Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration.

Identifieur interne : 001C55 ( Main/Exploration ); précédent : 001C54; suivant : 001C56

Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration.

Auteurs : John B. Brunski

Source :

RBID : pubmed:24977245

Descripteurs français

English descriptors

Abstract

A proper definition of the 'optimal' number of implants to support a full arch prosthesis should go beyond solely a listing of the number of implants used in a treatment plan; it should be based upon a biomechanical analysis that takes into account several factors: the locations of the implants in the jaw; the quality and quantity of bone into which they are placed; the loads (forces and moments) that develop on the implants; the magnitudes of stress and strain that develop in the interfacial bone as well as in the implants and prosthesis; and the relationship of the stresses and strains to limits for the materials involved. Overall, determining an 'optimal' number of implants to use in a patient is a biomechanical design problem. This paper discusses some of the approaches that are already available to aid biomechanically focused clinical treatment planning. A number of examples are presented to illustrate how relatively simple biomechanical analyses - e.g. the Skalak model - as well as more complex analyses (e.g. finite element modelling) can be used to assess the pros and cons of various arrangements of implants to support fullarch prostheses. Some of the examples considered include the use of 4 rather than 6 implants to span the same arc-length in a jaw, and the pros and cons of using tilted implants as in the 'all-on-4' approach. In evaluating the accuracy of the various biomechanical analyses, it is clear that our current prediction methods are not always perfectly accurate in vivo, although they can provide a reasonably approximate analysis of a treatment plan in many situations. In the current era of cone beam computerised tomography (CT) scans of patients in the dental office, there is significant promise for finite element analyses (FEA) based on anatomically-accurate input data. However, at the same time it has to be recognised that effective use of FEA software requires a reasonable engineering background, especially insofar as interpretations of the clinical significance of stresses and strains in bone and prosthetic materials.

PubMed: 24977245


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration.</title>
<author>
<name sortKey="Brunski, John B" sort="Brunski, John B" uniqKey="Brunski J" first="John B" last="Brunski">John B. Brunski</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24977245</idno>
<idno type="pmid">24977245</idno>
<idno type="wicri:Area/PubMed/Corpus">000792</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000792</idno>
<idno type="wicri:Area/PubMed/Curation">000792</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000792</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000792</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000792</idno>
<idno type="wicri:Area/Ncbi/Merge">005244</idno>
<idno type="wicri:Area/Ncbi/Curation">005244</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">005244</idno>
<idno type="wicri:doubleKey">1756-2406:2014:Brunski J:biomechanical:aspects:of</idno>
<idno type="wicri:Area/Main/Merge">001C62</idno>
<idno type="wicri:Area/Main/Curation">001C55</idno>
<idno type="wicri:Area/Main/Exploration">001C55</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration.</title>
<author>
<name sortKey="Brunski, John B" sort="Brunski, John B" uniqKey="Brunski J" first="John B" last="Brunski">John B. Brunski</name>
</author>
</analytic>
<series>
<title level="j">European journal of oral implantology</title>
<idno type="ISSN">1756-2406</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Bite Force</term>
<term>Bone Density (physiology)</term>
<term>Cone-Beam Computed Tomography (methods)</term>
<term>Dental Arch (physiopathology)</term>
<term>Dental Implantation, Endosseous (methods)</term>
<term>Dental Implants</term>
<term>Dental Prosthesis Design</term>
<term>Dental Prosthesis, Implant-Supported</term>
<term>Denture Design</term>
<term>Elastic Modulus</term>
<term>Finite Element Analysis</term>
<term>Forecasting</term>
<term>Humans</term>
<term>Jaw, Edentulous (physiopathology)</term>
<term>Models, Biological</term>
<term>Patient Care Planning</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse des éléments finis</term>
<term>Arcade dentaire (physiopathologie)</term>
<term>Conception d'appareil de prothèse dentaire</term>
<term>Conception de prothèse dentaire</term>
<term>Contrainte mécanique</term>
<term>Densité osseuse (physiologie)</term>
<term>Force occlusale</term>
<term>Humains</term>
<term>Implants dentaires</term>
<term>Module d'élasticité</term>
<term>Modèles biologiques</term>
<term>Mâchoire édentée (physiopathologie)</term>
<term>Phénomènes biomécaniques</term>
<term>Planification des soins du patient</term>
<term>Pose d'implant dentaire endo-osseux ()</term>
<term>Propriétés de surface</term>
<term>Prothèse dentaire implanto-portée</term>
<term>Prévision</term>
<term>Tomodensitométrie à faisceau conique ()</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Dental Implants</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Cone-Beam Computed Tomography</term>
<term>Dental Implantation, Endosseous</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Densité osseuse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Bone Density</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Arcade dentaire</term>
<term>Mâchoire édentée</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Dental Arch</term>
<term>Jaw, Edentulous</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Bite Force</term>
<term>Dental Prosthesis Design</term>
<term>Dental Prosthesis, Implant-Supported</term>
<term>Denture Design</term>
<term>Elastic Modulus</term>
<term>Finite Element Analysis</term>
<term>Forecasting</term>
<term>Humans</term>
<term>Models, Biological</term>
<term>Patient Care Planning</term>
<term>Stress, Mechanical</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse des éléments finis</term>
<term>Conception d'appareil de prothèse dentaire</term>
<term>Conception de prothèse dentaire</term>
<term>Contrainte mécanique</term>
<term>Force occlusale</term>
<term>Humains</term>
<term>Implants dentaires</term>
<term>Module d'élasticité</term>
<term>Modèles biologiques</term>
<term>Phénomènes biomécaniques</term>
<term>Planification des soins du patient</term>
<term>Pose d'implant dentaire endo-osseux</term>
<term>Propriétés de surface</term>
<term>Prothèse dentaire implanto-portée</term>
<term>Prévision</term>
<term>Tomodensitométrie à faisceau conique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A proper definition of the 'optimal' number of implants to support a full arch prosthesis should go beyond solely a listing of the number of implants used in a treatment plan; it should be based upon a biomechanical analysis that takes into account several factors: the locations of the implants in the jaw; the quality and quantity of bone into which they are placed; the loads (forces and moments) that develop on the implants; the magnitudes of stress and strain that develop in the interfacial bone as well as in the implants and prosthesis; and the relationship of the stresses and strains to limits for the materials involved. Overall, determining an 'optimal' number of implants to use in a patient is a biomechanical design problem. This paper discusses some of the approaches that are already available to aid biomechanically focused clinical treatment planning. A number of examples are presented to illustrate how relatively simple biomechanical analyses - e.g. the Skalak model - as well as more complex analyses (e.g. finite element modelling) can be used to assess the pros and cons of various arrangements of implants to support fullarch prostheses. Some of the examples considered include the use of 4 rather than 6 implants to span the same arc-length in a jaw, and the pros and cons of using tilted implants as in the 'all-on-4' approach. In evaluating the accuracy of the various biomechanical analyses, it is clear that our current prediction methods are not always perfectly accurate in vivo, although they can provide a reasonably approximate analysis of a treatment plan in many situations. In the current era of cone beam computerised tomography (CT) scans of patients in the dental office, there is significant promise for finite element analyses (FEA) based on anatomically-accurate input data. However, at the same time it has to be recognised that effective use of FEA software requires a reasonable engineering background, especially insofar as interpretations of the clinical significance of stresses and strains in bone and prosthetic materials.</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Brunski, John B" sort="Brunski, John B" uniqKey="Brunski J" first="John B" last="Brunski">John B. Brunski</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24977245
   |texte=   Biomechanical aspects of the optimal number of implants to carry a cross-arch full restoration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24977245" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV2 

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022