</year>
<volume>25</volume>
<fpage>991</fpage>
<lpage>1003</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.820250806</pub-id>
<pub-id pub-id-type="pmid">1717475</pub-id>
</element-citation>
</ref>
<ref id="B211-jfb-06-01099">
<label>211.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Rudd</surname>
<given-names>C.D.</given-names>
</name>
<name>
<surname>Scotchford</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>G.S.</given-names>
</name>
</person-group>
<article-title>Preparation of poly(E-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant</article-title>
<source>Biomaterials</source>
<year>2005</year>
<volume>26</volume>
<fpage>2281</fpage>
<lpage>2288</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2004.07.042</pub-id>
<pub-id pub-id-type="pmid">15585230</pub-id>
</element-citation>
</ref>
<ref id="B212-jfb-06-01099">
<label>212.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jarcho</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kay</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Kennenth</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Gumaer</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Doremus</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Drobeck</surname>
<given-names>H.P.</given-names>
</name>
</person-group>
<article-title>Tissue cellular and subcellular events at a bone-ceramic hydroxyapatite interface</article-title>
<source>J. Bioeng.</source>
<year>1977</year>
<volume>1</volume>
<fpage>79</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">355244</pub-id>
</element-citation>
</ref>
<ref id="B213-jfb-06-01099">
<label>213.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Driskell</surname>
<given-names>T.D.</given-names>
</name>
<name>
<surname>Hassler</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Tennery</surname>
<given-names>V.J.</given-names>
</name>
<name>
<surname>McCoy</surname>
<given-names>I.R.</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Calcium phosphate resorbable ceramic: A potential alternative for bone grafting</article-title>
<source>J. Dent. Res.</source>
<year>1973</year>
<volume>52</volume>
<fpage>123</fpage>
<lpage>131</lpage>
</element-citation>
</ref>
<ref id="B214-jfb-06-01099">
<label>214.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lutz-Christian</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Boccaccini</surname>
<given-names>A.R.</given-names>
</name>
</person-group>
<article-title>Bioactive glass and glass-ceramic scaffolds for bone tissue engineering</article-title>
<source>Materials</source>
<year>2010</year>
<volume>3</volume>
<fpage>3867</fpage>
<lpage>3910</lpage>
</element-citation>
</ref>
<ref id="B215-jfb-06-01099">
<label>215.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vallet-Regí</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Balas</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Silica materials for medical applications</article-title>
<source>Open Biomed. Eng. J.</source>
<year>2008</year>
<volume>2</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.2174/1874120700802010001</pub-id>
<pub-id pub-id-type="pmid">19662110</pub-id>
</element-citation>
</ref>
<ref id="B216-jfb-06-01099">
<label>216.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nawawi</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Alqap</surname>
<given-names>A.S.F.</given-names>
</name>
<name>
<surname>Sopyan</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Recent progress on hydroxyapatite-based dense biomaterials for load bearing bone substitutes</article-title>
<source>Recent Pat. Mater. Sci.</source>
<year>2011</year>
<volume>4</volume>
<fpage>63</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.2174/1874465611104010063</pub-id>
</element-citation>
</ref>
<ref id="B217-jfb-06-01099">
<label>217.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Izquierdo-Barba</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Ruiz-González</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Doadrio</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>González-Calbet</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Vallet-Regí</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Tissue regeneration: A new property of mesoporous materials</article-title>
<source>Solid State Sci.</source>
<year>2005</year>
<volume>7</volume>
<fpage>983</fpage>
<lpage>989</lpage>
<pub-id pub-id-type="doi">10.1016/j.solidstatesciences.2005.04.003</pub-id>
</element-citation>
</ref>
<ref id="B218-jfb-06-01099">
<label>218.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Hermawan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ramdan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Djuansjah</surname>
<given-names>J.R.P.</given-names>
</name>
</person-group>
<article-title>Metals for Biomedical Applications</article-title>
<source>Biomedical Engineering—From Theory to Applications</source>
<person-group person-group-type="editor">
<name>
<surname>Fazel</surname>
<given-names>R.</given-names>
</name>
</person-group>
<publisher-name>InTech</publisher-name>
<publisher-loc>Rijeka, Croatia</publisher-loc>
<year>2011</year>
</element-citation>
</ref>
<ref id="B219-jfb-06-01099">
<label>219.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Heimke</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Griss</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Jentschura</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Werner</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Direct anchorage of Al
<sub>2</sub>
O
<sub>3</sub>
-ceramic hip components: Three years of clinical experience and results of further animal studies</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1979</year>
<volume>13</volume>
<fpage>57</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.820130108</pub-id>
<pub-id pub-id-type="pmid">429385</pub-id>
</element-citation>
</ref>
<ref id="B220-jfb-06-01099">
<label>220.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ehrl</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Reuther</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Frenkel</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Al2O3-ceramic as material for dental implants, experimental and clinical study for the development of screw- and extension-implants</article-title>
<source>Int. J. Oral Surg.</source>
<year>1981</year>
<volume>10</volume>
<fpage>93</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">6807914</pub-id>
</element-citation>
</ref>
<ref id="B221-jfb-06-01099">
<label>221.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zweymüller</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Semlitsch</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Concept and material properties of a cementless hip prosthesis system with Al2O3 ceramic ball heads and wrought Ti-6Al-4V stems</article-title>
<source>Arch. Orthop. Trauma. Surg.</source>
<year>1982</year>
<volume>100</volume>
<fpage>229</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="doi">10.1007/BF00381662</pub-id>
<pub-id pub-id-type="pmid">7159194</pub-id>
</element-citation>
</ref>
<ref id="B222-jfb-06-01099">
<label>222.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cinotti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Lucioli</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Malagoli</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Calderoli</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Cassese</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Do large femoral heads reduce the risks of impingement in total hip arthroplasty with optimal and non-optimal cup positioning?</article-title>
<source>Int. Orthop.</source>
<year>2011</year>
<volume>35</volume>
<fpage>317</fpage>
<lpage>323</lpage>
<pub-id pub-id-type="doi">10.1007/s00264-010-0954-3</pub-id>
<pub-id pub-id-type="pmid">20157813</pub-id>
</element-citation>
</ref>
<ref id="B223-jfb-06-01099">
<label>223.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Maccauro</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Iommetti</surname>
<given-names>P.R.</given-names>
</name>
<name>
<surname>Raffaelli</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Manicone</surname>
<given-names>P.F.</given-names>
</name>
</person-group>
<article-title>Alumina and Zirconia Ceramic for Orthopaedic and Dental Devices</article-title>
<source>Biomaterials Applications for Nanomedicine</source>
<person-group person-group-type="editor">
<name>
<surname>Pignatello</surname>
<given-names>R.</given-names>
</name>
</person-group>
<publisher-name>InTech</publisher-name>
<publisher-loc>Rijeka, Croatia</publisher-loc>
<year>2011</year>
</element-citation>
</ref>
<ref id="B224-jfb-06-01099">
<label>224.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rettig</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Virtanen</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids</article-title>
<source>J. Biomed. Mater. Res. A</source>
<year>2008</year>
<volume>85</volume>
<fpage>167</fpage>
<lpage>175</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.31550</pub-id>
<pub-id pub-id-type="pmid">17688266</pub-id>
</element-citation>
</ref>
<ref id="B225-jfb-06-01099">
