Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses

Identifieur interne : 009E32 ( Main/Merge ); précédent : 009E31; suivant : 009E33

Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses

Auteurs : D. V. Kilpadi [États-Unis] ; G. N. Raikar [États-Unis] ; J. Liu [États-Unis] ; J. E. Lemons [États-Unis] ; Y. Vohra [États-Unis] ; J. C. Gregory [États-Unis]

Source :

RBID : ISTEX:568E2B7702C9A54DE15C04D272C05BC1F9870099

Descripteurs français

English descriptors

Abstract

Surgical implant finishing and sterilization procedures were investigated to determine surface characteristics of unalloyed titanium (Ti). All specimens initially were cleaned with phosphoric acid and divided into five groups for comparisons of different surface treatments (C = cleaned as above, no further treatment; CP = C and passivated in nitric acid; CPS = CP and dry‐heat sterilized; CPSS = CPS and resterilized; CS = C and dry‐heat sterilized). Auger (AES), X‐ray photoelectron (XPS), and Raman spectroscopic methods were used to examine surface compositions. The surface oxides formed by all treatments primarily were TiO2, with some Ti2O3 and possibly TiO. Significant concentrations of carbonaceous substances also were observed. The cleaning procedure alone resulted in residual phosphorus, primarily as phosphate groups along with some hydrogen phosphates. A higher percentage of physisorbed water appeared to be associated with the phosphorus. Passivation (with HNO3) alone removed phosphorus from the surface; specimens sterilized without prior passivation showed the thickest oxide and phosphorus profiles, suggesting that passivation alters the oxide characteristics either directly by altering the oxide structure or indirectly by removing moieties that alter the oxide. Raman spectroscopy showed no crystalline order in the oxide. Carbon, oxygen, phosphorus, and nitrogen presence were found to correlate with previously determined surface energy. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 646–659, 1998.

Url:
DOI: 10.1002/(SICI)1097-4636(19980615)40:4<646::AID-JBM17>3.0.CO;2-D

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:568E2B7702C9A54DE15C04D272C05BC1F9870099

