Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Current computational modelling trends in craniomandibular biomechanics and their clinical implications

Identifieur interne : 006A93 ( Istex/Corpus ); précédent : 006A92; suivant : 006A94

Current computational modelling trends in craniomandibular biomechanics and their clinical implications

Auteurs : A. G. Hannam

Source :

RBID : ISTEX:D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57

English descriptors

Abstract

Summary  Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid‐body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non‐linear and non‐isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.

Url:
DOI: 10.1111/j.1365-2842.2010.02149.x

Links to Exploration step

ISTEX:D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
<author>
<name sortKey="Hannam, A G" sort="Hannam, A G" uniqKey="Hannam A" first="A. G." last="Hannam">A. G. Hannam</name>
<affiliation>
<mods:affiliation>Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1111/j.1365-2842.2010.02149.x</idno>
<idno type="url">https://api.istex.fr/document/D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006A93</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006A93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
<author>
<name sortKey="Hannam, A G" sort="Hannam, A G" uniqKey="Hannam A" first="A. G." last="Hannam">A. G. Hannam</name>
<affiliation>
<mods:affiliation>Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Oral Rehabilitation</title>
<title level="j" type="alt">JOURNAL ORAL REHABILITATION</title>
<idno type="ISSN">0305-182X</idno>
<idno type="eISSN">1365-2842</idno>
<imprint>
<biblScope unit="vol">38</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="217">217</biblScope>
<biblScope unit="page" to="234">234</biblScope>
<biblScope unit="page-count">18</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-03">2011-03</date>
</imprint>
<idno type="ISSN">0305-182X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-182X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation levels</term>
<term>Anat</term>
<term>Articular</term>
<term>Articular eminence</term>
<term>Articulation</term>
<term>Atlasbased image registration</term>
<term>Biol</term>
<term>Biomech</term>
<term>Biomechanical</term>
<term>Biomechanical modelling</term>
<term>Biomechanical models</term>
<term>Biomechanics</term>
<term>Biomed</term>
<term>Biomedical images</term>
<term>Biomedical imaging</term>
<term>Blackwell</term>
<term>Blackwell publishing</term>
<term>Bone plates</term>
<term>Boundary conditions</term>
<term>British columbia</term>
<term>Cancellous bone</term>
<term>Cattaneo</term>
<term>Cell evol biol</term>
<term>Cells tissues organs</term>
<term>Clin biomech</term>
<term>Clinical application</term>
<term>Clinical challenges</term>
<term>Clinical implications</term>
<term>Clinical relevance</term>
<term>Complex muscle architectures</term>
<term>Comput</term>
<term>Comput methods biomech biomed engin</term>
<term>Computational</term>
<term>Computational methods</term>
<term>Computational model</term>
<term>Computational modelling</term>
<term>Computational models</term>
<term>Constraint</term>
<term>Craniomandibular</term>
<term>Craniomandibular apparatus</term>
<term>Craniomandibular biomechanics</term>
<term>Craniomandibular models</term>
<term>Craniomandibular region</term>
<term>Craniomandibular skeleton</term>
<term>Craniomandibular structures</term>
<term>Dent</term>
<term>Dental arches</term>
<term>Dental implants</term>
<term>Dentofacial</term>
<term>Differential changes</term>
<term>Direct validation</term>
<term>Disc displacement</term>
<term>Distraction</term>
<term>Distraction osteogenesis</term>
<term>Dynamic model</term>
<term>Dynamic models</term>
<term>Eijden</term>
<term>Elastic modulus</term>
<term>Engin</term>
<term>Engineering community</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>External forces</term>
<term>Finite element analysis</term>
<term>Finite element modelling</term>
<term>Finite element models</term>
<term>Functional data</term>
<term>Functional interactions</term>
<term>Future work</term>
<term>Great deal</term>
<term>Hannam</term>
<term>Human mandible</term>
<term>Human masticatory muscles</term>
<term>Human skull</term>
<term>Hyperelastic properties</term>
