Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry

Identifieur interne : 000B15 ( PascalFrancis/Curation ); précédent : 000B14; suivant : 000B16

Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry

Auteurs : K. Yamamoto [États-Unis, Japon] ; A. G. Farman ; R. L. Webber ; R. A. Horton ; K. Kuroyanagi

Source :

RBID : Pascal:98-0394120

Descripteurs français

English descriptors

Abstract

Objective. The purpose of this study was to determine the degree to which the number and angular disparity of component projections influence depth discrimination with tuned-aperture computed tomography. Study design. Groups of three tiny steel spheres served as fiducial references on and in four partially edentulous mandibles. Two spheres were attached to the facial and lingual surfaces of each mandible, and the third was fixed in the apical region of an open tooth socket. Errors in estimates of the depth of the apically positioned sphere relative to the other two spheres were determined from three-dimensional tuned-aperture computed tomography reconstructions. These data were compared with actual measurements produced independently with an optical micrometer. Multiple projections required by the tuned-aperture computed tomography reconstruction algorithm were produced from radially symmetric exposures bearing angular disparities of 5, 15, 30, and 45 degrees. The number of symmetrically dispersed projections per tuned-aperture computed tomography reconstruction likewise was varied systematically (2, 4, 8, 12, and 16 projections). These variables were manipulated through the use of a balanced factorial design. Depth estimates were performed by trained observers; the estimates were based on the determination of tuned-aperture computed tomography slices perceived as imaging the respective apical spheres in sharpest focus. Specimen and observer effects were also considered as independent variables. Resulting data were normalized by logarithmic transformation and analyzed statistically by analysis of variance. Results. Significant differences (p < 0.005) were demonstrated for angular disparity and specimen effects, but the number of projections and the effect of the observer were not found to be statistically significant. Conclusions. In dentistry, angular disparities of 15 degrees or greater should be used when tuned-aperture computed tomography is being applied to diagnostic tasks requiring maximal depth discrimination accuracy.
pA  
A01 01  1    @0 1079-2104
A03   1    @0 Oral surg. oral med. oral pathol. oral radiol. endo.
A05       @2 86
A06       @2 1
A08 01  1  ENG  @1 Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry
A11 01  1    @1 YAMAMOTO (K.)
A11 02  1    @1 FARMAN (A. G.)
A11 03  1    @1 WEBBER (R. L.)
A11 04  1    @1 HORTON (R. A.)
A11 05  1    @1 KUROYANAGI (K.)
A14 01      @1 University of Louisville @3 USA
A14 02      @1 Tokyo Dental College @3 JPN
A14 03      @1 Wake Forest University @3 USA
A20       @1 126-130
A21       @1 1998
A23 01      @0 ENG
A43 01      @1 INIST @2 5101 @5 354000077167320230
A44       @0 0000 @1 © 1998 INIST-CNRS. All rights reserved.
A45       @0 8 ref.
A47 01  1    @0 98-0394120
A60       @1 P
A61       @0 A
A64   1    @0 Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics
A66 01      @0 USA
C01 01    ENG  @0 Objective. The purpose of this study was to determine the degree to which the number and angular disparity of component projections influence depth discrimination with tuned-aperture computed tomography. Study design. Groups of three tiny steel spheres served as fiducial references on and in four partially edentulous mandibles. Two spheres were attached to the facial and lingual surfaces of each mandible, and the third was fixed in the apical region of an open tooth socket. Errors in estimates of the depth of the apically positioned sphere relative to the other two