Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electromechanical impedance method to assess dental implant stability

Identifieur interne : 003556 ( Main/Exploration ); précédent : 003555; suivant : 003557

Electromechanical impedance method to assess dental implant stability

Auteurs : Aydin Tabrizi [États-Unis] ; Piervincenzo Rizzo [États-Unis] ; Mark W. Ochs [États-Unis]

Source :

RBID : ISTEX:CB0EFE36981E1F56D295D6C776D391213D2CAEEE

English descriptors

Abstract

The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional boneimplant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocareimplants with a size of 4.3mm diameter 13mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implantbone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants abutment and measuring the admittance of the PZT over time. It was found that the PZTs admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity.

Url:
DOI: 10.1088/0964-1726/21/11/115022


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Electromechanical impedance method to assess dental implant stability</title>
<author>
<name sortKey="Tabrizi, Aydin" sort="Tabrizi, Aydin" uniqKey="Tabrizi A" first="Aydin" last="Tabrizi">Aydin Tabrizi</name>
</author>
<author>
<name sortKey="Rizzo, Piervincenzo" sort="Rizzo, Piervincenzo" uniqKey="Rizzo P" first="Piervincenzo" last="Rizzo">Piervincenzo Rizzo</name>
</author>
<author>
<name sortKey="Ochs, Mark W" sort="Ochs, Mark W" uniqKey="Ochs M" first="Mark W" last="Ochs">Mark W. Ochs</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CB0EFE36981E1F56D295D6C776D391213D2CAEEE</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1088/0964-1726/21/11/115022</idno>
<idno type="url">https://api.istex.fr/document/CB0EFE36981E1F56D295D6C776D391213D2CAEEE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006499</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006499</idno>
<idno type="wicri:Area/Istex/Curation">006499</idno>
<idno type="wicri:Area/Istex/Checkpoint">000A26</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000A26</idno>
<idno type="wicri:doubleKey">0964-1726:2012:Tabrizi A:electromechanical:impedance:method</idno>
<idno type="wicri:Area/Main/Merge">003573</idno>
<idno type="wicri:Area/Main/Curation">003556</idno>
<idno type="wicri:Area/Main/Exploration">003556</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Electromechanical impedance method to assess dental implant stability</title>
<author>
<name sortKey="Tabrizi, Aydin" sort="Tabrizi, Aydin" uniqKey="Tabrizi A" first="Aydin" last="Tabrizi">Aydin Tabrizi</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory for NDE and SHM Studies, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rizzo, Piervincenzo" sort="Rizzo, Piervincenzo" uniqKey="Rizzo P" first="Piervincenzo" last="Rizzo">Piervincenzo Rizzo</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Ochs, Mark W" sort="Ochs, Mark W" uniqKey="Ochs M" first="Mark W" last="Ochs">Mark W. Ochs</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Oral and Maxillofacial Surgery at the School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA15261</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Smart Materials and Structures</title>
<idno type="ISSN">0964-1726</idno>
<idno type="eISSN">1361-665X</idno>
<imprint>
<publisher>IOP Publishing</publisher>
<date type="published" when="2012-11">2012-11</date>
<biblScope unit="volume">21</biblScope>
<biblScope unit="issue">11</biblScope>
</imprint>
<idno type="ISSN">0964-1726</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0964-1726</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abutment</term>
<term>Actuation</term>
<term>Actuation frequency</term>
<term>Actuation mechanism</term>
<term>Admittance</term>
<term>Atomic absorption spectrometer</term>
<term>Boemio</term>
<term>Bone samples</term>
<term>Bovine</term>
<term>Bovine costal bone sample</term>
<term>Bovine extremity</term>
<term>Bovine extremity bone sample</term>
<term>Calcium content</term>
<term>Calcium loss</term>
<term>Cancellous bone</term>
<term>Capsule formation</term>
<term>Conductance</term>
<term>Conductance signature</term>
<term>Conductance slope</term>
<term>Cortical bone</term>
<term>Costal</term>
<term>Costal bone</term>
<term>Degradation</term>
<term>Degradation time</term>
<term>Dental implant</term>
<term>Dental implant stability</term>
<term>Dental implants</term>
<term>Dental prostheses</term>
<term>Early loading</term>
<term>Electrical admittance</term>
<term>Electrical impedance</term>
<term>Electromechanical</term>
<term>Electromechanical impedance method</term>
<term>Environmental engineering</term>
<term>Excitation frequency</term>
<term>Experimental results</term>
<term>Frequency peak</term>
<term>Frequency range</term>
<term>Giurgiutiu</term>
<term>Gure</term>
<term>Healing process</term>
<term>Health monitoring</term>
<term>Host structure</term>
<term>Imaging techniques</term>
<term>Impedance</term>
<term>Impedance method</term>
<term>Implant</term>
<term>Implant stability</term>