<term>Imaging</term>
<term>Implant</term>
<term>Indirect validation</term>
<term>Inertial properties</term>
<term>Input parameters</term>
<term>Internal stresses</term>
<term>Inverse methods</term>
<term>Inverse modelling approaches</term>
<term>Joint forces</term>
<term>Joint torques</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Koolstra</term>
<term>Lateral pterygoid muscle</term>
<term>Ligament</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance elastography</term>
<term>Mandible</term>
<term>Mandibular</term>
<term>Mandibular condyles</term>
<term>Mandibular distraction osteogenesis</term>
<term>Mandibular fractures</term>
<term>Mandibular stiffness</term>
<term>Many areas</term>
<term>Many models</term>
<term>Many parameters</term>
<term>Mastication</term>
<term>Masticatory</term>
<term>Material properties</term>
<term>Mathematical model</term>
<term>Mechanical properties</term>
<term>Melsen</term>
<term>Mesh</term>
<term>Mesh elements</term>
<term>Modeling</term>
<term>Modelling</term>
<term>Modelling approaches</term>
<term>Moment arms</term>
<term>Motion data</term>
<term>Muscle activation</term>
<term>Muscle activations</term>
<term>Muscle force</term>
<term>Muscle forces</term>
<term>Muscle models</term>
<term>Musculoskeletal</term>
<term>Musculoskeletal research laboratories</term>
<term>Nite</term>
<term>Nite element</term>
<term>Nite element analysis</term>
<term>Nite element method</term>
<term>Nite element methods</term>
<term>Nite element model</term>
<term>Nite element modelling</term>
<term>Nite element models</term>
<term>Nite element study</term>
<term>Nite element work</term>
<term>Numerical accuracy</term>
<term>Numerical predictions</term>
<term>Occlusal</term>
<term>Occlusal design</term>
<term>Occlusal surfaces</term>
<term>Optimal lengths</term>
<term>Optimisation</term>
<term>Optimisation process</term>
<term>Oral biol</term>
<term>Oral health sciences</term>
<term>Oral maxillofac surg</term>
<term>Oral rehabil</term>
<term>Orthod</term>
<term>Orthod dentofacial orthop</term>
<term>Orthop</term>
<term>Osteogenesis</term>
<term>Parameter</term>
<term>Passive muscle tensions</term>
<term>Periodontal ligament</term>
<term>Philos trans</term>
<term>Phys anthropol</term>
<term>Prosthet dent</term>
<term>Reaction forces</term>
<term>Recent example</term>
<term>Recent models</term>
<term>Recent studies</term>
<term>Recent study</term>
<term>Recent trends</term>
<term>Right mandibular ramus</term>
<term>Same case</term>
<term>Same subject</term>
<term>Sensitivity analysis</term>
<term>Sensitivity tests</term>
<term>Simulation</term>
<term>Skeletal muscle</term>
<term>Software</term>
<term>Software corp</term>
<term>Software platforms</term>
<term>Solid meshes</term>
<term>Speech production</term>
<term>Static equilibrium theory</term>
<term>Stiffness</term>
<term>Stress distribution</term>
<term>Structural form</term>
<term>Such models</term>
<term>Tanaka</term>
<term>Temporomandibular</term>
<term>Tongue muscles</term>
<term>Tooth removal</term>
<term>Unilateral hypoplasia</term>
<term>Validation</term>
<term>Various kinds</term>
<term>Wide areas</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Activation levels</term>
<term>Anat</term>
<term>Articular</term>
<term>Articular eminence</term>
<term>Articulation</term>
<term>Atlasbased image registration</term>
<term>Biol</term>
<term>Biomech</term>
<term>Biomechanical</term>
<term>Biomechanical modelling</term>
<term>Biomechanical models</term>
<term>Biomechanics</term>
<term>Biomed</term>
<term>Biomedical images</term>
<term>Biomedical imaging</term>
<term>Blackwell</term>
<term>Blackwell publishing</term>
<term>Bone plates</term>
<term>Boundary conditions</term>
<term>British columbia</term>
<term>Cancellous bone</term>
<term>Cattaneo</term>
<term>Cell evol biol</term>
<term>Cells tissues organs</term>
<term>Clin biomech</term>
<term>Clinical application</term>
<term>Clinical challenges</term>
<term>Clinical implications</term>
<term>Clinical relevance</term>
<term>Complex muscle architectures</term>
<term>Comput</term>
<term>Comput methods biomech biomed engin</term>
<term>Computational</term>
<term>Computational methods</term>
<term>Computational model</term>
<term>Computational modelling</term>
<term>Computational models</term>
