Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003048 ( Pmc/Corpus ); précédent : 0003047; suivant : 0003049 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<italic>In-vitro</italic>
development of a temporal abutment screw to protect osseointegration in immediate loaded implants</title>
<author>
<name sortKey="Garcia Roncero, Herminio" sort="Garcia Roncero, Herminio" uniqKey="Garcia Roncero H" first="Herminio" last="García-Roncero">Herminio García-Roncero</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Caballe Serrano, Jordi" sort="Caballe Serrano, Jordi" uniqKey="Caballe Serrano J" first="Jordi" last="Caballé-Serrano">Jordi Caballé-Serrano</name>
<affiliation>
<nlm:aff id="A2">Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cano Batalla, Jordi" sort="Cano Batalla, Jordi" uniqKey="Cano Batalla J" first="Jordi" last="Cano-Batalla">Jordi Cano-Batalla</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cabratosa Termes, Josep" sort="Cabratosa Termes, Josep" uniqKey="Cabratosa Termes J" first="Josep" last="Cabratosa-Termes">Josep Cabratosa-Termes</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Figueras Lvarez, Oscar" sort="Figueras Lvarez, Oscar" uniqKey="Figueras Lvarez O" first="Oscar" last="Figueras-Álvarez">Oscar Figueras-Álvarez</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25932315</idno>
<idno type="pmc">4414947</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4414947</idno>
<idno type="RBID">PMC:4414947</idno>
<idno type="doi">10.4047/jap.2015.7.2.160</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000304</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000304</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">
<italic>In-vitro</italic>
development of a temporal abutment screw to protect osseointegration in immediate loaded implants</title>
<author>
<name sortKey="Garcia Roncero, Herminio" sort="Garcia Roncero, Herminio" uniqKey="Garcia Roncero H" first="Herminio" last="García-Roncero">Herminio García-Roncero</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Caballe Serrano, Jordi" sort="Caballe Serrano, Jordi" uniqKey="Caballe Serrano J" first="Jordi" last="Caballé-Serrano">Jordi Caballé-Serrano</name>
<affiliation>
<nlm:aff id="A2">Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cano Batalla, Jordi" sort="Cano Batalla, Jordi" uniqKey="Cano Batalla J" first="Jordi" last="Cano-Batalla">Jordi Cano-Batalla</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cabratosa Termes, Josep" sort="Cabratosa Termes, Josep" uniqKey="Cabratosa Termes J" first="Josep" last="Cabratosa-Termes">Josep Cabratosa-Termes</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Figueras Lvarez, Oscar" sort="Figueras Lvarez, Oscar" uniqKey="Figueras Lvarez O" first="Oscar" last="Figueras-Álvarez">Oscar Figueras-Álvarez</name>
<affiliation>
<nlm:aff id="A1">Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of Advanced Prosthodontics</title>
<idno type="ISSN">2005-7806</idno>
<idno type="eISSN">2005-7814</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>PURPOSE</title>
<p>In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants.</p>
</sec>
<sec>
<title>MATERIALS AND METHODS</title>
<p>Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's
<italic>t</italic>
-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%.</p>
</sec>
<sec>
<title>RESULTS</title>
<p>Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes.</p>
</sec>
<sec>
<title>CONCLUSION</title>
<p>Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Esposito, M" uniqKey="Esposito M">M Esposito</name>
</author>
<author>
<name sortKey="Grusovin, Mg" uniqKey="Grusovin M">MG Grusovin</name>
</author>
<author>
<name sortKey="Maghaireh, H" uniqKey="Maghaireh H">H Maghaireh</name>
</author>
<author>
<name sortKey="Worthington, Hv" uniqKey="Worthington H">HV Worthington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szmukler Moncler, S" uniqKey="Szmukler Moncler S">S Szmukler-Moncler</name>
</author>
<author>
<name sortKey="Salama, H" uniqKey="Salama H">H Salama</name>
</author>
<author>
<name sortKey="Reingewirtz, Y" uniqKey="Reingewirtz Y">Y Reingewirtz</name>
</author>
<author>
<name sortKey="Dubruille, Jh" uniqKey="Dubruille J">JH Dubruille</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Misch, Ce" uniqKey="Misch C">CE Misch</name>
</author>
<author>
<name sortKey="Wang, Hl" uniqKey="Wang H">HL Wang</name>
</author>
<author>
<name sortKey="Misch, Cm" uniqKey="Misch C">CM Misch</name>
</author>
<author>
<name sortKey="Sharawy, M" uniqKey="Sharawy M">M Sharawy</name>
</author>
<author>
<name sortKey="Lemons, J" uniqKey="Lemons J">J Lemons</name>
</author>
<author>