<label>225.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Aza</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Chevalier</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fantozzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Schehl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Torrecillas</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses</article-title>
<source>Biomaterials</source>
<year>2002</year>
<volume>23</volume>
<fpage>937</fpage>
<lpage>945</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(01)00206-X</pub-id>
<pub-id pub-id-type="pmid">11774853</pub-id>
</element-citation>
</ref>
<ref id="B226-jfb-06-01099">
<label>226.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gamal</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Al-Mufadi</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Said</surname>
<given-names>A.H.</given-names>
</name>
</person-group>
<article-title>Effect of iron additives on the microstructure of hydroxyapatite</article-title>
<source>ETASR Eng. Technol. Appl. Sci. Res.</source>
<year>2013</year>
<volume>3</volume>
<fpage>532</fpage>
<lpage>539</lpage>
</element-citation>
</ref>
<ref id="B227-jfb-06-01099">
<label>227.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Habibovic</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Barrere</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>van Blitterswijk</surname>
<given-names>C.A.</given-names>
</name>
<name>
<surname>de Groot</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Layrolle</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Biomimetic hydroxyapatite coating on metal implants</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2002</year>
<volume>85</volume>
<fpage>517</fpage>
<lpage>522</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2002.tb00126.x</pub-id>
</element-citation>
</ref>
<ref id="B228-jfb-06-01099">
<label>228.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Itoh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Shinomiya</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Enhanced bone bonding of hydroxyapatite-coated titanium implants by electrical polarization</article-title>
<source>J. Biomed. Mater. Res. A</source>
<year>2007</year>
<volume>82</volume>
<fpage>145</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.31080</pub-id>
<pub-id pub-id-type="pmid">17269143</pub-id>
</element-citation>
</ref>
<ref id="B229-jfb-06-01099">
<label>229.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ramaswamy</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zreiqat</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Novel sphene coatings on Ti–6Al–4V for orthopedic implants using sol–gel method</article-title>
<source>Acta Biomater.</source>
<year>2008</year>
<volume>4</volume>
<fpage>569</fpage>
<lpage>576</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2007.11.005</pub-id>
<pub-id pub-id-type="pmid">18182336</pub-id>
</element-citation>
</ref>
<ref id="B230-jfb-06-01099">
<label>230.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ergun</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Bizios</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Doremus</surname>
<given-names>R.H.</given-names>
</name>
</person-group>
<article-title>Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2002</year>
<volume>59</volume>
<fpage>305</fpage>
<lpage>311</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.1246</pub-id>
<pub-id pub-id-type="pmid">11745567</pub-id>
</element-citation>
</ref>
<ref id="B231-jfb-06-01099">
<label>231.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>T.J.</given-names>
</name>
<name>
<surname>Ergun</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Doremus</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Bizios</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2002</year>
<volume>59</volume>
<fpage>312</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.1247</pub-id>
<pub-id pub-id-type="pmid">11745568</pub-id>
</element-citation>
</ref>
<ref id="B232-jfb-06-01099">
<label>232.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>Y.W.</given-names>
</name>
<name>
<surname>Khor</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Cheang</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF)</article-title>
<source>Biomaterials</source>
<year>2003</year>
<volume>24</volume>
<fpage>1603</fpage>
<lpage>1611</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(02)00573-2</pub-id>
<pub-id pub-id-type="pmid">12559820</pub-id>
</element-citation>
</ref>
<ref id="B233-jfb-06-01099">
<label>233.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rizzi</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Heath</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Coombes</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Bock</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Textor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Downes</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Biodegradable polymer/hydroxyapatite composites, surface analysis and initial attachment of human osteoblasts</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2001</year>
<volume>55</volume>
<fpage>475</fpage>
<lpage>486</lpage>
<pub-id pub-id-type="doi">10.1002/1097-4636(20010615)55:4<475::AID-JBM1039>3.0.CO;2-Q</pub-id>
<pub-id pub-id-type="pmid">11288075</pub-id>
</element-citation>
</ref>
<ref id="B234-jfb-06-01099">
<label>234.</label>
<element-citation publication-type="patent">
<person-group person-group-type="author">
<name>
<surname>Furuzano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kisida</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite Composite and Manufacturing Method Thereof, Medical Material Using Hydroxyapatite Complex</article-title>
<source>Patent</source>
<patent>US7473731</patent>
<year>2009</year>
</element-citation>
</ref>
<ref id="B235-jfb-06-01099">
<label>235.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Verma</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Katti</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Katti</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Bioactivity in
<italic>in situ</italic>
hydroxyapatite-polycaprolactone composites</article-title>
<source>J. Biomed. Mater. Res. A</source>
<year>2006</year>
<volume>78</volume>
<fpage>772</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.30774</pub-id>
<pub-id pub-id-type="pmid">16739180</pub-id>
</element-citation>
</ref>
<ref id="B236-jfb-06-01099">
<label>236.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Developing bioactive composite materials for tissue replacement</article-title>
<source>Biomaterials</source>
<year>2003</year>
<volume>24</volume>
<fpage>2133</fpage>
<lpage>2151</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(03)00037-1</pub-id>
<pub-id pub-id-type="pmid">12699650</pub-id>
</element-citation>
</ref>
<ref id="B237-jfb-06-01099">
<label>237.</label>
<element-citation publication-type="patent">
<person-group person-group-type="author">
<name>
<surname>Jui</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sanghamitra</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Debabrata</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Process for the Preparation of Protein Mediated Calcium Hydroxyapatite (HAp) Coating on Metal Substrate</article-title>
<source>Patent</source>
<patent>US20,090,181,161</patent>
<year>2009</year>
</element-citation>
</ref>
<ref id="B238-jfb-06-01099">
<label>238.</label>
<element-citation publication-type="patent">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Regeros</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.-W.</given-names>
</name>
</person-group>
<article-title>Bioactive Graded Zirconia Based Structure</article-title>
<source>Patent</source>
<patent>US20,090,118,114</patent>
<year>2009</year>
</element-citation>
</ref>
<ref id="B239-jfb-06-01099">
<label>239.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Akao</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Aoki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kato</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Mechanical properties of sintered hydroxyapatite for prosthetic applications</article-title>
<source>J. Mater. Sci.</source>
<year>1981</year>
<volume>16</volume>
<fpage>809</fpage>
<lpage>812</lpage>
<pub-id pub-id-type="doi">10.1007/BF02402799</pub-id>
</element-citation>
</ref>
<ref id="B240-jfb-06-01099">
<label>240.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itatani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tsuchiya</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sakka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>I.J.</given-names>
</name>
<name>
<surname>Koda</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Superplastic deformation of hydroxyapatite ceramics with B
<sub>2</sub>
O
<sub>3</sub>
or Na
<sub>2</sub>
O addition fabricated by pulse current pressure sintering</article-title>
<source>J. Eur. Ceram. Soc.</source>
<year>2011</year>
<volume>31</volume>
<fpage>2641</fpage>
<lpage>2648</lpage>
<pub-id pub-id-type="doi">10.1016/j.jeurceramsoc.2011.01.014</pub-id>
</element-citation>
</ref>
<ref id="B241-jfb-06-01099">
<label>241.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wei</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>P.X.</given-names>
</name>
</person-group>