<term>Constraint</term>
<term>Craniomandibular</term>
<term>Craniomandibular apparatus</term>
<term>Craniomandibular biomechanics</term>
<term>Craniomandibular models</term>
<term>Craniomandibular region</term>
<term>Craniomandibular skeleton</term>
<term>Craniomandibular structures</term>
<term>Dent</term>
<term>Dental arches</term>
<term>Dental implants</term>
<term>Dentofacial</term>
<term>Differential changes</term>
<term>Direct validation</term>
<term>Disc displacement</term>
<term>Distraction</term>
<term>Distraction osteogenesis</term>
<term>Dynamic model</term>
<term>Dynamic models</term>
<term>Eijden</term>
<term>Elastic modulus</term>
<term>Engin</term>
<term>Engineering community</term>
<term>Experimental data</term>
<term>Experimental results</term>
<term>External forces</term>
<term>Finite element analysis</term>
<term>Finite element modelling</term>
<term>Finite element models</term>
<term>Functional data</term>
<term>Functional interactions</term>
<term>Future work</term>
<term>Great deal</term>
<term>Hannam</term>
<term>Human mandible</term>
<term>Human masticatory muscles</term>
<term>Human skull</term>
<term>Hyperelastic properties</term>
<term>Imaging</term>
<term>Implant</term>
<term>Indirect validation</term>
<term>Inertial properties</term>
<term>Input parameters</term>
<term>Internal stresses</term>
<term>Inverse methods</term>
<term>Inverse modelling approaches</term>
<term>Joint forces</term>
<term>Joint torques</term>
<term>Kinematic</term>
<term>Kinematic data</term>
<term>Koolstra</term>
<term>Lateral pterygoid muscle</term>
<term>Ligament</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance elastography</term>
<term>Mandible</term>
<term>Mandibular</term>
<term>Mandibular condyles</term>
<term>Mandibular distraction osteogenesis</term>
<term>Mandibular fractures</term>
<term>Mandibular stiffness</term>
<term>Many areas</term>
<term>Many models</term>
<term>Many parameters</term>
<term>Mastication</term>
<term>Masticatory</term>
<term>Material properties</term>
<term>Mathematical model</term>
<term>Mechanical properties</term>
<term>Melsen</term>
<term>Mesh</term>
<term>Mesh elements</term>
<term>Modeling</term>
<term>Modelling</term>
<term>Modelling approaches</term>
<term>Moment arms</term>
<term>Motion data</term>
<term>Muscle activation</term>
<term>Muscle activations</term>
<term>Muscle force</term>
<term>Muscle forces</term>
<term>Muscle models</term>
<term>Musculoskeletal</term>
<term>Musculoskeletal research laboratories</term>
<term>Nite</term>
<term>Nite element</term>
<term>Nite element analysis</term>
<term>Nite element method</term>
<term>Nite element methods</term>
<term>Nite element model</term>
<term>Nite element modelling</term>
<term>Nite element models</term>
<term>Nite element study</term>
<term>Nite element work</term>
<term>Numerical accuracy</term>
<term>Numerical predictions</term>
<term>Occlusal</term>
<term>Occlusal design</term>
<term>Occlusal surfaces</term>
<term>Optimal lengths</term>
<term>Optimisation</term>
<term>Optimisation process</term>
<term>Oral biol</term>
<term>Oral health sciences</term>
<term>Oral maxillofac surg</term>
<term>Oral rehabil</term>
<term>Orthod</term>
<term>Orthod dentofacial orthop</term>
<term>Orthop</term>
<term>Osteogenesis</term>
<term>Parameter</term>
<term>Passive muscle tensions</term>
<term>Periodontal ligament</term>
<term>Philos trans</term>
<term>Phys anthropol</term>
<term>Prosthet dent</term>
<term>Reaction forces</term>
<term>Recent example</term>
<term>Recent models</term>
<term>Recent studies</term>
<term>Recent study</term>
<term>Recent trends</term>
<term>Right mandibular ramus</term>
<term>Same case</term>
<term>Same subject</term>
<term>Sensitivity analysis</term>
<term>Sensitivity tests</term>
<term>Simulation</term>
<term>Skeletal muscle</term>
<term>Software</term>
<term>Software corp</term>
<term>Software platforms</term>
<term>Solid meshes</term>
<term>Speech production</term>
<term>Static equilibrium theory</term>
<term>Stiffness</term>
<term>Stress distribution</term>
<term>Structural form</term>
<term>Such models</term>
<term>Tanaka</term>
<term>Temporomandibular</term>
<term>Tongue muscles</term>
<term>Tooth removal</term>
<term>Unilateral hypoplasia</term>
<term>Validation</term>
<term>Various kinds</term>