spheres were determined from three-dimensional tuned-aperture computed tomography reconstructions. These data were compared with actual measurements produced independently with an optical micrometer. Multiple projections required by the tuned-aperture computed tomography reconstruction algorithm were produced from radially symmetric exposures bearing angular disparities of 5, 15, 30, and 45 degrees. The number of symmetrically dispersed projections per tuned-aperture computed tomography reconstruction likewise was varied systematically (2, 4, 8, 12, and 16 projections). These variables were manipulated through the use of a balanced factorial design. Depth estimates were performed by trained observers; the estimates were based on the determination of tuned-aperture computed tomography slices perceived as imaging the respective apical spheres in sharpest focus. Specimen and observer effects were also considered as independent variables. Resulting data were normalized by logarithmic transformation and analyzed statistically by analysis of variance. Results. Significant differences (p < 0.005) were demonstrated for angular disparity and specimen effects, but the number of projections and the effect of the observer were not found to be statistically significant. Conclusions. In dentistry, angular disparities of 15 degrees or greater should be used when tuned-aperture computed tomography is being applied to diagnostic tasks requiring maximal depth discrimination accuracy.
C02 01  X    @0 002B24A01
C03 01  X  FRE  @0 Radiographie numérique @5 01
C03 01  X  ENG  @0 Digital radiography @5 01
C03 01  X  SPA  @0 Radiografía numérica @5 01
C03 02  X  FRE  @0 Dispositif CCD @5 02
C03 02  X  ENG  @0 Charge coupled device @5 02
C03 02  X  SPA  @0 Dispositivo transferencia carga @5 02
C03 03  X  FRE  @0 Projection image @5 03
C03 03  X  ENG  @0 Image projection @5 03
C03 03  X  SPA  @0 Proyección imagen @5 03
C03 04  X  FRE  @0 Géométrie @5 04
C03 04  X  ENG  @0 Geometry @5 04
C03 04  X  SPA  @0 Geometría @5 04
C03 05  X  FRE  @0 Tomographie tridimensionnelle @5 05
C03 05  X  ENG  @0 Tridimensional tomography @5 05
C03 05  X  SPA  @0 Tomografía tridimensional @5 05
C03 06  X  FRE  @0 Maxillaire @5 06
C03 06  X  ENG  @0 Maxillary @5 06
C03 06  X  SPA  @0 Maxilar @5 06
C03 07  X  FRE  @0 Reconstruction image @5 07
C03 07  X  ENG  @0 Image reconstruction @5 07
C03 07  X  GER  @0 Bildrekonstruktion @5 07
C03 07  X  SPA  @0 Reconstrucción imagen @5 07
C03 08  X  FRE  @0 Qualité image @5 08
C03 08  X  ENG  @0 Image quality @5 08
C03 08  X  GER  @0 Bildguete @5 08
C03 08  X  SPA  @0 Calidad imagen @5 08
C03 09  X  FRE  @0 Résolution spatiale @5 09
C03 09  X  ENG  @0 Spatial resolution @5 09
C03 09  X  GER  @0 Aufloesungsvermoegen rauemlich @5 09
C03 09  X  SPA  @0 Resolución espacial @5 09
C03 10  X  FRE  @0 Profondeur @5 10
C03 10  X  ENG  @0 Depth @5 10
C03 10  X  GER  @0 Tiefe @5 10
C03 10  X  SPA  @0 Profundidad @5 10
C03 11  X  FRE  @0 Performance @5 11
C03 11  X  ENG  @0 Performance @5 11
C03 11  X  SPA  @0 Rendimiento @5 11
C03 12  X  FRE  @0 Technique @5 12
C03 12  X  ENG  @0 Technique @5 12
C03 12  X  SPA  @0 Técnica @5 12
C03 13  X  FRE  @0 Ouverture accordée @4 CD @5 96
C03 13  X  ENG  @0 Tuned aperture @4 CD @5 96
C07 01  X  FRE  @0 Radiodiagnostic @5 37
C07 01  X  ENG  @0 Radiodiagnosis @5 37
C07 01  X  SPA  @0 Radiodiagnóstico @5 37
C07 02  X  FRE  @0 Imagerie médicale @5 38
C07 02  X  ENG  @0 Medical imagery @5 38
C07 02  X  SPA  @0 Imageneria medical @5 38
C07 03  X  FRE  @0 Stomatologie @5 39
C07 03  X  ENG  @0 Stomatology @5 39
C07 03  X  SPA  @0 Estomatología @5 39
C07 04  X  FRE  @0 Génie biomédical @5 40
C07 04  X  ENG  @0 Biomedical engineering @5 40
C07 04  X  SPA  @0 Ingeniería biomédica @5 40
C07 05  X  FRE  @0 Dentisterie @5 41
C07 05  X  ENG  @0 Dentistry @5 41
C07 05  X  SPA  @0 Odontología @5 41
N21       @1 264