<article-title>Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering</article-title>
<source>Biomaterials</source>
<year>2004</year>
<volume>25</volume>
<fpage>4749</fpage>
<lpage>4757</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2003.12.005</pub-id>
<pub-id pub-id-type="pmid">15120521</pub-id>
</element-citation>
</ref>
<ref id="B242-jfb-06-01099">
<label>242.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuroda</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Miyashita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ichino</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Okido</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Osteoinductivity of HAp films with different surface morphologies coated by the thermal substrate method in aqueous solutions</article-title>
<source>Mater. Trans.</source>
<year>2006</year>
<volume>47</volume>
<fpage>1391</fpage>
<lpage>1394</lpage>
<pub-id pub-id-type="doi">10.2320/matertrans.47.1391</pub-id>
</element-citation>
</ref>
<ref id="B243-jfb-06-01099">
<label>243.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sivaprasad</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Siva Rama Krishna</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sampath Kumar</surname>
<given-names>T.S.</given-names>
</name>
</person-group>
<article-title>Microwave processing of functionally graded bioactive materials</article-title>
<source>Mater. Lett.</source>
<year>2003</year>
<volume>57</volume>
<fpage>2716</fpage>
<lpage>2721</lpage>
</element-citation>
</ref>
<ref id="B244-jfb-06-01099">
<label>244.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galea</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Alexeev</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bohner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Doebelin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Studart</surname>
<given-names>A.R.</given-names>
</name>
<name>
<surname>Aneziris</surname>
<given-names>C.G.</given-names>
</name>
<name>
<surname>Graule</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Textured and hierarchically structured calcium phosphate ceramic blocks through hydrothermal treatment</article-title>
<source>Biomaterials</source>
<year>2015</year>
<volume>67</volume>
<fpage>93</fpage>
<lpage>103</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2015.07.026</pub-id>
<pub-id pub-id-type="pmid">26210176</pub-id>
</element-citation>
</ref>
<ref id="B245-jfb-06-01099">
<label>245.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galea</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bohner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Thuering</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Doebelin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ring</surname>
<given-names>T.A.</given-names>
</name>
<name>
<surname>Aneziris</surname>
<given-names>C.G.</given-names>
</name>
<name>
<surname>Graule</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Growth kinetics of hexagonal sub-micrometric β-tricalcium phosphate particles in ethylene glycol</article-title>
<source>Acta Biomater.</source>
<year>2014</year>
<volume>10</volume>
<fpage>3922</fpage>
<lpage>3930</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2014.02.044</pub-id>
<pub-id pub-id-type="pmid">24632361</pub-id>
</element-citation>
</ref>
<ref id="B246-jfb-06-01099">
<label>246.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Galea</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bohner</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Thuering</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Doebelin</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Aneziris</surname>
<given-names>C.G.</given-names>
</name>
<name>
<surname>Graule</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets</article-title>
<source>Biomaterials</source>
<year>2013</year>
<volume>34</volume>
<fpage>6388</fpage>
<lpage>6401</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2013.05.026</pub-id>
<pub-id pub-id-type="pmid">23755834</pub-id>
</element-citation>
</ref>
<ref id="B247-jfb-06-01099">
<label>247.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Luz</surname>
<given-names>G.M.</given-names>
</name>
<name>
<surname>Mano</surname>
<given-names>J.F.</given-names>
</name>
</person-group>
<article-title>Biomimetic design of materials and biomaterials inspired by the structure of nacre</article-title>
<source>Phil. Trans. R. Soc. A</source>
<year>2009</year>
<volume>367</volume>
<fpage>1587</fpage>
<lpage>1605</lpage>
<pub-id pub-id-type="doi">10.1098/rsta.2009.0007</pub-id>
<pub-id pub-id-type="pmid">19324725</pub-id>
</element-citation>
</ref>
<ref id="B248-jfb-06-01099">
<label>248.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Finnemore</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cunha</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Shean</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Vignolini</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Guldin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Oyen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Steiner</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Biomimetic layer-by-layer assembly of artificial nacre</article-title>
<source>Nat. Commun.</source>
<year>2012</year>
<volume>3</volume>
<fpage>966</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms1970</pub-id>
<pub-id pub-id-type="pmid">22828626</pub-id>
</element-citation>
</ref>
<ref id="B249-jfb-06-01099">
<label>249.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halouani</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bernache-Assolant</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Champion</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Ababou</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1994</year>
<volume>5</volume>
<fpage>563</fpage>
<lpage>568</lpage>
<pub-id pub-id-type="doi">10.1007/BF00124890</pub-id>
</element-citation>
</ref>
<ref id="B250-jfb-06-01099">
<label>250.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viswanath</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Ravishankar</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Interfacial reactions in hydroxyapatite/alumina nanocomposites</article-title>
<source>Scr. Mater.</source>
<year>2006</year>
<volume>55</volume>
<fpage>863</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="doi">10.1016/j.scriptamat.2006.07.049</pub-id>
</element-citation>
</ref>
<ref id="B251-jfb-06-01099">
<label>251.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pezzotti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sakakura</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy</article-title>
<source>J. Biomed. Mater. Res. A</source>
<year>2003</year>
<volume>65</volume>
<fpage>229</fpage>
<lpage>236</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.10447</pub-id>
<pub-id pub-id-type="pmid">12734817</pub-id>
</element-citation>
</ref>
<ref id="B252-jfb-06-01099">
<label>252.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mobasherpour</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Hashjin</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Toosi</surname>
<given-names>S.S.R.</given-names>
</name>
<name>
<surname>Kamachali</surname>
<given-names>R.D.</given-names>
</name>
</person-group>
<article-title>Effect of the addition ZrO
<sub>2</sub>
-Al
<sub>2</sub>
O
<sub>3</sub>
on nanocrystalline hydroxyapatite bending strength and fracture toughness</article-title>
<source>Ceram. Int.</source>
<year>2009</year>
<volume>35</volume>
<fpage>1569</fpage>
<lpage>1574</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2008.08.017</pub-id>
</element-citation>
</ref>
<ref id="B253-jfb-06-01099">
<label>253.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nath</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Biswas</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Phase stability and microstructure development in hydroxyapatite-mullite system</article-title>
<source>Scr. Mater.</source>
<year>2008</year>
<volume>58</volume>
<fpage>1054</fpage>
<lpage>1057</lpage>
<pub-id pub-id-type="doi">10.1016/j.scriptamat.2008.01.045</pub-id>
</element-citation>
</ref>
<ref id="B254-jfb-06-01099">
<label>254.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aminzare</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Eskandari</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Barooniand</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Berenov</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Razavi Hesabi</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Taheri</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sadrnezhaad</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties</article-title>
<source>Ceram. Int.</source>
<year>2013</year>
<volume>39</volume>
<fpage>2197</fpage>
<lpage>2206</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2012.09.023</pub-id>
</element-citation>
</ref>
<ref id="B255-jfb-06-01099">
<label>255.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hasegawa</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sudo</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>
<italic>In vivo</italic>
wear performance of highly cross-linked polyethylene
<italic>vs.</italic>