<name sortKey="Judy, Kw" uniqKey="Judy K">KW Judy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brunski, Jb" uniqKey="Brunski J">JB Brunski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawahara, H" uniqKey="Kawahara H">H Kawahara</name>
</author>
<author>
<name sortKey="Kawahara, D" uniqKey="Kawahara D">D Kawahara</name>
</author>
<author>
<name sortKey="Hayakawa, M" uniqKey="Hayakawa M">M Hayakawa</name>
</author>
<author>
<name sortKey="Tamai, Y" uniqKey="Tamai Y">Y Tamai</name>
</author>
<author>
<name sortKey="Kuremoto, T" uniqKey="Kuremoto T">T Kuremoto</name>
</author>
<author>
<name sortKey="Matsuda, S" uniqKey="Matsuda S">S Matsuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, Pk" uniqKey="Chang P">PK Chang</name>
</author>
<author>
<name sortKey="Chen, Yc" uniqKey="Chen Y">YC Chen</name>
</author>
<author>
<name sortKey="Huang, Cc" uniqKey="Huang C">CC Huang</name>
</author>
<author>
<name sortKey="Lu, Wh" uniqKey="Lu W">WH Lu</name>
</author>
<author>
<name sortKey="Chen, Yc" uniqKey="Chen Y">YC Chen</name>
</author>
<author>
<name sortKey="Tsai, Hh" uniqKey="Tsai H">HH Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Javed, F" uniqKey="Javed F">F Javed</name>
</author>
<author>
<name sortKey="Romanos, Ge" uniqKey="Romanos G">GE Romanos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Trisi, P" uniqKey="Trisi P">P Trisi</name>
</author>
<author>
<name sortKey="Perfetti, G" uniqKey="Perfetti G">G Perfetti</name>
</author>
<author>
<name sortKey="Baldoni, E" uniqKey="Baldoni E">E Baldoni</name>
</author>
<author>
<name sortKey="Berardi, D" uniqKey="Berardi D">D Berardi</name>
</author>
<author>
<name sortKey="Colagiovanni, M" uniqKey="Colagiovanni M">M Colagiovanni</name>
</author>
<author>
<name sortKey="Scogna, G" uniqKey="Scogna G">G Scogna</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wazen, Rm" uniqKey="Wazen R">RM Wazen</name>
</author>
<author>
<name sortKey="Currey, Ja" uniqKey="Currey J">JA Currey</name>
</author>
<author>
<name sortKey="Guo, H" uniqKey="Guo H">H Guo</name>
</author>
<author>
<name sortKey="Brunski, Jb" uniqKey="Brunski J">JB Brunski</name>
</author>
<author>
<name sortKey="Helms, Ja" uniqKey="Helms J">JA Helms</name>
</author>
<author>
<name sortKey="Nanci, A" uniqKey="Nanci A">A Nanci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winter, W" uniqKey="Winter W">W Winter</name>
</author>
<author>
<name sortKey="Klein, D" uniqKey="Klein D">D Klein</name>
</author>
<author>
<name sortKey="Karl, M" uniqKey="Karl M">M Karl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mericske Stern, R" uniqKey="Mericske Stern R">R Mericske-Stern</name>
</author>
<author>
<name sortKey="Assal, P" uniqKey="Assal P">P Assal</name>
</author>
<author>
<name sortKey="Mericske, E" uniqKey="Mericske E">E Mericske</name>
</author>
<author>
<name sortKey="Burgin, W" uniqKey="Burgin W">W Bürgin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waltimo, A" uniqKey="Waltimo A">A Waltimo</name>
</author>
<author>
<name sortKey="Kononen, M" uniqKey="Kononen M">M Könönen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Flanagan, D" uniqKey="Flanagan D">D Flanagan</name>
</author>
<author>
<name sortKey="Ilies, H" uniqKey="Ilies H">H Ilies</name>
</author>
<author>
<name sortKey="Lasko, B" uniqKey="Lasko B">B Lasko</name>
</author>
<author>
<name sortKey="Stack, J" uniqKey="Stack J">J Stack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fazel, A" uniqKey="Fazel A">A Fazel</name>
</author>
<author>
<name sortKey="Aalai, S" uniqKey="Aalai S">S Aalai</name>
</author>
<author>
<name sortKey="Rismanchian, M" uniqKey="Rismanchian M">M Rismanchian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Freitas, Ac" uniqKey="Freitas A">AC Freitas</name>
</author>
<author>
<name sortKey="Bonfante, Ea" uniqKey="Bonfante E">EA Bonfante</name>
</author>
<author>
<name sortKey="Giro, G" uniqKey="Giro G">G Giro</name>
</author>
<author>
<name sortKey="Janal, Mn" uniqKey="Janal M">MN Janal</name>
</author>
<author>
<name sortKey="Coelho, Pg" uniqKey="Coelho P">PG Coelho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Engelke, W" uniqKey="Engelke W">W Engelke</name>
</author>
<author>
<name sortKey="Decco, Oa" uniqKey="Decco O">OA Decco</name>
</author>
<author>
<name sortKey="Rau, Mj" uniqKey="Rau M">MJ Rau</name>
</author>
<author>
<name sortKey="Massoni, Mc" uniqKey="Massoni M">MC Massoni</name>
</author>
<author>
<name sortKey="Schwarzw Ller, W" uniqKey="Schwarzw Ller W">W Schwarzwäller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinebrunner, L" uniqKey="Steinebrunner L">L Steinebrunner</name>
</author>
<author>
<name sortKey="Wolfart, S" uniqKey="Wolfart S">S Wolfart</name>
</author>
<author>
<name sortKey="Ludwig, K" uniqKey="Ludwig K">K Ludwig</name>
</author>
<author>