<term>Wide areas</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Summary  Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid‐body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non‐linear and non‐isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>nite</json:string>
<json:string>modelling</json:string>
<json:string>mandibular</json:string>
<json:string>biomech</json:string>
<json:string>biomechanical</json:string>
<json:string>craniomandibular</json:string>
<json:string>mandible</json:string>
<json:string>articular</json:string>
<json:string>biomechanics</json:string>
<json:string>hannam</json:string>
<json:string>occlusal</json:string>
<json:string>blackwell publishing</json:string>
<json:string>validation</json:string>
<json:string>koolstra</json:string>
<json:string>biol</json:string>
<json:string>temporomandibular</json:string>
<json:string>masticatory</json:string>
<json:string>muscle forces</json:string>
<json:string>comput</json:string>
<json:string>optimisation</json:string>
<json:string>eijden</json:string>
<json:string>biomed</json:string>
<json:string>kinematic</json:string>
<json:string>biomechanical models</json:string>
<json:string>implant</json:string>
<json:string>osteogenesis</json:string>
<json:string>musculoskeletal</json:string>
<json:string>software</json:string>
<json:string>experimental data</json:string>
<json:string>anat</json:string>
<json:string>material properties</json:string>
<json:string>computational</json:string>
<json:string>dynamic models</json:string>
<json:string>orthop</json:string>
<json:string>orthod</json:string>
<json:string>tanaka</json:string>
<json:string>dentofacial</json:string>
<json:string>orthod dentofacial orthop</json:string>
<json:string>clinical implications</json:string>
<json:string>engin</json:string>
<json:string>nite element analysis</json:string>
<json:string>cattaneo</json:string>
<json:string>melsen</json:string>
<json:string>mastication</json:string>
<json:string>distraction osteogenesis</json:string>
<json:string>comput methods biomech biomed engin</json:string>
<json:string>dynamic model</json:string>
<json:string>nite element method</json:string>
<json:string>nite element models</json:string>
<json:string>nite element</json:string>
<json:string>modeling</json:string>
<json:string>dent</json:string>
<json:string>constraint</json:string>
<json:string>joint torques</json:string>
<json:string>muscle activations</json:string>
<json:string>stress distribution</json:string>
<json:string>same subject</json:string>
<json:string>direct validation</json:string>
<json:string>nite element methods</json:string>
<json:string>cell evol biol</json:string>
<json:string>prosthet dent</json:string>
<json:string>stiffness</json:string>
<json:string>simulation</json:string>
<json:string>ligament</json:string>
<json:string>articulation</json:string>
<json:string>sensitivity tests</json:string>
<json:string>clinical application</json:string>
<json:string>mandibular fractures</json:string>
<json:string>input parameters</json:string>
<json:string>magn reson imaging</json:string>
<json:string>such models</json:string>
<json:string>cancellous bone</json:string>
<json:string>craniomandibular models</json:string>
<json:string>computational methods</json:string>
<json:string>articular eminence</json:string>
<json:string>oral biol</json:string>
<json:string>mechanical properties</json:string>
<json:string>nite element modelling</json:string>
<json:string>british columbia</json:string>
<json:string>clinical relevance</json:string>
<json:string>finite element models</json:string>
<json:string>many parameters</json:string>
<json:string>boundary conditions</json:string>
<json:string>computational modelling</json:string>
<json:string>sensitivity analysis</json:string>
<json:string>speech production</json:string>
<json:string>oral maxillofac surg</json:string>
<json:string>tongue muscles</json:string>
<json:string>computational model</json:string>
<json:string>clin biomech</json:string>
<json:string>kinematic data</json:string>
<json:string>imaging</json:string>
<json:string>parameter</json:string>
<json:string>blackwell</json:string>
<json:string>mesh</json:string>
<json:string>computational models</json:string>
<json:string>indirect validation</json:string>