yttria stabilized zirconia and alumina stabilized zirconia at a mean seven-year follow-up</article-title>
<source>BMC Musculoskelet. Disord.</source>
<year>2013</year>
<volume>14</volume>
<fpage>154</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="doi">10.1186/1471-2474-14-154</pub-id>
<pub-id pub-id-type="pmid">23634809</pub-id>
</element-citation>
</ref>
<ref id="B256-jfb-06-01099">
<label>256.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>White</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Kinloch</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Windle</surname>
<given-names>A.H.</given-names>
</name>
<name>
<surname>Best</surname>
<given-names>S.M.</given-names>
</name>
</person-group>
<article-title>Optimization of the sintering atmosphere for high-density hydroxyapatite-carbon nanotube composites</article-title>
<source>J. R. Soc. Interface</source>
<year>2010</year>
<volume>7</volume>
<fpage>529</fpage>
<lpage>539</lpage>
<pub-id pub-id-type="doi">10.1098/rsif.2010.0117.focus</pub-id>
<pub-id pub-id-type="pmid">19740923</pub-id>
</element-citation>
</ref>
<ref id="B257-jfb-06-01099">
<label>257.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gittings</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>I.G.</given-names>
</name>
<name>
<surname>Dent</surname>
<given-names>A.C.E.</given-names>
</name>
<name>
<surname>Baxter</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Chaudhuri</surname>
<given-names>J.B.</given-names>
</name>
</person-group>
<article-title>Dielectric properties of hydroxyapatite based ceramics</article-title>
<source>Acta Biomater.</source>
<year>2009</year>
<volume>5</volume>
<fpage>743</fpage>
<lpage>754</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2008.08.012</pub-id>
<pub-id pub-id-type="pmid">18829403</pub-id>
</element-citation>
</ref>
<ref id="B258-jfb-06-01099">
<label>258.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sekijima</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Polarized hydroxyapatite promotes spread and motility of osteoblastic cells</article-title>
<source>J. Biomed. Mater. Res. A</source>
<year>2010</year>
<volume>92</volume>
<fpage>783</fpage>
<lpage>790</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.a.32404</pub-id>
<pub-id pub-id-type="pmid">19274714</pub-id>
</element-citation>
</ref>
<ref id="B259-jfb-06-01099">
<label>259.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukada</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Yasuda</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>On the piezoelectric effect of bone</article-title>
<source>J. Phys. Soc. Jpn.</source>
<year>1957</year>
<volume>12</volume>
<fpage>1158</fpage>
<lpage>1162</lpage>
<pub-id pub-id-type="doi">10.1143/JPSJ.12.1158</pub-id>
</element-citation>
</ref>
<ref id="B260-jfb-06-01099">
<label>260.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tofail</surname>
<given-names>S.A.M.</given-names>
</name>
<name>
<surname>Baldisserri</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Haverty</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>McMonagle</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Erhart</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Pyroelectric surface charge in hydroxyapatite ceramics</article-title>
<source>J. Appl. Phys.</source>
<year>2009</year>
<volume>106</volume>
<fpage>106104</fpage>
<lpage>106107</lpage>
<pub-id pub-id-type="doi">10.1063/1.3262628</pub-id>
</element-citation>
</ref>
<ref id="B261-jfb-06-01099">
<label>261.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Oikawa</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Umegaki</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Acceleration and deceleration of bone like crystal growth on ceramic hydroxyapatite by electric poling</article-title>
<source>Chem. Mater.</source>
<year>1996</year>
<volume>8</volume>
<fpage>2697</fpage>
<lpage>2700</lpage>
<pub-id pub-id-type="doi">10.1021/cm9602858</pub-id>
</element-citation>
</ref>
<ref id="B262-jfb-06-01099">
<label>262.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teng</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Takagi</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ohgaki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>A new approach to enhancement of bone formation by electrically polarized hydroxyapatite</article-title>
<source>J. Dent. Res.</source>
<year>2001</year>
<volume>80</volume>
<fpage>1925</fpage>
<lpage>1929</lpage>
<pub-id pub-id-type="doi">10.1177/00220345010800101201</pub-id>
<pub-id pub-id-type="pmid">11706953</pub-id>
</element-citation>
</ref>
<ref id="B263-jfb-06-01099">
<label>263.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Enhanced osteobonding by negative surface charges of electrically polarized hydroxyapatite</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2001</year>
<volume>57</volume>
<fpage>477</fpage>
<lpage>484</lpage>
<pub-id pub-id-type="doi">10.1002/1097-4636(20011215)57:4<477::AID-JBM1193>3.0.CO;2-5</pub-id>
<pub-id pub-id-type="pmid">11553877</pub-id>
</element-citation>
</ref>
<ref id="B264-jfb-06-01099">
<label>264.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Rawls</surname>
<given-names>H.R.</given-names>
</name>
</person-group>
<article-title>Growth of calcium phosphate on poling treated ferroelectric BaTiO
<sub>3</sub>
ceramics</article-title>
<source>Biomaterials</source>
<year>2002</year>
<volume>23</volume>
<fpage>3859</fpage>
<lpage>3864</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(02)00123-0</pub-id>
<pub-id pub-id-type="pmid">12164190</pub-id>
</element-citation>
</ref>
<ref id="B265-jfb-06-01099">
<label>265.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Extended bioactivity in the proximity of hydroxyapatite ceramic surfaces induced by polarization charges</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2002</year>
<volume>61</volume>
<fpage>593</fpage>
<lpage>599</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.10224</pub-id>
<pub-id pub-id-type="pmid">12115449</pub-id>
</element-citation>
</ref>
<ref id="B266-jfb-06-01099">
<label>266.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Itoh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization</article-title>
<source>Acta Biomater.</source>
<year>2009</year>
<volume>5</volume>
<fpage>3132</fpage>
<lpage>3140</lpage>
<pub-id pub-id-type="doi">10.1016/j.actbio.2009.04.036</pub-id>
<pub-id pub-id-type="pmid">19426842</pub-id>
</element-citation>
</ref>
<ref id="B267-jfb-06-01099">
<label>267.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Niwa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Sekijima</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Interaction of a blood coagulation factor on electrically polarized hydroxyapatite surfaces</article-title>
<source>J. Biomed. Mater. Res. B Appl. Biomater.</source>
<year>2007</year>
<volume>82B</volume>
<fpage>29</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.b.30701</pub-id>
<pub-id pub-id-type="pmid">17078074</pub-id>
</element-citation>
</ref>
<ref id="B268-jfb-06-01099">
<label>268.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iwasaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Hashimoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Toda</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Katayama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Rate of bonelike apatite formation accelerated on polarized porous hydroxyapatite</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2008</year>
<volume>91</volume>
<fpage>3943</fpage>
<lpage>3949</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2008.02766.x</pub-id>
</element-citation>
</ref>
<ref id="B269-jfb-06-01099">
<label>269.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Itoh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shinomiya</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Enhanced bone ingrowth into hydroxyapatite with interconnected pores by electrical polarization</article-title>
<source>Biomaterials</source>
<year>2006</year>
<volume>27</volume>
<fpage>5572</fpage>
<lpage>5579</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2006.07.007</pub-id>
<pub-id pub-id-type="pmid">16876861</pub-id>
</element-citation>
</ref>
<ref id="B270-jfb-06-01099">
<label>270.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Enhanced bioactivity of electrically poled hydroxyapatite ceramics and coatings</article-title>
<source>Mater. Sci. Forum</source>
<year>2003</year>
<volume>426–432</volume>
<fpage>3237</fpage>
<lpage>3242</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/MSF.426-432.3237</pub-id>
</element-citation>
</ref>
<ref id="B271-jfb-06-01099">
<label>271.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sayer</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Stratilatov</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Calderin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Stott</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>MacKenzie</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>T.J.N.</given-names>
</name>
<name>
<surname>Hendry</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Langstaff</surname>
<given-names>S.D.</given-names>
</name>
</person-group>