<name sortKey="Kern, M" uniqKey="Kern M">M Kern</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Adv Prosthodont</journal-id>
<journal-id journal-id-type="iso-abbrev">J Adv Prosthodont</journal-id>
<journal-id journal-id-type="publisher-id">JAP</journal-id>
<journal-title-group>
<journal-title>The Journal of Advanced Prosthodontics</journal-title>
</journal-title-group>
<issn pub-type="ppub">2005-7806</issn>
<issn pub-type="epub">2005-7814</issn>
<publisher>
<publisher-name>The Korean Academy of Prosthodontics</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25932315</article-id>
<article-id pub-id-type="pmc">4414947</article-id>
<article-id pub-id-type="doi">10.4047/jap.2015.7.2.160</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>
<italic>In-vitro</italic>
development of a temporal abutment screw to protect osseointegration in immediate loaded implants</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-7135-8147</contrib-id>
<name>
<surname>García-Roncero</surname>
<given-names>Herminio</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0003-4684-4770</contrib-id>
<name>
<surname>Caballé-Serrano</surname>
<given-names>Jordi</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-4942-4774</contrib-id>
<name>
<surname>Cano-Batalla</surname>
<given-names>Jordi</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-9829-2651</contrib-id>
<name>
<surname>Cabratosa-Termes</surname>
<given-names>Josep</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-8210-4844</contrib-id>
<name>
<surname>Figueras-Álvarez</surname>
<given-names>Oscar</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</aff>
<aff id="A2">
<label>2</label>
Department of Oral and Maxillofacial Surgery, School of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.</aff>
<author-notes>
<corresp>Corresponding author: Herminio García-Roncero. Department of Prosthodontics, School of Dentistry, Universitat Internacional de Catalunya, Campus Sant Cugat, Josep Trueta Street s/n, 08195 Sant Cugat del Vallès, Barcelona, Spain. Tel. 0034 93 504 20 00:
<email>drhgarciaroncero@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>4</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>23</day>
<month>4</month>
<year>2015</year>
</pub-date>
<volume>7</volume>
<issue>2</issue>
<fpage>160</fpage>
<lpage>165</lpage>
<history>
<date date-type="received">
<day>17</day>
<month>9</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>29</day>
<month>12</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>05</day>
<month>3</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>© 2015 The Korean Academy of Prosthodontics</copyright-statement>
<copyright-year>2015</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">
<license-p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</ext-link>
) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<sec>
<title>PURPOSE</title>
<p>In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants.</p>
</sec>
<sec>
<title>MATERIALS AND METHODS</title>
<p>Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's
<italic>t</italic>
-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%.</p>
</sec>
<sec>
<title>RESULTS</title>
<p>Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes.</p>
</sec>
<sec>
<title>CONCLUSION</title>
<p>Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.</p>
</sec>
</abstract>
<kwd-group>
<kwd>Dental implant-abutment</kwd>
<kwd>Single-tooth dental implant</kwd>
<kwd>Immediate dental implant loading</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>INTRODUCTION</title>
<p>Immediate loading of implants is a treatment that yields high success rates
<xref rid="B1" ref-type="bibr">1</xref>
and offers multiple benefits for patients, including immediate function and esthetics. Furthermore, immediate provisional restoration guides the healing of gingival tissues with a proper emergence profile. However, the success of dental implants is related less to loading time than to micromotion induced by immediate loading.
<xref rid="B2" ref-type="bibr">2</xref>
Micromotion during the healing phase may lead to fibrous encapsulation of implants.
<xref rid="B3" ref-type="bibr">3</xref>
The critical threshold for the development of this complication lies between 50 and 150 µm.
<xref rid="B2" ref-type="bibr">2</xref>
,
<xref rid="B4" ref-type="bibr">4</xref>
,
<xref rid="B5" ref-type="bibr">5</xref>
Therefore, a high degree of primary implant stability (a high insertion torque value) seems to be a prerequisite for successful immediate loading.
<xref rid="B1" ref-type="bibr">1</xref>
</p>
<p>The amount of force required to produce micromotion depends on several factors, including: bone quantity and quality; insertion torque; implant length, diameter, geometry, threads and surface; and surgical technique.