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses</title>
<author>
<name sortKey="Kilpadi, D V" sort="Kilpadi, D V" uniqKey="Kilpadi D" first="D. V." last="Kilpadi">D. V. Kilpadi</name>
</author>
<author>
<name sortKey="Raikar, G N" sort="Raikar, G N" uniqKey="Raikar G" first="G. N." last="Raikar">G. N. Raikar</name>
</author>
<author>
<name sortKey="Liu, J" sort="Liu, J" uniqKey="Liu J" first="J." last="Liu">J. Liu</name>
</author>
<author>
<name sortKey="Lemons, J E" sort="Lemons, J E" uniqKey="Lemons J" first="J. E." last="Lemons">J. E. Lemons</name>
</author>
<author>
<name sortKey="Vohra, Y" sort="Vohra, Y" uniqKey="Vohra Y" first="Y." last="Vohra">Y. Vohra</name>
</author>
<author>
<name sortKey="Gregory, J C" sort="Gregory, J C" uniqKey="Gregory J" first="J. C." last="Gregory">J. C. Gregory</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:568E2B7702C9A54DE15C04D272C05BC1F9870099</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1002/(SICI)1097-4636(19980615)40:4<646::AID-JBM17>3.0.CO;2-D</idno>
<idno type="url">https://api.istex.fr/document/568E2B7702C9A54DE15C04D272C05BC1F9870099/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002A63</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002A63</idno>
<idno type="wicri:Area/Istex/Curation">002A63</idno>
<idno type="wicri:Area/Istex/Checkpoint">004625</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">004625</idno>
<idno type="wicri:doubleKey">0021-9304:1998:Kilpadi D:effect:of:surface</idno>
<idno type="wicri:Area/Main/Merge">009E32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses</title>
<author>
<name sortKey="Kilpadi, D V" sort="Kilpadi, D V" uniqKey="Kilpadi D" first="D. V." last="Kilpadi">D. V. Kilpadi</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Biomaterials, University of Alabama at Birmingham, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Correspondence address: Department of Biomaterials, University of Alabama at Birmingham, 616 School of Dentistry Building, 1919 7 Avenue South, Birmingham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Raikar, G N" sort="Raikar, G N" uniqKey="Raikar G" first="G. N." last="Raikar">G. N. Raikar</name>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>Surface Analysis & Optical Spectroscopy Laboratory, University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Liu, J" sort="Liu, J" uniqKey="Liu J" first="J." last="Liu">J. Liu</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Physics, University of Alabama at Birmingham, Birmingham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lemons, J E" sort="Lemons, J E" uniqKey="Lemons J" first="J. E." last="Lemons">J. E. Lemons</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Biomaterials, University of Alabama at Birmingham, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Vohra, Y" sort="Vohra, Y" uniqKey="Vohra Y" first="Y." last="Vohra">Y. Vohra</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Department of Physics, University of Alabama at Birmingham, Birmingham</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Gregory, J C" sort="Gregory, J C" uniqKey="Gregory J" first="J. C." last="Gregory">J. C. Gregory</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Alabama</region>
</placeName>
<wicri:cityArea>Surface Science Laboratories, University of Alabama at Huntsville, Huntsville</wicri:cityArea>
</affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH</title>
<idno type="ISSN">0021-9304</idno>
<idno type="eISSN">1097-4636</idno>
<imprint>
<biblScope unit="vol">40</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="646">646</biblScope>
<biblScope unit="page" to="659">659</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1998-06-15">1998-06-15</date>
</imprint>
<idno type="ISSN">0021-9304</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9304</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>American society</term>
<term>Aqueous solutions</term>
<term>Atomic absorption studies</term>
<term>Atomic concentration</term>
<term>Auger</term>
<term>Auger depth profiles</term>
<term>Auger electron spectroscopy</term>
<term>Base pressure</term>
<term>Binding energy</term>
<term>Biomaterials</term>
<term>Calcium phosphate</term>
<term>Carbon concentration</term>
<term>Carbon oxygen</term>
<term>Cationic movement</term>
<term>Chemical composition</term>
<term>Chemical concentration gradients</term>
<term>Chemical moieties</term>
<term>Cleaning procedure</term>
<term>Colloid interface</term>
<term>Confidence level</term>
<term>Correlation analyses</term>
<term>Correlation coefficients</term>
<term>Cps</term>
<term>Critical surface tension</term>
<term>Crystalline form</term>
<term>Deconvolution</term>
<term>Depth profile</term>
<term>Detectability limit</term>
<term>Electron beam</term>
<term>Fwhm</term>
<term>Higher power levels</term>
<term>Hydrogen phosphate</term>
<term>Implant</term>
<term>John wiley sons</term>
<term>Kilpadi</term>
<term>Laser</term>
<term>Laser power</term>
<term>Laser power level</term>
<term>Mater</term>
<term>Maximum concentration</term>
<term>Negative correlation</term>
<term>Nitric</term>
<term>Nitric acid</term>
<term>Nitric acid passivation</term>
<term>Oral maxillofac</term>
<term>Osseointegrated implants</term>
<term>Other elements</term>
<term>Other investigators</term>
<term>Other surfaces</term>
<term>Oxide</term>
<term>Oxide growth</term>
<term>Oxide surface</term>
<term>Oxide thickness</term>
<term>Oxygen concentration</term>
<term>Passivated</term>
<term>Passivation</term>
<term>Passivation process</term>
<term>Peak</term>
<term>Peak positions</term>
<term>Percentage component</term>
<term>Phosphoric acid</term>
<term>Phosphorus</term>
<term>Phosphorus layer</term>
<term>Phosphorus thickness</term>
<term>Photoelectron</term>
<term>Photoelectron spectroscopy</term>
<term>Physisorbed</term>
<term>Physisorbed water</term>
<term>Positive correlation</term>
<term>Practical surface analysis</term>
<term>Previous study</term>
<term>Raman</term>
<term>Raman excitation</term>
<term>Raman spectroscopy</term>
<term>Raman spectrum</term>
<term>Representative deconvolution</term>
<term>Representative raman spectrum</term>
<term>Rutile</term>
<term>Rutile powder</term>
<term>Sample sets</term>
<term>Significant difference</term>
<term>Significant differences</term>
<term>Small quantities</term>
<term>Solid surface tension</term>
<term>Specimen surfaces</term>
<term>Spectroscopic</term>
<term>Spectroscopic analyses</term>