<article-title>Structure and composition of silicon-stabilized tricalcium phosphate</article-title>
<source>Biomaterials</source>
<year>2003</year>
<volume>24</volume>
<fpage>369</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="doi">10.1016/S0142-9612(02)00327-7</pub-id>
<pub-id pub-id-type="pmid">12423592</pub-id>
</element-citation>
</ref>
<ref id="B272-jfb-06-01099">
<label>272.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yuan</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>de Bruijn</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>de Groot</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Osteoinduction by calcium phosphate biomaterials</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1998</year>
<volume>9</volume>
<fpage>723</fpage>
<lpage>726</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008950902047</pub-id>
<pub-id pub-id-type="pmid">15348929</pub-id>
</element-citation>
</ref>
<ref id="B273-jfb-06-01099">
<label>273.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Highly orientated calcification in newly formed bones on negatively charged hydroxyapatite electrets</article-title>
<source>Key Eng. Mater.</source>
<year>2005</year>
<volume>284–286</volume>
<fpage>897</fpage>
<lpage>900</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/KEM.284-286.897</pub-id>
</element-citation>
</ref>
<ref id="B274-jfb-06-01099">
<label>274.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boyde</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Corsi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Quarto</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cancedda</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bianco</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Osteoconduction in large macroporous hydroxyapatite ceramic implants: Evidence for a complementary integration and disintegration mechanism</article-title>
<source>Bone</source>
<year>1999</year>
<volume>24</volume>
<fpage>579</fpage>
<lpage>589</lpage>
<pub-id pub-id-type="doi">10.1016/S8756-3282(99)00083-6</pub-id>
<pub-id pub-id-type="pmid">10375200</pub-id>
</element-citation>
</ref>
<ref id="B275-jfb-06-01099">
<label>275.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hwang</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Jo</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y.J.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Rawls</surname>
<given-names>H.R.</given-names>
</name>
</person-group>
<article-title>Effect of poling conditions on growth of calcium phosphate crystal in ferroelectric BaTiO
<sub>3</sub>
ceramics</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2002</year>
<volume>13</volume>
<fpage>133</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="doi">10.1023/A:1013671526975</pub-id>
<pub-id pub-id-type="pmid">15348218</pub-id>
</element-citation>
</ref>
<ref id="B276-jfb-06-01099">
<label>276.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uchino</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sadanaga</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hirose</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Dependence of the crystal structure on particle size in barium titanate</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1989</year>
<volume>72</volume>
<fpage>1555</fpage>
<lpage>1558</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.1989.tb07706.x</pub-id>
</element-citation>
</ref>
<ref id="B277-jfb-06-01099">
<label>277.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kerman</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Abazari</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Marandian-Hagh</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Akdogan</surname>
<given-names>E.K.</given-names>
</name>
</person-group>
<article-title>Lead free (K,Na)NbO
<sub>3</sub>
-based piezoelectric ceramics and transducers</article-title>
<source>IEEE Appl. Ferroelectr.</source>
<year>2008</year>
<volume>3</volume>
<fpage>1</fpage>
<lpage>3</lpage>
</element-citation>
</ref>
<ref id="B278-jfb-06-01099">
<label>278.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Fan</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.W.</given-names>
</name>
</person-group>
<article-title>Ferroelectric potassium lithium niobate crystals grown by the vertical Bridgman method</article-title>
<source>Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.</source>
<year>2001</year>
<volume>85</volume>
<fpage>50</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/S0921-5107(01)00642-0</pub-id>
</element-citation>
</ref>
<ref id="B279-jfb-06-01099">
<label>279.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dubey</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Anumol</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Balani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Multifunctional properties of multistage spark plasma sintered HA–BaTiO
<sub>3</sub>
-based piezobiocomposites for bone replacement applications</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2013</year>
<volume>96</volume>
<fpage>3753</fpage>
<lpage>3759</lpage>
<pub-id pub-id-type="doi">10.1111/jace.12566</pub-id>
</element-citation>
</ref>
<ref id="B280-jfb-06-01099">
<label>280.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shaw</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Transparent nanocrystalline hydroxyapatite by pressure-assisted sintering</article-title>
<source>Scr. Mater.</source>
<year>2010</year>
<volume>63</volume>
<fpage>593</fpage>
<lpage>596</lpage>
<pub-id pub-id-type="doi">10.1016/j.scriptamat.2010.06.002</pub-id>
</element-citation>
</ref>
<ref id="B281-jfb-06-01099">
<label>281.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dubey</surname>
<given-names>A.K.</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Balani</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Bhalla</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>Dielectric and pyroelectric properties of HAp-BaTiO
<sub>3</sub>
composites</article-title>
<source>Ferroelectrics</source>
<year>2011</year>
<volume>423</volume>
<fpage>63</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1080/00150193.2011.618382</pub-id>
</element-citation>
</ref>
<ref id="B282-jfb-06-01099">
<label>282.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Suárez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fernández</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Torrecillas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Menéndez</surname>
<given-names>J.L.</given-names>
</name>
</person-group>
<article-title>Sintering to Transparency of Polycrystalline Ceramic Materials</article-title>
<source>Sintering of Ceramics—New Emerging Techniques</source>
<person-group person-group-type="editor">
<name>
<surname>Lakshmanan</surname>
<given-names>A.</given-names>
</name>
</person-group>
<publisher-name>InTech</publisher-name>
<publisher-loc>Rijeka, Croatia</publisher-loc>
<year>2012</year>
<fpage>527</fpage>
<lpage>552</lpage>
</element-citation>
</ref>
<ref id="B283-jfb-06-01099">
<label>283.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanzaki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Onuma</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ito</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Teraoka</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tateishi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tsutsumi</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Direct growth rate measurement of hydroxyapatite single crystal by moire phase shift interferometry</article-title>
<source>J. Phys. Chem. B</source>
<year>1998</year>
<volume>102</volume>
<fpage>6471</fpage>
<lpage>6476</lpage>
<pub-id pub-id-type="doi">10.1021/jp981512r</pub-id>
</element-citation>
</ref>
<ref id="B284-jfb-06-01099">
<label>284.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gupta</surname>
<given-names>T.K.</given-names>
</name>
<name>
<surname>Lange</surname>
<given-names>F.F.</given-names>
</name>
<name>
<surname>Bechtold</surname>
<given-names>J.H.</given-names>
</name>
</person-group>
<article-title>Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing metastable tetragonal phase</article-title>
<source>J. Mater. Sci.</source>
<year>1978</year>
<volume>13</volume>
<fpage>1464</fpage>
<lpage>1470</lpage>
<pub-id pub-id-type="doi">10.1007/BF00553200</pub-id>
</element-citation>
</ref>
<ref id="B285-jfb-06-01099">
<label>285.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ioku</surname>
<given-names>K.J.</given-names>
</name>
</person-group>
<article-title>Tailored bioceramics of calcium phosphates for regenerative medicine</article-title>
<source>Ceram. Soc. Jpn.</source>
<year>2010</year>
<volume>118</volume>
<fpage>775</fpage>
<lpage>783</lpage>
<pub-id pub-id-type="doi">10.2109/jcersj2.118.775</pub-id>
</element-citation>
</ref>
<ref id="B286-jfb-06-01099">
<label>286.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Klimke</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Trunec</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Krell</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Transparent tetragonal yttria-stabilized zirconia ceramics: Influence of scattering caused by birefringence</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2011</year>
<volume>94</volume>