<xref rid="B6" ref-type="bibr">6</xref>
,
<xref rid="B7" ref-type="bibr">7</xref>
,
<xref rid="B8" ref-type="bibr">8</xref>
,
<xref rid="B9" ref-type="bibr">9</xref>
,
<xref rid="B10" ref-type="bibr">10</xref>
To date, no studies have been published describing a system to protect immediately loaded implants from overloading. The aim of this study was to test various screws designed for this purpose. For this reason, various temporary abutment screws were developed to act as fuses. These screws could be a useful tool to increase the predictability of implants under immediate loading. Through this protective mechanism, it was possible to control one of the critical risks associated with immediate loading.</p>
<p>In this study, various screws were developed for use with immediately loaded implants that were designed to break when subjected to overload, thereby avoiding micromotion that interferes with the osseointegration of the implant. After fracture, retrieval of the screw was intended to be easy. The screws were required to withstand 20 Ncm of tightening torque.</p>
</sec>
<sec sec-type="materials|methods">
<title>MATERIALS AND METHODS</title>
<p>Seven types of Grade IV titanium screw fixing machined abutments to 112 external 3.75 × 13 mm hex implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain) were studied. The control screw was a titanium screw for definitive prostheses (Mozo-Grau, S.A.), whereas the other six were prototypes designed for this
<italic>in-vitro</italic>
study. The control screw comprised Grade IV titanium, with a hexagonal socket head cap measuring 1.25 mm in diameter (
<xref ref-type="fig" rid="F1">Fig. 1A</xref>
). The prototype screws had hollow, smooth heads, with a hexagonal socket at the same level as the shank. Prototype 1 hexagonal socket was 0.9 mm in diameter (
<xref ref-type="fig" rid="F1">Fig. 1B</xref>
and
<xref ref-type="fig" rid="F2">2A</xref>
), whereas Prototypes 2, 3, 4, 5 and 6 hexagonal socket were 1.25 mm in diameter (
<xref ref-type="fig" rid="F1">Fig. 1C</xref>
and
<xref ref-type="fig" rid="F2">2B</xref>
). Prototypes 2, 3, 4, 5 and 6 differed in thickness at the level of the head shank union (
<xref ref-type="fig" rid="F3">Fig. 3</xref>
).
<xref ref-type="table" rid="T1">Table 1</xref>
shows the group allocation and dimensions of each prototype.</p>
<p>Implants were embedded perpendicularly into auto-curing resin cylinders 2 cm in diameter and 3 cm long (Paladur®; Heraeus Kulzer GmbH, Hanau, Germany). Afterwards, a machined titanium abutment was screwed to each implant using either a control screw or one of the six prototype screws. Using a torque wrench (Mozo-Grau, S.A.), 32 Ncm was applied to the control screws, whereas the prototype screws were subjected to 20 Ncm. Each of the seven groups was divided into two subgroups, with eight samples per group. One subgroup was under dynamic loading (the DL Subgroup), whereas the other was tested without prior dynamic loading (the NDL Subgroup).</p>
<p>To perform an aging test, a semicircular, cobalt-chrome cast sleeve was cemented on the machined titanium abutment using permanent glass ionomer luting cement (Ketac™ Cem, 3M, ST. Paul, United States) to simulate cyclic load. Fifty-six samples (eight per screw type) were subjected to dynamic loading at 30° in a single-axis chewing simulator using 150,000 load cycles at 50 N and 50 Hz. All surviving samples in the DL Subgroup and all samples in the NDL Subgroup were tested for fracture strength in a universal testing machine (Quasar 5; Galdabini, Cardano al Campo, Italy). A cobalt-chrome cast sleeve with a flat face was cemented on the abutment using permanent glass ionomer luting cement. The cylinders with implants and abutments were fixed at an angle of 30° to the implant axis and direction of loading. The load center was situated 11 mm from the platform of the implant (
<xref ref-type="fig" rid="F4">Fig. 4</xref>
). The load was applied in a progressive manner at a speed of 5 mm/min until the implant-abutment connection failed.</p>
<p>We verified that the values obtained, in terms of the resistance to fracture of each sample, followed a normal distribution (Kolmogorov-Smirnov test > 0.05). Afterwards, a mean was established for each sample, with a confidence interval of 95%. The Student's
<italic>t</italic>
-test was used to compare the data obtained on fracture resistance between samples submitted to cyclic loading and those not submitted to cyclic loading. Statistical comparison between groups was performed using one-way analysis of variance.</p>
</sec>
<sec sec-type="results">
<title>RESULTS</title>
<p>Under dynamic loading, only the eight samples in the Control Group resisted 150,000 cycles. Of the Prototype 1 screws, seven samples resisted dynamic loading. Of the Prototype 3 screws, five samples resisted dynamic loading, and of the Prototype 4 screws, six samples resisted dynamic loading. All samples of Prototypes 2, 5 and 6 failed during dynamic loading. The average numbers of cycles when the screws broke were 60,532 for Prototype 2, 54,658 for Prototype 5 and 4,198 for Prototype 6.</p>