<json:string>mesh elements</json:string>
<json:string>many models</json:string>
<json:string>clinical challenges</json:string>
<json:string>wide areas</json:string>
<json:string>craniomandibular skeleton</json:string>
<json:string>oral health sciences</json:string>
<json:string>nite element model</json:string>
<json:string>numerical predictions</json:string>
<json:string>software corp</json:string>
<json:string>musculoskeletal research laboratories</json:string>
<json:string>functional interactions</json:string>
<json:string>recent example</json:string>
<json:string>hyperelastic properties</json:string>
<json:string>complex muscle architectures</json:string>
<json:string>optimal lengths</json:string>
<json:string>activation levels</json:string>
<json:string>moment arms</json:string>
<json:string>craniomandibular region</json:string>
<json:string>skeletal muscle</json:string>
<json:string>internal stresses</json:string>
<json:string>recent models</json:string>
<json:string>differential changes</json:string>
<json:string>atlasbased image registration</json:string>
<json:string>nite element work</json:string>
<json:string>magnetic resonance elastography</json:string>
<json:string>inverse modelling approaches</json:string>
<json:string>dental implants</json:string>
<json:string>optimisation process</json:string>
<json:string>inverse methods</json:string>
<json:string>mathematical model</json:string>
<json:string>future work</json:string>
<json:string>tooth removal</json:string>
<json:string>reaction forces</json:string>
<json:string>bone plates</json:string>
<json:string>periodontal ligament</json:string>
<json:string>muscle force</json:string>
<json:string>great deal</json:string>
<json:string>mandibular stiffness</json:string>
<json:string>occlusal surfaces</json:string>
<json:string>elastic modulus</json:string>
<json:string>various kinds</json:string>
<json:string>experimental results</json:string>
<json:string>disc displacement</json:string>
<json:string>lateral pterygoid muscle</json:string>
<json:string>structural form</json:string>
<json:string>recent study</json:string>
<json:string>many areas</json:string>
<json:string>numerical accuracy</json:string>
<json:string>functional data</json:string>
<json:string>modelling approaches</json:string>
<json:string>static equilibrium theory</json:string>
<json:string>mandibular condyles</json:string>
<json:string>biomedical imaging</json:string>
<json:string>inertial properties</json:string>
<json:string>phys anthropol</json:string>
<json:string>craniomandibular apparatus</json:string>
<json:string>philos trans</json:string>
<json:string>biomedical images</json:string>
<json:string>finite element modelling</json:string>
<json:string>passive muscle tensions</json:string>
<json:string>software platforms</json:string>
<json:string>external forces</json:string>
<json:string>human mandible</json:string>
<json:string>recent trends</json:string>
<json:string>finite element analysis</json:string>
<json:string>craniomandibular biomechanics</json:string>
<json:string>engineering community</json:string>
<json:string>human skull</json:string>
<json:string>unilateral hypoplasia</json:string>
<json:string>right mandibular ramus</json:string>
<json:string>motion data</json:string>
<json:string>same case</json:string>
<json:string>muscle models</json:string>
<json:string>dental arches</json:string>
<json:string>recent studies</json:string>
<json:string>mandibular distraction osteogenesis</json:string>
<json:string>joint forces</json:string>
<json:string>oral rehabil</json:string>
<json:string>human masticatory muscles</json:string>
<json:string>biomechanical modelling</json:string>
<json:string>cells tissues organs</json:string>
<json:string>muscle activation</json:string>
<json:string>craniomandibular structures</json:string>
<json:string>nite element study</json:string>
<json:string>solid meshes</json:string>
<json:string>occlusal design</json:string>
<json:string>distraction</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>A. G. HANNAM</name>
<affiliations>
<json:string>Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biomechanics</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>clinical applications</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>craniomandibular</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>masticatory system</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>models</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>musculoskeletal system</value>