<fpage>1850</fpage>
<lpage>1858</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2010.04322.x</pub-id>
</element-citation>
</ref>
<ref id="B287-jfb-06-01099">
<label>287.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering</article-title>
<source>Mater. Lett.</source>
<year>1995</year>
<volume>23</volume>
<fpage>147</fpage>
<lpage>151</lpage>
<pub-id pub-id-type="doi">10.1016/0167-577X(95)00016-X</pub-id>
</element-citation>
</ref>
<ref id="B288-jfb-06-01099">
<label>288.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Damestani</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Reynolds</surname>
<given-names>C.L.</given-names>
</name>
<name>
<surname>Szu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Kodera</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Binder</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Garay</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Aguilar</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Transparent nanocrystalline yttria-stabilized-zirconia calvarium prosthesis</article-title>
<source>Nanomed. Nanotechnol. Boil.</source>
<year>2013</year>
<volume>9</volume>
<fpage>1135</fpage>
<lpage>1138</lpage>
<pub-id pub-id-type="doi">10.1016/j.nano.2013.08.002</pub-id>
<pub-id pub-id-type="pmid">23969102</pub-id>
</element-citation>
</ref>
<ref id="B289-jfb-06-01099">
<label>289.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thamaraiselvi</surname>
<given-names>T.V.</given-names>
</name>
<name>
<surname>Rajeswari</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Biological evaluation of bioceramic materials—A review</article-title>
<source>Trends Biomater. Artif. Organs</source>
<year>2004</year>
<volume>18</volume>
<fpage>9</fpage>
<lpage>17</lpage>
</element-citation>
</ref>
<ref id="B290-jfb-06-01099">
<label>290.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotobuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ioku</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kawagoe</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Fujimori</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ohgushi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Observation of osteogenic differentiation cascade of living mesenchymal stem cells on transparent hydroxyapatite ceramics</article-title>
<source>Biomaterials</source>
<year>2005</year>
<volume>26</volume>
<fpage>779</fpage>
<lpage>785</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2004.03.020</pub-id>
<pub-id pub-id-type="pmid">15350783</pub-id>
</element-citation>
</ref>
<ref id="B291-jfb-06-01099">
<label>291.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Watanabe</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ikoma</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Monkawa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Suetsugu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moriyoshi</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Fabrication of transparent hydroxyapatite sintered body with high crystal orientation by pulse electric current sintering</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2005</year>
<volume>88</volume>
<fpage>243</fpage>
<lpage>245</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2004.00041.x</pub-id>
</element-citation>
</ref>
<ref id="B292-jfb-06-01099">
<label>292.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Varma</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Vijayan</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Babu</surname>
<given-names>S.S.</given-names>
</name>
</person-group>
<article-title>Transparent hydroxyapatite ceramics through gelcasting and low-temperature sintering</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2002</year>
<volume>85</volume>
<fpage>493</fpage>
<lpage>495</lpage>
<pub-id pub-id-type="doi">10.1111/j.1151-2916.2002.tb00120.x</pub-id>
</element-citation>
</ref>
<ref id="B293-jfb-06-01099">
<label>293.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takikawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Akao</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Fabrication of transparent hydroxyapatite and application to bone marrow derived cell/hydroxyapatite interaction observation
<italic>in vivo</italic>
</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>1996</year>
<volume>7</volume>
<fpage>439</fpage>
<lpage>445</lpage>
<pub-id pub-id-type="doi">10.1007/BF00122014</pub-id>
</element-citation>
</ref>
<ref id="B294-jfb-06-01099">
<label>294.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boilet</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Descamps</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rguiti</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Tricoteaux</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Petit</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Lardot</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Cambier</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Leriche</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Processing and properties of transparent hydroxyapatite and β tricalcium phosphate obtained by HIP process</article-title>
<source>Ceram. Int.</source>
<year>2013</year>
<volume>39</volume>
<fpage>283</fpage>
<lpage>288</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2012.06.023</pub-id>
</element-citation>
</ref>
<ref id="B295-jfb-06-01099">
<label>295.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahn</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Gleason</surname>
<given-names>N.J.</given-names>
</name>
<name>
<surname>Nakahira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>J.Y.</given-names>
</name>
</person-group>
<article-title>Nanostructure processing of hydroxyapatite-based bioceramics</article-title>
<source>Nano Lett.</source>
<year>2001</year>
<volume>1</volume>
<fpage>149</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1021/nl0055299</pub-id>
</element-citation>
</ref>
<ref id="B296-jfb-06-01099">
<label>296.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kotobuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kawagoe</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Fujimori</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ioku</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ohgushi</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
osteogenic activity of rat bone marrow derived mesenchymal stem cells cultured on transparent hydroxyapatite ceramics</article-title>
<source>Key Eng. Mater.</source>
<year>2003</year>
<volume>254–256</volume>
<fpage>1055</fpage>
<lpage>1058</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/KEM.254-256.1055</pub-id>
</element-citation>
</ref>
<ref id="B297-jfb-06-01099">
<label>297.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Leng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Novel substantial reductions in sintering temperatures for preparation of transparent hydroxyapatite bioceramics under ultrahigh pressure</article-title>
<source>Scr. Mater.</source>
<year>2011</year>
<volume>65</volume>
<fpage>819</fpage>
<lpage>822</lpage>
<pub-id pub-id-type="doi">10.1016/j.scriptamat.2011.07.047</pub-id>
</element-citation>
</ref>
<ref id="B298-jfb-06-01099">
<label>298.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawagoe</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Koga</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Kotobuki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Ohgushi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ioku</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Preparation of transparent hydroxyapatite ceramics by spark plasma sintering and cell culture test</article-title>
<source>Phosphorus Res. Bull.</source>
<year>2006</year>
<volume>20</volume>
<fpage>119</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="doi">10.3363/prb.20.119</pub-id>
</element-citation>
</ref>
<ref id="B299-jfb-06-01099">
<label>299.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barralet</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Fleming</surname>
<given-names>G.J.P.</given-names>
</name>
<name>
<surname>Campion</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>A.J.</given-names>
</name>
</person-group>
<article-title>Formation of translucent hydroxyapatite ceramics by sintering in carbon dioxide atmospheres</article-title>
<source>J. Mater. Sci.</source>
<year>2003</year>
<volume>38</volume>
<fpage>3979</fpage>
<lpage>3993</lpage>
<pub-id pub-id-type="doi">10.1023/A:1026258515285</pub-id>
</element-citation>
</ref>
<ref id="B300-jfb-06-01099">
<label>300.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Furuzono</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Low-temperature synthesis of nanoparticle-assembled, transparent, and low-crystallized hydroxyapatite blocks</article-title>
<source>J. Colloid Interface Sci.</source>
<year>2011</year>
<volume>360</volume>
<fpage>457</fpage>
<lpage>462</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcis.2011.04.068</pub-id>
<pub-id pub-id-type="pmid">21570086</pub-id>
</element-citation>
</ref>
<ref id="B301-jfb-06-01099">