<p>No statistically significant differences in fracture strength were found in control screws or Prototypes 3 and 4 before and after dynamic loading (P=.6306, P=.96 and P=.25, respectively). Of the screws in the DL Subgroup, Prototype 1 showed significantly lower resistance to dynamic loading (P=.0496;
<xref ref-type="table" rid="T2">Table 2</xref>
).</p>
<p>Statistical comparison of the seven screw groups and their fracture strengths without prior dynamic loading revealed significantly higher strengths (P<.05) in the Control Group compared with the six Prototype Groups. A comparison of the Prototype Groups is shown in
<xref ref-type="table" rid="T2">Table 2</xref>
and
<xref ref-type="fig" rid="F5">Fig. 5</xref>
. All samples in the Control and Prototype Groups broke in the same way, leaving 2 mm of the screw shank above the implant platform (
<xref ref-type="fig" rid="F6">Fig. 6A and Fig. 6B</xref>
).</p>
</sec>
<sec sec-type="discussion">
<title>DISCUSSION</title>
<p>In this study, a screw was designed to fracture in a controlled way upon application of a force that could lead to critical micromotion. Fracture strength of the control and prototype screws were tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Prototypes 2, 5 and 6 failed to resist 150,000 cycles of load. This finding is important and supports the use of Prototypes 2, 5 and 6. These observations are consistent with a recent study
<xref rid="B9" ref-type="bibr">9</xref>
that underlined the importance of the magnitude, duration and frequency of micromotion as critical elements in the osseointegration process. However, because these screws were designed to fracture if necessary, their removal once fractured must be easy. Removing a fractured screw from inside an implant can sometimes be very difficult. The configuration of the prototypes with the hexagon located inside the handle and not in the head made it possible to position the screwdriver on the fractured screw (
<xref ref-type="fig" rid="F6">Fig. 6B</xref>
). Therefore, a fractured piece of screw can be retrieved as easily as an undamaged screw (
<xref ref-type="fig" rid="F6">Fig. 6C</xref>
). The function of the screw head was simply to keep implant and crown attached, not to hold the hexagon, associated with immediate loading. Taken all together, it can be concluded that three of the Prototypes used in this study - 2, 5 and 6- could serve as a fuse to protect immediately loaded implants from occlusal overload and micromotion.</p>
<p>The force necessary to produce critical micromotion in the osseointegrating implant depends on the individual circumstances of each case and implant. In addition, occlusal force values showed high variability between individuals and were predicated on the location of the implant in the mouth and the type of food eaten. Forces in the premolar area ranged between 300 and 450 N.
<xref rid="B11" ref-type="bibr">11</xref>
The mean maximum bite force values for men were 909 N (standard deviation [SD], 177) in the molar region and 382 N (SD, 133) in the incisal region; significantly higher than the corresponding figures for women, at 777 N (SD, 168) in the molar region and 325 N (SD, 116) in the incisal region.
<xref rid="B12" ref-type="bibr">12</xref>
For
<italic>in-vitro</italic>
analysis, Flanagan et al.
<xref rid="B13" ref-type="bibr">13</xref>
conducted a study of the force required to produce specific micromotions, determining that 62 N at 45° (range, 48-86 N) and 87 N at 60° (range, 33-135 N) with a 4.3 × 13 mm implant in Type 1 mature bone were necessary to produce a micromotion of 100 µm. In a finite element analysis of how macro design affects the micromotion of implants under immediate loading,
<xref rid="B14" ref-type="bibr">14</xref>
a 500 N force was applied at 70° from the horizontal plane to two types of implant 12 and 13 mm long and 4 and 3.8 mm in diameter, respectively. The micromovements measured were 284 µm and 148 µm, respectively. In a similar study using finite element analysis,
<xref rid="B6" ref-type="bibr">6</xref>
a load of 300 N was applied axially to four different types of 3.3 × 8 mm implants; the micromovements measured were between 8.5 and 15 µm. In another
<italic>in-vitro</italic>
study of how insertion torque and bone density affect the micromotion of implants under immediate loading,
<xref rid="B8" ref-type="bibr">8</xref>
30 N applied at 90° to a 4 × 13 mm implant placed in dense bone at 45 Ncm torque produced a micromovement of 41.72 µm ± 5.11. In this case, load application and measurement of implant micromotion were performed 10 mm above the implant neck. In a further
<italic>in-vitro</italic>
study of how the macro design of implants affects insertion torque and micromotion,
<xref rid="B15" ref-type="bibr">15</xref>
the authors applied lateral loads of 10-100 N to three 4 × 13 mm implants of different designs in polyurethane foam blocks. They obtained average horizontal displacements of between 28 and 530 µm, 25 and 585.9 µm, and 42.6 and 782.3 µm. For
<italic>in-vivo</italic>
studies, obtaining the three-dimensional measurements
<italic>in situ</italic>
at the same time as applying a force is technically challenging, as reported by Engelke et al.
