Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compound co-occurrence and biosynthetic inference

Identifieur interne : 006973 ( Istex/Corpus ); précédent : 006972; suivant : 006974

Compound co-occurrence and biosynthetic inference

Auteurs : James E. Rodman

Source :

RBID : ISTEX:D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03

English descriptors

Abstract

Abstract: Zavarin suggested that co-occurrence of terpenoids in plants provides an indication of likely biosynthetic relationships when enzymatic and tracer results are unavailable to determine the matter. Zavarin's proposal is here evaluated with data from another class of secondary metabolites, the glucosinolates, where biosynthetic pathways are well known. Three datasets from taxa of Cakile and Streptanthus (Cruciferae) were analyzed statistically with SPSS programs. Pair-wise comparisons of compounds tested their assignment to one of three possible categories: related by one-carbon chain extension; related by cleavage of terminal methylthio-group to produce a double bond; or no close relationship. While one dataset showed a tendency for chain-extended compounds to correlate significantly, the data exhibited no strong indication overall that co-occurring compounds were any more likely to be biosynthetically linked than not. Furthermore, contrasting positive and negative correlations for biosynthetically related pairs indicated that co-occurrence did not track mechanisms of biosynthesis. Hence, compound co-occurrence by itself provides no clear guide to biosynthetic relationships. By analogy, similar results can be expected for other classes of diverse secondary metabolites such as flavonoids and terpenoids.