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:98-0394120

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry</title>
<author>
<name sortKey="Yamamoto, K" sort="Yamamoto, K" uniqKey="Yamamoto K" first="K." last="Yamamoto">K. Yamamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Louisville</s1>
<s3>USA</s3>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Tokyo Dental College</s1>
<s3>JPN</s3>
</inist:fA14>
<country>Japon</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Wake Forest University</s1>
<s3>USA</s3>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Farman, A G" sort="Farman, A G" uniqKey="Farman A" first="A. G." last="Farman">A. G. Farman</name>
</author>
<author>
<name sortKey="Webber, R L" sort="Webber, R L" uniqKey="Webber R" first="R. L." last="Webber">R. L. Webber</name>
</author>
<author>
<name sortKey="Horton, R A" sort="Horton, R A" uniqKey="Horton R" first="R. A." last="Horton">R. A. Horton</name>
</author>
<author>
<name sortKey="Kuroyanagi, K" sort="Kuroyanagi, K" uniqKey="Kuroyanagi K" first="K." last="Kuroyanagi">K. Kuroyanagi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">98-0394120</idno>
<date when="1998">1998</date>
<idno type="stanalyst">PASCAL 98-0394120 INIST</idno>
<idno type="RBID">Pascal:98-0394120</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000757</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000B15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry</title>
<author>
<name sortKey="Yamamoto, K" sort="Yamamoto, K" uniqKey="Yamamoto K" first="K." last="Yamamoto">K. Yamamoto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Louisville</s1>
<s3>USA</s3>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Tokyo Dental College</s1>
<s3>JPN</s3>
</inist:fA14>
<country>Japon</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Wake Forest University</s1>
<s3>USA</s3>
</inist:fA14>
<country>États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Farman, A G" sort="Farman, A G" uniqKey="Farman A" first="A. G." last="Farman">A. G. Farman</name>
</author>
<author>
<name sortKey="Webber, R L" sort="Webber, R L" uniqKey="Webber R" first="R. L." last="Webber">R. L. Webber</name>
</author>
<author>
<name sortKey="Horton, R A" sort="Horton, R A" uniqKey="Horton R" first="R. A." last="Horton">R. A. Horton</name>
</author>
<author>
<name sortKey="Kuroyanagi, K" sort="Kuroyanagi, K" uniqKey="Kuroyanagi K" first="K." last="Kuroyanagi">K. Kuroyanagi</name>
</author>
</analytic>
<series>
<title level="j" type="main">Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics</title>
<title level="j" type="abbreviated">Oral surg. oral med. oral pathol. oral radiol. endo.</title>
<idno type="ISSN">1079-2104</idno>
<imprint>
<date when="1998">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics</title>
<title level="j" type="abbreviated">Oral surg. oral med. oral pathol. oral radiol. endo.</title>
<idno type="ISSN">1079-2104</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Charge coupled device</term>
<term>Depth</term>
<term>Digital radiography</term>
<term>Geometry</term>
<term>Image projection</term>
<term>Image quality</term>
<term>Image reconstruction</term>
<term>Maxillary</term>
<term>Performance</term>
<term>Spatial resolution</term>
<term>Technique</term>
<term>Tridimensional tomography</term>
<term>Tuned aperture</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Radiographie numérique</term>
<term>Dispositif CCD</term>
<term>Projection image</term>
<term>Géométrie</term>
<term>Tomographie tridimensionnelle</term>
<term>Maxillaire</term>
<term>Reconstruction image</term>
<term>Qualité image</term>
<term>Résolution spatiale</term>
<term>Profondeur</term>
<term>Performance</term>
<term>Technique</term>
<term>Ouverture accordée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Objective. The purpose of this study was to determine the degree to which the number and angular disparity of component projections influence depth discrimination with tuned-aperture computed tomography. Study design. Groups of three tiny steel spheres served as fiducial references on and in four partially edentulous mandibles. Two spheres were attached to the facial and lingual surfaces of each mandible, and the third was fixed in the apical region of an open tooth socket. Errors in estimates of the depth of the apically positioned sphere relative to the other two spheres were determined from three-dimensional tuned-aperture computed tomography reconstructions. These data were compared with actual measurements produced independently with an optical micrometer. Multiple projections required by the tuned-aperture computed tomography reconstruction algorithm were produced from radially symmetric exposures bearing angular disparities of 5, 15, 30, and 45 degrees. The number of symmetrically dispersed projections per tuned-aperture computed tomography reconstruction likewise was varied systematically (2, 4, 8, 12, and 16 projections). These variables were manipulated through the use of a balanced factorial design. Depth estimates were performed by trained observers; the estimates were based on the determination of tuned-aperture computed tomography slices perceived as imaging the respective apical spheres in sharpest focus. Specimen and observer effects were also considered as independent variables. Resulting data were normalized by logarithmic transformation and analyzed statistically by analysis of variance. Results. Significant differences (p < 0.005) were demonstrated for angular disparity and specimen effects, but the number of projections and the effect of the observer were not found to be statistically significant. Conclusions. In dentistry, angular disparities of 15 degrees or greater should be used when tuned-aperture computed tomography is being applied to diagnostic tasks requiring maximal depth discrimination accuracy.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1079-2104</s0>
</fA01>
<fA03 i2="1">
<s0>Oral surg. oral med. oral pathol. oral radiol. endo.</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YAMAMOTO (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FARMAN (A. G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WEBBER (R. L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HORTON (R. A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KUROYANAGI (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Louisville</s1>
<s3>USA</s3>
</fA14>
<fA14 i1="02">
<s1>Tokyo Dental College</s1>
<s3>JPN</s3>
</fA14>
<fA14 i1="03">
<s1>Wake Forest University</s1>
<s3>USA</s3>
</fA14>
<fA20>
<s1>126-130</s1>
</fA20>
<fA21>
<s1>1998</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5101</s2>