<label>301.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pietrzyk</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Gawronski</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Blaszczyk</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Effect of carbon interlayer on protective properties of hydroxyapatite coating deposited on 316L stainless steel by sol-gel method</article-title>
<source>Powder Metall. Metal. Ceram.</source>
<year>2010</year>
<volume>49</volume>
<fpage>468</fpage>
<lpage>473</lpage>
<pub-id pub-id-type="doi">10.1007/s11106-010-9260-2</pub-id>
</element-citation>
</ref>
<ref id="B302-jfb-06-01099">
<label>302.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marcelo</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Livramento</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Oliveira</surname>
<given-names>M.V.</given-names>
</name>
<name>
<surname>Carvalho</surname>
<given-names>M.H.</given-names>
</name>
</person-group>
<article-title>Microstructural characterization and interactions in Ti- and TiH
<sub>2</sub>
-hydroxyapatite vacuum sintered composites</article-title>
<source>Mater. Res.</source>
<year>2006</year>
<volume>9</volume>
<fpage>65</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1590/S1516-14392006000100013</pub-id>
</element-citation>
</ref>
<ref id="B303-jfb-06-01099">
<label>303.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yun</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Prajatelistia</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.-H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B.-N.</given-names>
</name>
</person-group>
<article-title>Characterisation of transparent hydroxyapatite nanoceramics prepared by spark plasma sintering</article-title>
<source>Adv. Appl. Ceram.</source>
<year>2014</year>
<volume>113</volume>
<fpage>67</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1179/1743676113Y.0000000079</pub-id>
</element-citation>
</ref>
<ref id="B304-jfb-06-01099">
<label>304.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>B.-N.</given-names>
</name>
<name>
<surname>Prajatelistia</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>Y.-H.</given-names>
</name>
<name>
<surname>Son</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Sakka</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Transparent hydroxyapatite ceramics consolidated by spark plasma sintering</article-title>
<source>Scr. Mater.</source>
<year>2013</year>
<volume>69</volume>
<fpage>366</fpage>
<lpage>369</lpage>
<pub-id pub-id-type="doi">10.1016/j.scriptamat.2013.05.011</pub-id>
</element-citation>
</ref>
<ref id="B305-jfb-06-01099">
<label>305.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Majling</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kremničan</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Ďurovčíkova</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Svetík</surname>
<given-names>Š.</given-names>
</name>
</person-group>
<article-title>Sintering of hydroxyapatite ceramics, with the aid of optical transmittance—Temperature spectra</article-title>
<source>J. Therm. Anal. Calorim.</source>
<year>1999</year>
<volume>57</volume>
<fpage>587</fpage>
<lpage>590</lpage>
<pub-id pub-id-type="doi">10.1023/A:1010196831234</pub-id>
</element-citation>
</ref>
<ref id="B306-jfb-06-01099">
<label>306.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Fabrication of hydroxyapatite ceramics by microwave processing</article-title>
<source>MRS Proc.</source>
<year>1992</year>
<volume>269</volume>
<pub-id pub-id-type="doi">10.1557/PROC-269-231</pub-id>
</element-citation>
</ref>
<ref id="B307-jfb-06-01099">
<label>307.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cuccu</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Montinaro</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Orrù</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Bellucci</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Sola</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Cannillo</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Consolidation of different hydroxyapatite powders by SPS: Optimization of the sintering conditions and characterization of the obtained bulk products</article-title>
<source>Ceram. Int.</source>
<year>2015</year>
<volume>41</volume>
<fpage>725</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="doi">10.1016/j.ceramint.2014.08.131</pub-id>
</element-citation>
</ref>
<ref id="B308-jfb-06-01099">
<label>308.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Munir</surname>
<given-names>Z.A.</given-names>
</name>
<name>
<surname>Quach</surname>
<given-names>D.V.</given-names>
</name>
<name>
<surname>Ohyanagi</surname>
<given-names>M.</given-names>
</name>
</person-group>
<source>Sintering, Mechanisms of Convention Nanodensification and Field Assisted Processes</source>
<person-group person-group-type="editor">
<name>
<surname>Castro</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van Benthem</surname>
<given-names>K.</given-names>
</name>
</person-group>
<publisher-name>Springer</publisher-name>
<publisher-loc>Berlin, Germany; Heidelberg, Germany</publisher-loc>
<year>2012</year>
<volume>Volume 7</volume>
<fpage>137</fpage>
<lpage>158</lpage>
</element-citation>
</ref>
<ref id="B309-jfb-06-01099">
<label>309.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Suárez</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fernández</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Menéndez</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Torrecillas</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kessel</surname>
<given-names>H.U.</given-names>
</name>
<name>
<surname>Hennicke</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Kirchner</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kessel</surname>
<given-names>T.</given-names>
</name>
</person-group>
<source>Sintering Applications</source>
<person-group person-group-type="editor">
<name>
<surname>Ertu</surname>
<given-names>B.</given-names>
</name>
</person-group>
<publisher-name>InTech</publisher-name>
<publisher-loc>Rijeka, Croatia</publisher-loc>
<year>2013</year>
<volume>Volume 13</volume>
<fpage>319</fpage>
<lpage>342</lpage>
</element-citation>
</ref>
<ref id="B310-jfb-06-01099">
<label>310.</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Gentilman</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Polycrystalline material for laser applications</article-title>
<source>Proceedings of the 46th Army Sagamore Materials Research Conference</source>
<conf-loc>St. Michaels, MD, USA</conf-loc>
<conf-date>9–12 May 2005</conf-date>
</element-citation>
</ref>
<ref id="B311-jfb-06-01099">
<label>311.</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Quarles</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Castillo</surname>
<given-names>V.K.</given-names>
</name>
<name>
<surname>Dumm</surname>
<given-names>J.Q.</given-names>
</name>
<name>
<surname>Messing</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>L.-H.</given-names>
</name>
</person-group>
<article-title>Comparison of optical, mechanical and thermo-optical properties of oxide polycrystalline laser gain materials with single crystals</article-title>
<source>Proceedings of the Frontiers in Optics, OSA Technical Digest (CD), Optical Society of America</source>
<conf-loc>Rochester, NY, USA</conf-loc>
<conf-date>2006</conf-date>
</element-citation>
</ref>
<ref id="B312-jfb-06-01099">
<label>312.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ikesue</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Aung</surname>
<given-names>Y.L.</given-names>
</name>
</person-group>
<article-title>Ceramic laser materials</article-title>
<source>Nat. Photonics</source>
<year>2008</year>
<volume>2</volume>
<fpage>721</fpage>
<lpage>727</lpage>
<pub-id pub-id-type="doi">10.1038/nphoton.2008.243</pub-id>
</element-citation>
</ref>
<ref id="B313-jfb-06-01099">
<label>313.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maca</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Trunec</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chmelik</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Processing and properties of fine-grained processing and properties of fine grained transparent MgAl
<sub>2</sub>
O
<sub>4</sub>
ceramics</article-title>
<source>Ceram. Silik.</source>
<year>2007</year>
<volume>51</volume>
<fpage>94</fpage>
<lpage>97</lpage>
</element-citation>
</ref>
<ref id="B314-jfb-06-01099">
<label>314.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Jarcho</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Retrospective Analysis of hydroxyapatite development for oral implant applications</article-title>
<source>The Dental Clinics of North America, Hydroxyapatite-Coated Implants</source>
<person-group person-group-type="editor">
<name>
<surname>Sendax</surname>
<given-names>V.I.</given-names>
</name>
</person-group>
<publisher-name>W.B. Saunders Co.</publisher-name>
<publisher-loc>Philadelphia, PA, USA</publisher-loc>
<year>1992</year>
<volume>Volume 36</volume>
</element-citation>
</ref>
<ref id="B315-jfb-06-01099">
<label>315.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>DK.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Microwave sintering of hydroxyapatite ceramics</article-title>
<source>J. Mater. Res.</source>
<year>1994</year>
<volume>9</volume>
<fpage>180</fpage>
<lpage>187</lpage>
<pub-id pub-id-type="doi">10.1557/JMR.1994.0180</pub-id>