<xref rid="B16" ref-type="bibr">16</xref>
in an
<italic>in-vitro</italic>
study that evaluated micromotion by means of contact endoscopy.</p>
<p>Taking into consideration the observed reference values and the growing number of published papers on the topic that have applied different methodologies, the complexity of the possible multivariate interactions becomes clear.
<xref rid="B15" ref-type="bibr">15</xref>
Based on the results described here, it is suggested that Prototypes 2, 5 and 6 are suitable for use
<italic>in vivo</italic>
. Moreover, it was possible to place Prototypes 2, 5 and 6 using 20 Ncm of torque. However, this force may still be excessive for nonosseointegrated implants; therefore, the development of weaker prototypes remains necessary. It must be remembered that screws must support a sufficient preload to allow firm attachment of the implant to the prosthesis without risk of the screw loosening. If a weak screw is used, it will fracture at 20 Ncm torque. The behavior of prototype screws under dynamic loading was also investigated. The results indicated that the prototype screws are inadequate in terms of fatigue, in contrast to the control screws, which are designed to remain permanently in the mouth. The results obtained with control screws are similar to those obtained in a previous study,
<xref rid="B17" ref-type="bibr">17</xref>
with no statistically significant differences between screws subjected to dynamic preloading and those not subjected to dynamic preloading.</p>
<p>Taking into account the limitations of this study, it is considered that Prototypes 2, 5 and 6 are useful tools for increasing the predictability of implants under immediate loading. Through this protective mechanism, it was possible to control one of the critical risks associated with immediate loading. Following on from this
<italic>in-vitro</italic>
study, we intend to test Prototypes 2, 5 and 6 in patients. The aim is then to evaluate the clinical efficiency of Prototypes 2, 5 and 6 using a larger sample size to increase the power of the analysis. We also believe that Prototypes 2, 5 and 6 can be used with partial or complete prostheses under immediate loading.</p>
</sec>
<sec sec-type="conclusions">
<title>CONCLUSION</title>
<p>Within the limitations of the present study, it may be concluded that Prototype screws 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants. The screw fractures in a way that allows easy retrieval.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENTS</title>
<p>We wish to thank Mozo-Grau, S.A., Valladolid, Spain for their support of the study by providing the implant components tested. The authors declare that they have no conflicts of interest.</p>
</ack>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Esposito</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Grusovin</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Maghaireh</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Worthington</surname>
<given-names>HV</given-names>
</name>
</person-group>
<article-title>Interventions for replacing missing teeth: different times for loading dental implants</article-title>
<source>Cochrane Database Syst Rev</source>
<year>2013</year>
<volume>3</volume>
<fpage>CD003878</fpage>
<pub-id pub-id-type="pmid">23543525</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szmukler-Moncler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Salama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Reingewirtz</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dubruille</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature</article-title>
<source>J Biomed Mater Res</source>
<year>1998</year>
<volume>43</volume>
<fpage>192</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">9619438</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Misch</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Misch</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Sharawy</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lemons</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Judy</surname>
<given-names>KW</given-names>
</name>
</person-group>
<article-title>Rationale for the application of immediate load in implant dentistry: Part I</article-title>
<source>Implant Dent</source>
<year>2004</year>
<volume>13</volume>
<fpage>207</fpage>
<lpage>217</lpage>
<pub-id pub-id-type="pmid">15359155</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brunski</surname>
<given-names>JB</given-names>
</name>
</person-group>
<article-title>Avoid pitfalls of overloading and micromotion of intraosseous implants</article-title>
<source>Dent Implantol Update</source>
<year>1993</year>
<volume>4</volume>
<fpage>77</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="pmid">7919404</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawahara</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kawahara</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hayakawa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tamai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kuremoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Matsuda</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Osseointegration under immediate loading: biomechanical stress-strain and bone formation-resorption</article-title>
<source>Implant Dent</source>
<year>2003</year>
<volume>12</volume>
<fpage>61</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="pmid">12704958</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>PK</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>HH</given-names>
</name>
</person-group>
<article-title>Distribution of micromotion in implants and alveolar bone with different thread profiles in immediate loading: a finite element study</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>2012</year>
<volume>27</volume>
<fpage>e96</fpage>
<lpage>e101</lpage>
<pub-id pub-id-type="pmid">23189316</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Javed</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Romanos</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>The role of primary stability for successful immediate loading of dental implants. A literature review</article-title>
<source>J Dent</source>
<year>2010</year>
<volume>38</volume>
<fpage>612</fpage>
<lpage>620</lpage>