<term>Spectroscopy</term>
<term>Statistical procedures</term>
<term>Subpeaks</term>
<term>Surf</term>
<term>Surface analysis</term>
<term>Surface characteristics</term>
<term>Surface characterization</term>
<term>Surface composition</term>
<term>Surface energies</term>
<term>Surface energy</term>
<term>Surface energy estimates</term>
<term>Surface layers</term>
<term>Surface oxide layer</term>
<term>Surface oxides</term>
<term>Surface properties</term>
<term>Surface roughness</term>
<term>Surface spectra</term>
<term>Surface tension</term>
<term>Surface treatment</term>
<term>Surface treatments</term>
<term>Survey scans</term>
<term>Temperature dependence</term>
<term>Tio2</term>
<term>Titanium</term>
<term>Titanium implant materials</term>
<term>Titanium implants</term>
<term>Unalloyed</term>
<term>Unalloyed titanium</term>
<term>Unalloyed titanium implants</term>
<term>Vivo study</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>American society</term>
<term>Aqueous solutions</term>
<term>Atomic absorption studies</term>
<term>Atomic concentration</term>
<term>Auger</term>
<term>Auger depth profiles</term>
<term>Auger electron spectroscopy</term>
<term>Base pressure</term>
<term>Binding energy</term>
<term>Biomaterials</term>
<term>Calcium phosphate</term>
<term>Carbon concentration</term>
<term>Carbon oxygen</term>
<term>Cationic movement</term>
<term>Chemical composition</term>
<term>Chemical concentration gradients</term>
<term>Chemical moieties</term>
<term>Cleaning procedure</term>
<term>Colloid interface</term>
<term>Confidence level</term>
<term>Correlation analyses</term>
<term>Correlation coefficients</term>
<term>Cps</term>
<term>Critical surface tension</term>
<term>Crystalline form</term>
<term>Deconvolution</term>
<term>Depth profile</term>
<term>Detectability limit</term>
<term>Electron beam</term>
<term>Fwhm</term>
<term>Higher power levels</term>
<term>Hydrogen phosphate</term>
<term>Implant</term>
<term>John wiley sons</term>
<term>Kilpadi</term>
<term>Laser</term>
<term>Laser power</term>
<term>Laser power level</term>
<term>Mater</term>
<term>Maximum concentration</term>
<term>Negative correlation</term>
<term>Nitric</term>
<term>Nitric acid</term>
<term>Nitric acid passivation</term>
<term>Oral maxillofac</term>
<term>Osseointegrated implants</term>
<term>Other elements</term>
<term>Other investigators</term>
<term>Other surfaces</term>
<term>Oxide</term>
<term>Oxide growth</term>
<term>Oxide surface</term>
<term>Oxide thickness</term>
<term>Oxygen concentration</term>
<term>Passivated</term>
<term>Passivation</term>
<term>Passivation process</term>
<term>Peak</term>
<term>Peak positions</term>
<term>Percentage component</term>
<term>Phosphoric acid</term>
<term>Phosphorus</term>
<term>Phosphorus layer</term>
<term>Phosphorus thickness</term>
<term>Photoelectron</term>
<term>Photoelectron spectroscopy</term>
<term>Physisorbed</term>
<term>Physisorbed water</term>
<term>Positive correlation</term>
<term>Practical surface analysis</term>
<term>Previous study</term>
<term>Raman</term>
<term>Raman excitation</term>
<term>Raman spectroscopy</term>
<term>Raman spectrum</term>
<term>Representative deconvolution</term>
<term>Representative raman spectrum</term>
<term>Rutile</term>
<term>Rutile powder</term>
<term>Sample sets</term>
<term>Significant difference</term>
<term>Significant differences</term>
<term>Small quantities</term>
<term>Solid surface tension</term>
<term>Specimen surfaces</term>
<term>Spectroscopic</term>
<term>Spectroscopic analyses</term>
<term>Spectroscopy</term>
<term>Statistical procedures</term>
<term>Subpeaks</term>
<term>Surf</term>
<term>Surface analysis</term>
<term>Surface characteristics</term>
<term>Surface characterization</term>
<term>Surface composition</term>
<term>Surface energies</term>
<term>Surface energy</term>
<term>Surface energy estimates</term>
<term>Surface layers</term>
<term>Surface oxide layer</term>
<term>Surface oxides</term>
<term>Surface properties</term>
<term>Surface roughness</term>
<term>Surface spectra</term>
<term>Surface tension</term>
<term>Surface treatment</term>
<term>Surface treatments</term>
<term>Survey scans</term>
<term>Temperature dependence</term>
<term>Tio2</term>
<term>Titanium</term>
<term>Titanium implant materials</term>
<term>Titanium implants</term>
<term>Unalloyed</term>
<term>Unalloyed titanium</term>
<term>Unalloyed titanium implants</term>
<term>Vivo study</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Oxyde</term>
<term>Phosphore</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Surgical implant finishing and sterilization procedures were investigated to determine surface characteristics of unalloyed titanium (Ti). All specimens initially were cleaned with phosphoric acid and divided into five groups for comparisons of different surface treatments (C = cleaned as above, no further treatment; CP = C and passivated in nitric acid; CPS = CP and dry‐heat sterilized; CPSS = CPS and resterilized; CS = C and dry‐heat sterilized). Auger (AES), X‐ray photoelectron (XPS), and Raman spectroscopic methods were used to examine surface compositions. The surface oxides formed by all treatments primarily were TiO2, with some Ti2O3 and possibly TiO. Significant concentrations of carbonaceous substances also were observed. The cleaning procedure alone resulted in residual phosphorus, primarily as phosphate groups along with some hydrogen phosphates. A higher percentage of physisorbed water appeared to be associated with the phosphorus. Passivation (with HNO3) alone removed phosphorus from the surface; specimens sterilized without prior passivation showed the thickest oxide and phosphorus profiles, suggesting that passivation alters the oxide characteristics either directly by altering the oxide structure or indirectly by removing moieties that alter the oxide. Raman spectroscopy showed no crystalline order in the oxide. Carbon, oxygen, phosphorus, and nitrogen presence were found to correlate with previously determined surface energy. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 646–659, 1998.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009E32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 009E32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     ISTEX:568E2B7702C9A54DE15C04D272C05BC1F9870099
   |texte=   Effect of surface treatment on unalloyed titanium implants: Spectroscopic analyses
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022