</json:item>
</subject>
<articleId>
<json:string>JOOR2149</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-WGRDP23F-0</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>reviewArticle</json:string>
</originalGenre>
<abstract>Summary  Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid‐body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non‐linear and non‐isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.</abstract>
<qualityIndicators>
<score>9.544</score>
<pdfWordCount>10826</pdfWordCount>
<pdfCharCount>73709</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>212</abstractWordCount>
<abstractCharCount>1561</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
<pmid>
<json:string>20819138</json:string>
</pmid>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Journal of Oral Rehabilitation</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1365-2842</json:string>
</doi>
<issn>
<json:string>0305-182X</json:string>
</issn>
<eissn>
<json:string>1365-2842</json:string>
</eissn>
<publisherId>
<json:string>JOOR</json:string>
</publisherId>
<volume>38</volume>
<issue>3</issue>
<pages>
<first>217</first>
<last>234</last>
<total>18</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2011</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Department of Electrical and Computer</json:string>
<json:string>American Institute for Aeronautics and Astronautics</json:string>
<json:string>Stanford University</json:string>
<json:string>American Society of Mechanical Engineers</json:string>
<json:string>University of British Columbia</json:string>
<json:string>Blackwell Publishing Ltd</json:string>
<json:string>MSC Software Corp.</json:string>
<json:string>Ansys Inc.</json:string>
<json:string>Musculoskeletal Research Laboratories, University of Utah, Salt Lake City, UT, USA</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Ian Stavness</json:string>
<json:string>Glazier</json:string>
<json:string>In</json:string>
<json:string>The</json:string>
<json:string>Davids</json:string>
<json:string>Sid Fels</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Palo Alto</json:string>
<json:string>Aalborg</json:string>
<json:string>Canonsburg</json:string>
<json:string>USA</json:string>
<json:string>Denmark</json:string>
<json:string>CA</json:string>
<json:string>Leuven</json:string>
<json:string>Santa Ana</json:string>
<json:string>Belgium</json:string>
<json:string>Netherlands</json:string>
<json:string>PA</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Nazari et al.</json:string>
<json:string>Boccaccio et al.</json:string>
<json:string>Rues et al.</json:string>
<json:string>Tuijt et al.</json:string>
<json:string>Mahoney et al.</json:string>
<json:string>Lovald et al.</json:string>
<json:string>Stavness et al.</json:string>
<json:string>Geng et al.</json:string>
<json:string>Olthoff et al.</json:string>
<json:string>Mahony et al.</json:string>
<json:string>Saini et al.</json:string>
<json:string>Bonnet et al.</json:string>
<json:string>Ichim et al.</json:string>
<json:string>Matsunaga et al.</json:string>
<json:string>de Zee et al.</json:string>
<json:string>Anderson et al.</json:string>
<json:string>Iwasaki et al.</json:string>
<json:string>Langenbach et al.</json:string>
<json:string>Reina et al.</json:string>
<json:string>Liao et al.</json:string>
<json:string>Erdemir et al.</json:string>
<json:string>Bucki et al.</json:string>
<json:string>Wakabayashi et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-WGRDP23F-0</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - dentistry, oral surgery & medicine</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - dentistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Dentistry</json:string>
<json:string>3 - General Dentistry</json:string>
</scopus>
</categories>
<publicationDate>2011</publicationDate>
<copyrightDate>2011</copyrightDate>
<doi>
<json:string>10.1111/j.1365-2842.2010.02149.x</json:string>
</doi>
<id>D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 Blackwell Publishing Ltd</licence>
</availability>