<pub-id pub-id-type="pmid">20546821</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Trisi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Perfetti</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Baldoni</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Berardi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Colagiovanni</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scogna</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Implant micromotion is related to peak insertion torque and bone density</article-title>
<source>Clin Oral Implants Res</source>
<year>2009</year>
<volume>20</volume>
<fpage>467</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="pmid">19522976</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wazen</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Currey</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Brunski</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Helms</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Nanci</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces</article-title>
<source>Acta Biomater</source>
<year>2013</year>
<volume>9</volume>
<fpage>6663</fpage>
<lpage>6674</lpage>
<pub-id pub-id-type="pmid">23337705</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Winter</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Klein</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Karl</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Effect of model parameters on finite element analysis of micromotions in implant dentistry</article-title>
<source>J Oral Implantol</source>
<year>2013</year>
<volume>39</volume>
<fpage>23</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="pmid">23402356</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mericske-Stern</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Assal</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mericske</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Bürgin</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants</article-title>
<source>Int J Oral Maxillofac Implants</source>
<year>1995</year>
<volume>10</volume>
<fpage>345</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="pmid">7615331</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waltimo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Könönen</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Maximal bite force and its association with signs and symptoms of craniomandibular disorders in young Finnish non-patients</article-title>
<source>Acta Odontol Scand</source>
<year>1995</year>
<volume>53</volume>
<fpage>254</fpage>
<lpage>258</lpage>
<pub-id pub-id-type="pmid">7484109</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Flanagan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ilies</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lasko</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Stack</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Force and movement of non-osseointegrated implants: an in vitro study</article-title>
<source>J Oral Implantol</source>
<year>2009</year>
<volume>35</volume>
<fpage>270</fpage>
<lpage>276</lpage>
<pub-id pub-id-type="pmid">20017642</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fazel</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Aalai</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rismanchian</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Effect of macro-design of immediately loaded implants on micromotion and stress distribution in surrounding bone using finite element analysis</article-title>
<source>Implant Dent</source>
<year>2009</year>
<volume>18</volume>
<fpage>345</fpage>
<lpage>352</lpage>
<pub-id pub-id-type="pmid">19667823</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Freitas</surname>
<given-names>AC</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Bonfante</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Giro</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Janal</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Coelho</surname>
<given-names>PG</given-names>
</name>
</person-group>
<article-title>The effect of implant design on insertion torque and immediate micromotion</article-title>
<source>Clin Oral Implants Res</source>
<year>2012</year>
<volume>23</volume>
<fpage>113</fpage>
<lpage>118</lpage>
<pub-id pub-id-type="pmid">21426405</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Engelke</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Decco</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Rau</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Massoni</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Schwarzwäller</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>In vitro evaluation of horizontal implant micromovement in bone specimen with contact endoscopy</article-title>
<source>Implant Dent</source>
<year>2004</year>
<volume>13</volume>
<fpage>88</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="pmid">15017310</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steinebrunner</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wolfart</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ludwig</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kern</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Implant-abutment interface design affects fatigue and fracture strength of implants</article-title>
<source>Clin Oral Implants Res</source>
<year>2008</year>
<volume>19</volume>
<fpage>1276</fpage>
<lpage>1284</lpage>
<pub-id pub-id-type="pmid">19040443</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="F1" orientation="portrait" position="float">
<label>Fig. 1</label>
<caption>
<title>Schematic diagram of the screwdriver/implant/prosthesis (A) control screw in the abutment. (B) Prototype 1 screw in the abutment. (C) Prototype 2, 3, 4, 5 and 6 screw in the abutment.</title>
</caption>
<graphic xlink:href="jap-7-160-g001"></graphic>
</fig>
<fig id="F2" orientation="portrait" position="float">
<label>Fig. 2</label>
<caption>
<title>Schematic diagram of the prototype 1 screw (A) and prototype 2, 3, 4, 5 and 6 (B). ST= Shank thickness. HST= Thickness of head shank union.</title>
</caption>
<graphic xlink:href="jap-7-160-g002"></graphic>
</fig>
<fig id="F3" orientation="portrait" position="float">
<label>Fig. 3</label>
<caption>
<title>Schematic diagram of the prototype 2, 3, 4, 5 and 6. Prototypes differed in thickness at the level of the head shank union (HST).</title>
</caption>
<graphic xlink:href="jap-7-160-g003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Fig. 4</label>
<caption>
<title>Mechanical testing setup with implants positioned in a 30° off-axis orientation.</title>