Url:
DOI: 10.1016/0305-1978(87)90013-5

Links to Exploration step

ISTEX:D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Compound co-occurrence and biosynthetic inference</title>
<author>
<name sortKey="Rodman, James E" sort="Rodman, James E" uniqKey="Rodman J" first="James E." last="Rodman">James E. Rodman</name>
<affiliation>
<mods:affiliation>Systematic Biology Program, National Science Foundation, Washington, DC 20550, U.S.A.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03</idno>
<date when="1987" year="1987">1987</date>
<idno type="doi">10.1016/0305-1978(87)90013-5</idno>
<idno type="url">https://api.istex.fr/document/D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006973</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006973</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Compound co-occurrence and biosynthetic inference</title>
<author>
<name sortKey="Rodman, James E" sort="Rodman, James E" uniqKey="Rodman J" first="James E." last="Rodman">James E. Rodman</name>
<affiliation>
<mods:affiliation>Systematic Biology Program, National Science Foundation, Washington, DC 20550, U.S.A.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biochemical Systematics and Ecology</title>
<title level="j" type="abbrev">BSE</title>
<idno type="ISSN">0305-1978</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1987">1987</date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="365">365</biblScope>
<biblScope unit="page" to="372">372</biblScope>
</imprint>
<idno type="ISSN">0305-1978</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-1978</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Allyl</term>
<term>Allylglucosinolate composition</term>
<term>Artificial hybrids</term>
<term>Biosynthesis</term>
<term>Biosynthetic</term>
<term>Biosynthetic linkage</term>
<term>Biosynthetic linkages</term>
<term>Biosynthetic pathways</term>
<term>Biosynthetic relationship</term>
<term>Biosynthetic relationships</term>
<term>Biosynthetically</term>
<term>Cakile</term>
<term>Carrot cultivars</term>
<term>Chain extension</term>
<term>Compound</term>
<term>Correlated</term>
<term>Correlated compounds</term>
<term>Correlated pairs</term>
<term>Correlation analyses</term>
<term>Dataset</term>
<term>Double bond</term>
<term>Double bond formation</term>
<term>First dataset</term>
<term>Genus cakile</term>
<term>Geographic range</term>
<term>Glucosinolates</term>
<term>Hybrid</term>
<term>Independent evidence</term>
<term>Linkage</term>
<term>Myrcene content</term>
<term>Negative correlation</term>
<term>Negative correlations</term>
<term>Negative regression</term>
<term>Other classes</term>
<term>Pairwise combinations</term>
<term>Percentage composition data</term>
<term>Positive correlation</term>
<term>Positive regression</term>
<term>Possible categories</term>
<term>Possible pairwise combinations</term>
<term>Proportional relationship</term>
<term>Random distribution</term>
<term>Rodman</term>
<term>Rodman table</term>
<term>Same biosynthetic reaction sequence</term>
<term>Second dataset</term>
<term>Secondary metabolites</term>
<term>Significant chain</term>
<term>Significant correlations</term>
<term>Spurious correlations</term>
<term>Substitutional relationship</term>
<term>Taxon</term>
<term>Terpenoids</term>
<term>Zavarin</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Allyl</term>
<term>Allylglucosinolate composition</term>
<term>Artificial hybrids</term>
<term>Biosynthesis</term>
<term>Biosynthetic</term>
<term>Biosynthetic linkage</term>
<term>Biosynthetic linkages</term>
<term>Biosynthetic pathways</term>
<term>Biosynthetic relationship</term>
<term>Biosynthetic relationships</term>
<term>Biosynthetically</term>
<term>Cakile</term>
<term>Carrot cultivars</term>
<term>Chain extension</term>
<term>Compound</term>
<term>Correlated</term>
<term>Correlated compounds</term>
<term>Correlated pairs</term>
<term>Correlation analyses</term>
<term>Dataset</term>
<term>Double bond</term>
<term>Double bond formation</term>
<term>First dataset</term>
<term>Genus cakile</term>
<term>Geographic range</term>
<term>Glucosinolates</term>
<term>Hybrid</term>
<term>Independent evidence</term>
<term>Linkage</term>
<term>Myrcene content</term>
<term>Negative correlation</term>
<term>Negative correlations</term>
<term>Negative regression</term>
<term>Other classes</term>
<term>Pairwise combinations</term>
<term>Percentage composition data</term>
<term>Positive correlation</term>
<term>Positive regression</term>
<term>Possible categories</term>
<term>Possible pairwise combinations</term>
<term>Proportional relationship</term>
<term>Random distribution</term>
<term>Rodman</term>
<term>Rodman table</term>
<term>Same biosynthetic reaction sequence</term>
<term>Second dataset</term>
<term>Secondary metabolites</term>
<term>Significant chain</term>
<term>Significant correlations</term>
<term>Spurious correlations</term>
<term>Substitutional relationship</term>
<term>Taxon</term>
<term>Terpenoids</term>