<date type="published" when="2011-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="review-article" source="reviewArticle" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="review-article">
<analytic>
<title level="a" type="main">Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
<title level="a" type="short">BIOMECHANICAL MODELS AND THEIR CLINICAL IMPLICATIONS</title>
<author xml:id="author-0000">
<persName>
<forename type="first">A. G.</forename>
<surname>HANNAM</surname>
</persName>
<affiliation>Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada
<address>
<country key="CA"></country>
</address>
</affiliation>
</author>
<idno type="istex">D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57</idno>
<idno type="ark">ark:/67375/WNG-WGRDP23F-0</idno>
<idno type="DOI">10.1111/j.1365-2842.2010.02149.x</idno>
<idno type="unit">JOOR2149</idno>
<idno type="toTypesetVersion">file:JOOR.JOOR2149.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Oral Rehabilitation</title>
<title level="j" type="alt">JOURNAL ORAL REHABILITATION</title>
<idno type="pISSN">0305-182X</idno>
<idno type="eISSN">1365-2842</idno>
<idno type="book-DOI">10.1111/(ISSN)1365-2842</idno>
<idno type="book-part-DOI">10.1111/jor.2011.38.issue-3</idno>
<idno type="product">JOOR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">38</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="217">217</biblScope>
<biblScope unit="page" to="234">234</biblScope>
<biblScope unit="page-count">18</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2011-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>
<hi rend="bold">Summary </hi>
Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid‐body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non‐linear and non‐isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">biomechanics</term>
<term xml:id="k2">clinical applications</term>
<term xml:id="k3">craniomandibular</term>
<term xml:id="k4">masticatory system</term>
<term xml:id="k5">models</term>
<term xml:id="k6">musculoskeletal system</term>
</keywords>
<keywords rend="tocHeading1">
<term>Review Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1365-2842</doi>
<issn type="print">0305-182X</issn>
<issn type="electronic">1365-2842</issn>
<idGroup>
<id type="product" value="JOOR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL ORAL REHABILITATION">Journal of Oral Rehabilitation</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="03103">
<doi origin="wiley">10.1111/jor.2011.38.issue-3</doi>
<numberingGroup>
<numbering type="journalVolume" number="38">38</numbering>
<numbering type="journalIssue" number="3">3</numbering>
</numberingGroup>
<coverDate startDate="2011-03">March 2011</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="reviewArticle" position="9" status="forIssue">
<doi origin="wiley">10.1111/j.1365-2842.2010.02149.x</doi>
<idGroup>
<id type="unit" value="JOOR2149"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="18"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Review Articles</title>
</titleGroup>
<copyright>© 2010 Blackwell Publishing Ltd</copyright>
<eventGroup>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.4.4 mode:FullText" date="2011-02-07"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2010-09-01"></event>
<event type="firstOnline" date="2010-09-01"></event>
<event type="publishedOnlineFinalForm" date="2011-02-07"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="217">217</numbering>
<numbering type="pageLast" number="234">234</numbering>
</numberingGroup>
<correspondenceTo> Alan G. Hannam, Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada. E‐mail:
<email>ahannam@interchange.ubc.ca</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JOOR.JOOR2149.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Accepted for publication 10 July 2010</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="0"></count>
<count type="tableTotal" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
<title type="shortAuthors">A. G. HANNAM</title>
<title type="short">BIOMECHANICAL MODELS AND THEIR CLINICAL IMPLICATIONS</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#aff-1-1">
<personName>
<givenNames>A. G.</givenNames>
<familyName>HANNAM</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="aff-1-1" countryCode="CA">