</caption>
<graphic xlink:href="jap-7-160-g004"></graphic>
</fig>
<fig id="F5" orientation="portrait" position="float">
<label>Fig. 5</label>
<caption>
<title>Box-and-whisker plot of fracture resistance for the seven types of screw without previous cyclic loading. The dot denotes the mean. Response is shown in Ncm.</title>
</caption>
<graphic xlink:href="jap-7-160-g005"></graphic>
</fig>
<fig id="F6" orientation="portrait" position="float">
<label>Fig. 6</label>
<caption>
<title>Details of prototype screw design. (A) Control screw fragment after fracture. (B) Prototype 5 screw fragment after fracture. (C) A 1.25 mm screwdriver inserted into the socket head cap of the fractured Prototype 5 screw fragment.</title>
</caption>
<graphic xlink:href="jap-7-160-g006"></graphic>
</fig>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<title>Description of the tested screw prototypes</title>
</caption>
<alternatives>
<graphic xlink:href="jap-7-160-i001"></graphic>
<table frame="hsides" rules="rows">
<thead>
<tr>
<th valign="top" align="center" rowspan="1" colspan="1"></th>
<th valign="top" align="center" rowspan="1" colspan="1">Control</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot
<sup>*</sup>
. 1</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 2</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 3</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 4</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 5</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="middle" align="center" rowspan="1" colspan="1">HD
<sup></sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">1.25 mm</td>
<td valign="middle" align="center" rowspan="1" colspan="1">0.9 mm</td>
<td valign="middle" align="center" rowspan="1" colspan="1">1.25 mm</td>
<td valign="middle" align="center" rowspan="1" colspan="1">1.25 mm</td>
<td valign="middle" align="center" rowspan="1" colspan="1">1.25 mm</td>
<td valign="middle" align="center" rowspan="1" colspan="1">1.25 mm</td>
<td valign="middle" align="center" rowspan="1" colspan="1">1.25 mm</td>
</tr>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1">ST
<sup></sup>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">100%</td>
<td valign="top" align="center" rowspan="1" colspan="1">+7%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-40%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-40%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-40%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-40%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-40%</td>
</tr>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1">HST
<sup>§</sup>
</td>
<td valign="top" align="center" rowspan="1" colspan="1">100%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-53%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-66%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-58%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-64%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-73%</td>
<td valign="top" align="center" rowspan="1" colspan="1">-68%</td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn>
<p>Abbreviations:
<sup>*</sup>
= Prototype,
<sup></sup>
= hexagonal socket head diameter,
<sup></sup>
= shank thickness as a percentage. 100% is the thickness of the control screw,
<sup>§</sup>
= Head shank union thickness as a percentage. 100% is the thickness of the control screw.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="T2" orientation="portrait" position="float">
<label>Table 2</label>
<caption>
<title>Comparison of the mean (± standard deviation) strength to resist fracture in N for each screw without prior dynamic loading or after dynamic loading</title>
</caption>
<alternatives>
<graphic xlink:href="jap-7-160-i002"></graphic>
<table frame="hsides" rules="rows">
<thead>
<tr>
<th valign="top" align="center" rowspan="1" colspan="1"></th>
<th valign="top" align="center" rowspan="1" colspan="1">Control</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot
<sup>*</sup>
. 1</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 2</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 3</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 4</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 5</th>
<th valign="top" align="center" rowspan="1" colspan="1">Prot. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="middle" align="center" rowspan="1" colspan="1">NDL
<sup></sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">741 ± 184
<sup>Aa</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">368 ± 96
<sup>b</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">195 ± 42
<sup>c</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">354 ± 44
<sup>Ab</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">331 ± 80
<sup>Ab</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">180 ± 20
<sup>c</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">224 ± 29
<sup>c</sup>
</td>
</tr>
<tr>
<td valign="middle" align="center" rowspan="1" colspan="1">DL
<sup></sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">699 ± 150
<sup>A</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">273 ± 69</td>
<td valign="middle" align="center" rowspan="1" colspan="1">0</td>
<td valign="middle" align="center" rowspan="1" colspan="1">352 ± 67
<sup>A</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">287 ± 43
<sup>A</sup>
</td>
<td valign="middle" align="center" rowspan="1" colspan="1">0</td>
<td valign="middle" align="center" rowspan="1" colspan="1">0</td>
</tr>
<tr>
<td valign="top" align="center" rowspan="1" colspan="1">
<italic>P</italic>
-value</td>
<td valign="top" align="center" rowspan="1" colspan="1">.6306</td>
<td valign="top" align="center" rowspan="1" colspan="1">.0496</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1">.96</td>
<td valign="top" align="center" rowspan="1" colspan="1">.25</td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
<td valign="top" align="center" rowspan="1" colspan="1"></td>
</tr>
</tbody>
</table>
</alternatives>
<table-wrap-foot>
<fn>
<p>Abbreviations:
<sup>*</sup>
= Prototype,
<sup></sup>
= Without dynamic loading,
<sup></sup>
= With dynamic loading.</p>
<p>The same superscripts denote no statistical differences between groups (uppercase letters = columns, lowercase letters = rows).</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003048 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003048 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022