<term>Zavarin</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Zavarin suggested that co-occurrence of terpenoids in plants provides an indication of likely biosynthetic relationships when enzymatic and tracer results are unavailable to determine the matter. Zavarin's proposal is here evaluated with data from another class of secondary metabolites, the glucosinolates, where biosynthetic pathways are well known. Three datasets from taxa of Cakile and Streptanthus (Cruciferae) were analyzed statistically with SPSS programs. Pair-wise comparisons of compounds tested their assignment to one of three possible categories: related by one-carbon chain extension; related by cleavage of terminal methylthio-group to produce a double bond; or no close relationship. While one dataset showed a tendency for chain-extended compounds to correlate significantly, the data exhibited no strong indication overall that co-occurring compounds were any more likely to be biosynthetically linked than not. Furthermore, contrasting positive and negative correlations for biosynthetically related pairs indicated that co-occurrence did not track mechanisms of biosynthesis. Hence, compound co-occurrence by itself provides no clear guide to biosynthetic relationships. By analogy, similar results can be expected for other classes of diverse secondary metabolites such as flavonoids and terpenoids.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>dataset</json:string>
<json:string>biosynthetic</json:string>
<json:string>glucosinolates</json:string>
<json:string>biosynthetically</json:string>
<json:string>zavarin</json:string>
<json:string>taxon</json:string>
<json:string>biosynthesis</json:string>
<json:string>rodman</json:string>
<json:string>double bond</json:string>
<json:string>allyl</json:string>
<json:string>correlated compounds</json:string>
<json:string>terpenoids</json:string>
<json:string>chain extension</json:string>
<json:string>cakile</json:string>
<json:string>artificial hybrids</json:string>
<json:string>proportional relationship</json:string>
<json:string>biosynthetic linkage</json:string>
<json:string>negative correlations</json:string>
<json:string>significant chain</json:string>
<json:string>hybrid</json:string>
<json:string>biosynthetic pathways</json:string>
<json:string>other classes</json:string>
<json:string>first dataset</json:string>
<json:string>positive regression</json:string>
<json:string>correlated pairs</json:string>
<json:string>secondary metabolites</json:string>
<json:string>spurious correlations</json:string>
<json:string>second dataset</json:string>
<json:string>biosynthetic linkages</json:string>
<json:string>correlated</json:string>
<json:string>linkage</json:string>
<json:string>compound</json:string>
<json:string>biosynthetic relationships</json:string>
<json:string>possible categories</json:string>
<json:string>biosynthetic relationship</json:string>
<json:string>possible pairwise combinations</json:string>
<json:string>myrcene content</json:string>
<json:string>pairwise combinations</json:string>
<json:string>double bond formation</json:string>
<json:string>random distribution</json:string>
<json:string>negative correlation</json:string>
<json:string>positive correlation</json:string>
<json:string>significant correlations</json:string>
<json:string>independent evidence</json:string>
<json:string>correlation analyses</json:string>
<json:string>genus cakile</json:string>
<json:string>geographic range</json:string>
<json:string>rodman table</json:string>
<json:string>substitutional relationship</json:string>
<json:string>negative regression</json:string>
<json:string>allylglucosinolate composition</json:string>
<json:string>percentage composition data</json:string>
<json:string>same biosynthetic reaction sequence</json:string>
<json:string>carrot cultivars</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>James E. Rodman</name>
<affiliations>
<json:string>Systematic Biology Program, National Science Foundation, Washington, DC 20550, U.S.A.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Terpenoids</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>glucosinolates</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>co-occurrence</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biosynthesis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>correlation analyses</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-B7KXB65P-M</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Zavarin suggested that co-occurrence of terpenoids in plants provides an indication of likely biosynthetic relationships when enzymatic and tracer results are unavailable to determine the matter. Zavarin's proposal is here evaluated with data from another class of secondary metabolites, the glucosinolates, where biosynthetic pathways are well known. Three datasets from taxa of Cakile and Streptanthus (Cruciferae) were analyzed statistically with SPSS programs. Pair-wise comparisons of compounds tested their assignment to one of three possible categories: related by one-carbon chain extension; related by cleavage of terminal methylthio-group to produce a double bond; or no close relationship. While one dataset showed a tendency for chain-extended compounds to correlate significantly, the data exhibited no strong indication overall that co-occurring compounds were any more likely to be biosynthetically linked than not. Furthermore, contrasting positive and negative correlations for biosynthetically related pairs indicated that co-occurrence did not track mechanisms of biosynthesis. Hence, compound co-occurrence by itself provides no clear guide to biosynthetic relationships. By analogy, similar results can be expected for other classes of diverse secondary metabolites such as flavonoids and terpenoids.</abstract>
<qualityIndicators>
<score>6.915</score>