</element-citation>
</ref>
<ref id="B316-jfb-06-01099">
<label>316.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Izui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Okano</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>The Effects of Sintering Temperature and Pressure on the Sintering Behavior of Hydroxyapatite Powder Prepared by Spark Plasma Sintering</article-title>
<source>J. Biomech. Sci. Eng.</source>
<year>2008</year>
<volume>3</volume>
<fpage>1</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1299/jbse.3.1</pub-id>
</element-citation>
</ref>
<ref id="B317-jfb-06-01099">
<label>317.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakahira</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tamai</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Eguchi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yamashita</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Preparation and evaluation of dense hydroxyapatite by PECS method</article-title>
<source>Key Eng. Mater.</source>
<year>2003</year>
<volume>240–242</volume>
<fpage>551</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/KEM.240-242.551</pub-id>
</element-citation>
</ref>
<ref id="B318-jfb-06-01099">
<label>318.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Majling</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Znaik</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Palova</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Svetik</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels</article-title>
<source>J. Mater. Res.</source>
<year>1997</year>
<volume>12</volume>
<fpage>198</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1557/JMR.1997.0026</pub-id>
</element-citation>
</ref>
<ref id="B319-jfb-06-01099">
<label>319.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benaqqa</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Chevalier</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Saädaoui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fantozzi</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Slow crack growth behaviour of hydroxyapatite ceramics</article-title>
<source>Biomaterials</source>
<year>2005</year>
<volume>26</volume>
<fpage>6106</fpage>
<lpage>6112</lpage>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2005.03.031</pub-id>
<pub-id pub-id-type="pmid">15890401</pub-id>
</element-citation>
</ref>
<ref id="B320-jfb-06-01099">
<label>320.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ioku</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yanagisawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamasaki</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Low temperature sintering of hydroxyapatite by hydrothermal hot pressing</article-title>
<source>Phosphorus Res. Bull.</source>
<year>1994</year>
<volume>4</volume>
<fpage>65</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.3363/prb1992.4.0_65</pub-id>
</element-citation>
</ref>
<ref id="B321-jfb-06-01099">
<label>321.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gandhi</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Gunning</surname>
<given-names>R.D.</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Tofail</surname>
<given-names>S.A.M.</given-names>
</name>
</person-group>
<article-title>The role of texturing and densification on optical transmittance of hydroxyapatite ceramics</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2010</year>
<volume>93</volume>
<fpage>3773</fpage>
<lpage>3777</lpage>
<pub-id pub-id-type="doi">10.1111/j.1551-2916.2010.03925.x</pub-id>
</element-citation>
</ref>
<ref id="B322-jfb-06-01099">
<label>322.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uehira</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Takeda</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matsumoto</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Preparation and characterization of low-crystallized hydroxyapatite nanoporous plates and granules</article-title>
<source>Appl. Surf. Sci.</source>
<year>2013</year>
<volume>287</volume>
<fpage>195</fpage>
<lpage>202</lpage>
<pub-id pub-id-type="doi">10.1016/j.apsusc.2013.09.117</pub-id>
</element-citation>
</ref>
<ref id="B323-jfb-06-01099">
<label>323.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhong</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Khor</surname>
<given-names>K.A.</given-names>
</name>
</person-group>
<article-title>Transparent hydroxyapatite obtained through spark plasma sintering, optical and mechanical properties</article-title>
<source>Key Eng. Mater.</source>
<year>2014</year>
<volume>631</volume>
<fpage>51</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.4028/www.scientific.net/KEM.631.51</pub-id>
</element-citation>
</ref>
<ref id="B324-jfb-06-01099">
<label>324.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Aoki</surname>
<given-names>H.</given-names>
</name>
</person-group>
<source>Medical Applications of Hydroxyapatite</source>
<publisher-name>Ishiyaku EuroAmerica, Inc.</publisher-name>
<publisher-loc>Tokyo, Japan; St. Louis, MO, USA</publisher-loc>
<year>1994</year>
</element-citation>
</ref>
<ref id="B325-jfb-06-01099">
<label>325.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kokubo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kushitani</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sakka</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kitsugi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Yamamuro</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Solutions able to reproduce
<italic>in vivo</italic>
surface-structure changes in bioactive glass-ceramic A-W
<sup>3</sup>
</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>1990</year>
<volume>24</volume>
<fpage>721</fpage>
<lpage>734</lpage>
<pub-id pub-id-type="doi">10.1002/jbm.820240607</pub-id>
<pub-id pub-id-type="pmid">2361964</pub-id>
</element-citation>
</ref>
<ref id="B326-jfb-06-01099">
<label>326.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pintar</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>Yoganandan</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Myers</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Elhagediab</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sances</surname>
<given-names>A.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Biomechanical properties of human lumbar spine ligaments</article-title>
<source>J. Biomech.</source>
<year>1992</year>
<volume>25</volume>
<fpage>1351</fpage>
<lpage>1356</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(92)90290-H</pub-id>
<pub-id pub-id-type="pmid">1400536</pub-id>
</element-citation>
</ref>
<ref id="B327-jfb-06-01099">
<label>327.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Currey</surname>
<given-names>J.D.</given-names>
</name>
</person-group>
<article-title>Mechanical properties of bone tissues with greatly differing functions</article-title>
<source>J. Biomech.</source>
<year>1979</year>
<volume>12</volume>
<fpage>313</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="doi">10.1016/0021-9290(79)90073-3</pub-id>
<pub-id pub-id-type="pmid">468855</pub-id>
</element-citation>
</ref>
<ref id="B328-jfb-06-01099">
<label>328.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rigaldie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lemagnen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Largeteau</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Larrouture</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Abba</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Durandeau</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Vallayer</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Grislain</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Demazeau</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>High hydrostatic pressure (HHP): An alternative method of sterilisation and decontamination of fragile drugs?</article-title>
<source>Eur. J. Parenter. Sci.</source>
<year>2001</year>
<volume>6</volume>
<fpage>73</fpage>
<lpage>78</lpage>
</element-citation>
</ref>
<ref id="B329-jfb-06-01099">
<label>329.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rigaldie</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Largeteau</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lemagnen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Ibalot</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Pardon</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Demazeau</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Grislain</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Effects of high hydrostatic pressure on several sensitive therapeutic molecules and a soft nanodispersed drug delivery system</article-title>
<source>Pharm. Res.</source>
<year>2003</year>
<volume>20</volume>
<fpage>2036</fpage>
<lpage>2040</lpage>
<pub-id pub-id-type="doi">10.1023/B:PHAM.0000008054.80136.5a</pub-id>
<pub-id pub-id-type="pmid">14725371</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000477 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000477 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4695913
   |texte=   Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26703750" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022