<term>Linear interpolation</term>
<term>Main conductance signature peak</term>
<term>Main peak</term>
<term>Mater</term>
<term>Material degradation</term>
<term>Measurement process</term>
<term>Mechanical impedance</term>
<term>Monitoring period</term>
<term>Monitoring time</term>
<term>Monotonic variation</term>
<term>Nitric</term>
<term>Nitric acid</term>
<term>Nitric acid solution</term>
<term>Nobel biocare</term>
<term>Novel approach</term>
<term>Oral implants</term>
<term>Oral maxillofac</term>
<term>Peak amplitude</term>
<term>Periodontal function zahnarztl</term>
<term>Periotest</term>
<term>Periotest method</term>
<term>Present study</term>
<term>Primary stability</term>
<term>Rizzo</term>
<term>Rmsd</term>
<term>Schulte</term>
<term>Smart mater</term>
<term>Soft tissue</term>
<term>Soft tissue implants</term>
<term>Statistical features</term>
<term>Stiffness</term>
<term>Struct</term>
<term>Structural health monitoring</term>
<term>Structural impedance</term>
<term>Surgical placement</term>
<term>Surgical procedure</term>
<term>Tabrizi</term>
<term>Test samples</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abutment</term>
<term>Actuation</term>
<term>Actuation frequency</term>
<term>Actuation mechanism</term>
<term>Admittance</term>
<term>Atomic absorption spectrometer</term>
<term>Boemio</term>
<term>Bone samples</term>
<term>Bovine</term>
<term>Bovine costal bone sample</term>
<term>Bovine extremity</term>
<term>Bovine extremity bone sample</term>
<term>Calcium content</term>
<term>Calcium loss</term>
<term>Cancellous bone</term>
<term>Capsule formation</term>
<term>Conductance</term>
<term>Conductance signature</term>
<term>Conductance slope</term>
<term>Cortical bone</term>
<term>Costal</term>
<term>Costal bone</term>
<term>Degradation</term>
<term>Degradation time</term>
<term>Dental implant</term>
<term>Dental implant stability</term>
<term>Dental implants</term>
<term>Dental prostheses</term>
<term>Early loading</term>
<term>Electrical admittance</term>
<term>Electrical impedance</term>
<term>Electromechanical</term>
<term>Electromechanical impedance method</term>
<term>Environmental engineering</term>
<term>Excitation frequency</term>
<term>Experimental results</term>
<term>Frequency peak</term>
<term>Frequency range</term>
<term>Giurgiutiu</term>
<term>Gure</term>
<term>Healing process</term>
<term>Health monitoring</term>
<term>Host structure</term>
<term>Imaging techniques</term>
<term>Impedance</term>
<term>Impedance method</term>
<term>Implant</term>
<term>Implant stability</term>
<term>Linear interpolation</term>
<term>Main conductance signature peak</term>
<term>Main peak</term>
<term>Mater</term>
<term>Material degradation</term>
<term>Measurement process</term>
<term>Mechanical impedance</term>
<term>Monitoring period</term>
<term>Monitoring time</term>
<term>Monotonic variation</term>
<term>Nitric</term>
<term>Nitric acid</term>
<term>Nitric acid solution</term>
<term>Nobel biocare</term>
<term>Novel approach</term>
<term>Oral implants</term>
<term>Oral maxillofac</term>
<term>Peak amplitude</term>
<term>Periodontal function zahnarztl</term>
<term>Periotest</term>
<term>Periotest method</term>
<term>Present study</term>
<term>Primary stability</term>
<term>Rizzo</term>
<term>Rmsd</term>
<term>Schulte</term>
<term>Smart mater</term>
<term>Soft tissue</term>
<term>Soft tissue implants</term>
<term>Statistical features</term>
<term>Stiffness</term>
<term>Struct</term>
<term>Structural health monitoring</term>
<term>Structural impedance</term>
<term>Surgical placement</term>
<term>Surgical procedure</term>
<term>Tabrizi</term>
<term>Test samples</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional boneimplant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocareimplants with a size of 4.3mm diameter 13mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implantbone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants abutment and measuring the admittance of the PZT over time. It was found that the PZTs admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
</settlement>
<orgName>
<li>Université de Pittsburgh</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Tabrizi, Aydin" sort="Tabrizi, Aydin" uniqKey="Tabrizi A" first="Aydin" last="Tabrizi">Aydin Tabrizi</name>
</region>
<name sortKey="Ochs, Mark W" sort="Ochs, Mark W" uniqKey="Ochs M" first="Mark W" last="Ochs">Mark W. Ochs</name>
<name sortKey="Rizzo, Piervincenzo" sort="Rizzo, Piervincenzo" uniqKey="Rizzo P" first="Piervincenzo" last="Rizzo">Piervincenzo Rizzo</name>
<name sortKey="Rizzo, Piervincenzo" sort="Rizzo, Piervincenzo" uniqKey="Rizzo P" first="Piervincenzo" last="Rizzo">Piervincenzo Rizzo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003556 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003556 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:CB0EFE36981E1F56D295D6C776D391213D2CAEEE
   |texte=   Electromechanical impedance method to assess dental implant stability
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022