<pdfWordCount>2779</pdfWordCount>
<pdfCharCount>21012</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>504 x 684 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>178</abstractWordCount>
<abstractCharCount>1331</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Compound co-occurrence and biosynthetic inference</title>
<pii>
<json:string>0305-1978(87)90013-5</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemical Systematics and Ecology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1987</publicationDate>
<issn>
<json:string>0305-1978</json:string>
</issn>
<pii>
<json:string>S0305-1978(00)X0074-9</json:string>
</pii>
<volume>15</volume>
<issue>3</issue>
<pages>
<first>365</first>
<last>372</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1987</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>National Science Foundation, Washington, DC</json:string>
<json:string>COMPOUND CO</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Martin Ettlinger</json:string>
<json:string>W. Dennis</json:string>
<json:string>Irving</json:string>
<json:string>Von Rudloff</json:string>
<json:string>Adams</json:string>
<json:string>Zavarin</json:string>
<json:string>White</json:string>
</persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[4]</json:string>
<json:string>[23]</json:string>
<json:string>[6]</json:string>
<json:string>[10, 11]</json:string>
<json:string>[8]</json:string>
<json:string>[1]</json:string>
<json:string>[21]</json:string>
<json:string>[1 ]</json:string>
<json:string>[20]</json:string>
<json:string>[5, 6]</json:string>
<json:string>[5]</json:string>
<json:string>[7]</json:string>
<json:string>[14]</json:string>
<json:string>[9]</json:string>
<json:string>[24]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-B7KXB65P-M</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - evolutionary biology</json:string>
<json:string>2 - ecology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - plant biology & botany</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Ecology, Evolution, Behavior and Systematics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - vertebres: anatomie et physiologie, organisme dans son ensemble ou etude de plusieurs organes ou systemes</json:string>
</inist>
</categories>
<publicationDate>1987</publicationDate>
<copyrightDate>1987</copyrightDate>
<doi>
<json:string>10.1016/0305-1978(87)90013-5</json:string>
</doi>
<id>D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Compound co-occurrence and biosynthetic inference</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1987</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Compound co-occurrence and biosynthetic inference</title>
<author xml:id="author-0000">
<persName>
<forename type="first">James E.</forename>
<surname>Rodman</surname>
</persName>
<affiliation>Systematic Biology Program, National Science Foundation, Washington, DC 20550, U.S.A.</affiliation>
</author>
<idno type="istex">D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03</idno>
<idno type="DOI">10.1016/0305-1978(87)90013-5</idno>
<idno type="PII">0305-1978(87)90013-5</idno>
</analytic>
<monogr>
<title level="j">Biochemical Systematics and Ecology</title>
<title level="j" type="abbrev">BSE</title>
<idno type="pISSN">0305-1978</idno>
<idno type="PII">S0305-1978(00)X0074-9</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1987"></date>
<biblScope unit="volume">15</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="365">365</biblScope>
<biblScope unit="page" to="372">372</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1987</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Zavarin suggested that co-occurrence of terpenoids in plants provides an indication of likely biosynthetic relationships when enzymatic and tracer results are unavailable to determine the matter. Zavarin's proposal is here evaluated with data from another class of secondary metabolites, the glucosinolates, where biosynthetic pathways are well known. Three datasets from taxa of Cakile and Streptanthus (Cruciferae) were analyzed statistically with SPSS programs. Pair-wise comparisons of compounds tested their assignment to one of three possible categories: related by one-carbon chain extension; related by cleavage of terminal methylthio-group to produce a double bond; or no close relationship. While one dataset showed a tendency for chain-extended compounds to correlate significantly, the data exhibited no strong indication overall that co-occurring compounds were any more likely to be biosynthetically linked than not. Furthermore, contrasting positive and negative correlations for biosynthetically related pairs indicated that co-occurrence did not track mechanisms of biosynthesis. Hence, compound co-occurrence by itself provides no clear guide to biosynthetic relationships. By analogy, similar results can be expected for other classes of diverse secondary metabolites such as flavonoids and terpenoids.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Terpenoids</term>
</item>
<item>
<term>glucosinolates</term>
</item>
<item>
<term>co-occurrence</term>
</item>
<item>
<term>biosynthesis</term>
</item>
<item>
<term>correlation analyses</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1987">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>BSE</jid>
<aid>87900135</aid>
<ce:pii>0305-1978(87)90013-5</ce:pii>
<ce:doi>10.1016/0305-1978(87)90013-5</ce:doi>