<unparsedAffiliation>Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">biomechanics</keyword>
<keyword xml:id="k2">clinical applications</keyword>
<keyword xml:id="k3">craniomandibular</keyword>
<keyword xml:id="k4">masticatory system</keyword>
<keyword xml:id="k5">models</keyword>
<keyword xml:id="k6">musculoskeletal system</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>Summary </b>
Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid‐body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non‐linear and non‐isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>BIOMECHANICAL MODELS AND THEIR CLINICAL IMPLICATIONS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Current computational modelling trends in craniomandibular biomechanics and their clinical implications</title>
</titleInfo>
<name type="personal">
<namePart type="given">A. G.</namePart>
<namePart type="family">HANNAM</namePart>
<affiliation>Faculty of Dentistry, Department of Oral Health Sciences, The University of British Columbia, Vancouver, BC, Canada</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="reviewArticle" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2011-03</dateIssued>
<edition>Accepted for publication 10 July 2010</edition>
<copyrightDate encoding="w3cdtf">2011</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">0</extent>
<extent unit="tables">0</extent>
</physicalDescription>
<abstract>Summary  Computational models of interactions in the craniomandibular apparatus are used with increasing frequency to study biomechanics in normal and abnormal masticatory systems. Methods and assumptions in these models can be difficult to assess by those unfamiliar with current practices in this field; health professionals are often faced with evaluating the appropriateness, validity and significance of models which are perhaps more familiar to the engineering community. This selective review offers a foundation for assessing the strength and implications of a craniomandibular modelling study. It explores different models used in general science and engineering and focuses on current best practices in biomechanics. The problem of validation is considered at some length, because this is not always fully realisable in living subjects. Rigid‐body, finite element and combined approaches are discussed, with examples of their application to basic and clinically relevant problems. Some advanced software platforms currently available for modelling craniomandibular systems are mentioned. Recent studies of the face, masticatory muscles, tongue, craniomandibular skeleton, temporomandibular joint, dentition and dental implants are reviewed, and the significance of non‐linear and non‐isotropic material properties is emphasised. The unique challenges in clinical application are discussed, and the review concludes by posing some questions which one might reasonably expect to find answered in plausible modelling studies of the masticatory apparatus.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>biomechanics</topic>
<topic>clinical applications</topic>
<topic>craniomandibular</topic>
<topic>masticatory system</topic>
<topic>models</topic>
<topic>musculoskeletal system</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Oral Rehabilitation</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0305-182X</identifier>
<identifier type="eISSN">1365-2842</identifier>
<identifier type="DOI">10.1111/(ISSN)1365-2842</identifier>
<identifier type="PublisherID">JOOR</identifier>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>217</start>
<end>234</end>
<total>18</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57</identifier>
<identifier type="ark">ark:/67375/WNG-WGRDP23F-0</identifier>
<identifier type="DOI">10.1111/j.1365-2842.2010.02149.x</identifier>
<identifier type="ArticleID">JOOR2149</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 Blackwell Publishing Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006A93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 006A93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D7A2CA74B316C4FD5CA8356BBFD7F311B65E2C57
   |texte=   Current computational modelling trends in craniomandibular biomechanics and their clinical implications
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022