<s5>354000077167320230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1998 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>8 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>98-0394120</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i2="1">
<s0>Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Objective. The purpose of this study was to determine the degree to which the number and angular disparity of component projections influence depth discrimination with tuned-aperture computed tomography. Study design. Groups of three tiny steel spheres served as fiducial references on and in four partially edentulous mandibles. Two spheres were attached to the facial and lingual surfaces of each mandible, and the third was fixed in the apical region of an open tooth socket. Errors in estimates of the depth of the apically positioned sphere relative to the other two spheres were determined from three-dimensional tuned-aperture computed tomography reconstructions. These data were compared with actual measurements produced independently with an optical micrometer. Multiple projections required by the tuned-aperture computed tomography reconstruction algorithm were produced from radially symmetric exposures bearing angular disparities of 5, 15, 30, and 45 degrees. The number of symmetrically dispersed projections per tuned-aperture computed tomography reconstruction likewise was varied systematically (2, 4, 8, 12, and 16 projections). These variables were manipulated through the use of a balanced factorial design. Depth estimates were performed by trained observers; the estimates were based on the determination of tuned-aperture computed tomography slices perceived as imaging the respective apical spheres in sharpest focus. Specimen and observer effects were also considered as independent variables. Resulting data were normalized by logarithmic transformation and analyzed statistically by analysis of variance. Results. Significant differences (p < 0.005) were demonstrated for angular disparity and specimen effects, but the number of projections and the effect of the observer were not found to be statistically significant. Conclusions. In dentistry, angular disparities of 15 degrees or greater should be used when tuned-aperture computed tomography is being applied to diagnostic tasks requiring maximal depth discrimination accuracy.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B24A01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Radiographie numérique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Digital radiography</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Radiografía numérica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dispositif CCD</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Charge coupled device</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Dispositivo transferencia carga</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Projection image</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Image projection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Proyección imagen</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Géométrie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Geometry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Geometría</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Tomographie tridimensionnelle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Tridimensional tomography</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Tomografía tridimensional</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Maxillaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Maxillary</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Maxilar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Reconstruction image</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Image reconstruction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Bildrekonstruktion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Reconstrucción imagen</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Qualité image</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Image quality</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="GER">
<s0>Bildguete</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Calidad imagen</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Résolution spatiale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Spatial resolution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Aufloesungsvermoegen rauemlich</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Resolución espacial</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Profondeur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Depth</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Tiefe</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Profundidad</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Performance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Performance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Technique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Technique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Técnica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Ouverture accordée</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Tuned aperture</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Radiodiagnostic</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Radiodiagnosis</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Radiodiagnóstico</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Imagerie médicale</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Medical imagery</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Imageneria medical</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Stomatologie</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Stomatology</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Estomatología</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Génie biomédical</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Biomedical engineering</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Ingeniería biomédica</s0>
<s5>40</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Dentisterie</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Dentistry</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Odontología</s0>
<s5>41</s5>
</fC07>
<fN21>
<s1>264</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000B15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:98-0394120
   |texte=   Effects of projection geometry and number of projections on accuracy of depth discrimination with tuned-aperture computed tomography in dentistry
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022