<ce:copyright type="unknown" year="1987"></ce:copyright>
</item-info>
<head>
<ce:title>Compound co-occurrence and biosynthetic inference</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>James E.</ce:given-name>
<ce:surname>Rodman</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Systematic Biology Program, National Science Foundation, Washington, DC 20550, U.S.A.</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="18" month="7" year="1986"></ce:date-received>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Zavarin suggested that co-occurrence of terpenoids in plants provides an indication of likely biosynthetic relationships when enzymatic and tracer results are unavailable to determine the matter. Zavarin's proposal is here evaluated with data from another class of secondary metabolites, the glucosinolates, where biosynthetic pathways are well known. Three datasets from taxa of
<ce:italic>Cakile</ce:italic>
and
<ce:italic>Streptanthus</ce:italic>
(Cruciferae) were analyzed statistically with SPSS programs. Pair-wise comparisons of compounds tested their assignment to one of three possible categories: related by one-carbon chain extension; related by cleavage of terminal methylthio-group to produce a double bond; or no close relationship. While one dataset showed a tendency for chain-extended compounds to correlate significantly, the data exhibited no strong indication overall that co-occurring compounds were any more likely to be biosynthetically linked than not. Furthermore, contrasting positive and negative correlations for biosynthetically related pairs indicated that co-occurrence did not track mechanisms of biosynthesis. Hence, compound co-occurrence by itself provides no clear guide to biosynthetic relationships. By analogy, similar results can be expected for other classes of diverse secondary metabolites such as flavonoids and terpenoids.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Terpenoids</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>glucosinolates</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>co-occurrence</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>biosynthesis</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>correlation analyses</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Compound co-occurrence and biosynthetic inference</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Compound co-occurrence and biosynthetic inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">James E.</namePart>
<namePart type="family">Rodman</namePart>
<affiliation>Systematic Biology Program, National Science Foundation, Washington, DC 20550, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1987</dateIssued>
<copyrightDate encoding="w3cdtf">1987</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Zavarin suggested that co-occurrence of terpenoids in plants provides an indication of likely biosynthetic relationships when enzymatic and tracer results are unavailable to determine the matter. Zavarin's proposal is here evaluated with data from another class of secondary metabolites, the glucosinolates, where biosynthetic pathways are well known. Three datasets from taxa of Cakile and Streptanthus (Cruciferae) were analyzed statistically with SPSS programs. Pair-wise comparisons of compounds tested their assignment to one of three possible categories: related by one-carbon chain extension; related by cleavage of terminal methylthio-group to produce a double bond; or no close relationship. While one dataset showed a tendency for chain-extended compounds to correlate significantly, the data exhibited no strong indication overall that co-occurring compounds were any more likely to be biosynthetically linked than not. Furthermore, contrasting positive and negative correlations for biosynthetically related pairs indicated that co-occurrence did not track mechanisms of biosynthesis. Hence, compound co-occurrence by itself provides no clear guide to biosynthetic relationships. By analogy, similar results can be expected for other classes of diverse secondary metabolites such as flavonoids and terpenoids.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Terpenoids</topic>
<topic>glucosinolates</topic>
<topic>co-occurrence</topic>
<topic>biosynthesis</topic>
<topic>correlation analyses</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biochemical Systematics and Ecology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>BSE</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19870522</dateIssued>
</originInfo>
<identifier type="ISSN">0305-1978</identifier>
<identifier type="PII">S0305-1978(00)X0074-9</identifier>
<part>
<date>19870522</date>
<detail type="volume">
<number>15</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>289</start>
<end>387</end>
</extent>
<extent unit="pages">
<start>365</start>
<end>372</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03</identifier>
<identifier type="ark">ark:/67375/6H6-B7KXB65P-M</identifier>
<identifier type="DOI">10.1016/0305-1978(87)90013-5</identifier>
<identifier type="PII">0305-1978(87)90013-5</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006973 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 006973 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D4980FBEBE37A6AA4C7AA4153C75CFF736CA1F03
   |texte=   Compound co-occurrence and biosynthetic inference
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022