Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis

Identifieur interne : 006348 ( Istex/Corpus ); précédent : 006347; suivant : 006349

Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis

Auteurs : Jyrki Vuola ; Ritva Taurio ; Harry Göransson ; Sirpa Asko-Seljavaara

Source :

RBID : ISTEX:C81697907C1DA503062F5B23093DE7794310D353

English descriptors

Abstract

Abstract: Natural coral and structurally similar porous hydroxyapatite (HA) have been used as bone substitutes. They are not osteoinductive but bone formation can be induced by marrow cells, even in extraosseal sites. In our previous study we induced bone formation in porous coral and HA after having implanted the materials in intramuscular pockets in rat. New bone formed only in HA or coral implants soaked with marrow cells; fibrous tissue ingrowth alone was observed in the controls (without marrow). In the present study we examined the effect of tissue ingrowth on the mechanical properties of coral and HA implants obtained in a similar process to that used before. At 12 weeks the compressive strength of HA was higher in the marrow group than in the controls; it was also higher than that of the wet unimplanted material. The HA blocks did not show resorption. Coral resorbed quickly and lost its compressive strength, which was originally higher than in HA. At three weeks the marrow group was stronger than the control specimens. After six weeks only the marrow group, but not the controls, could be tested. Bone ingrowth seemed to maintain the strength of the coral implant even if it was dissolving. The mechanical strength of both materials was comparable to that of cancellous bone.

Url:
DOI: 10.1016/S0142-9612(97)00211-1

Links to Exploration step

ISTEX:C81697907C1DA503062F5B23093DE7794310D353

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
<author>
<name sortKey="Vuola, Jyrki" sort="Vuola, Jyrki" uniqKey="Vuola J" first="Jyrki" last="Vuola">Jyrki Vuola</name>
<affiliation>
<mods:affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taurio, Ritva" sort="Taurio, Ritva" uniqKey="Taurio R" first="Ritva" last="Taurio">Ritva Taurio</name>
<affiliation>
<mods:affiliation>Tampere University of Technology, Institute of Plastics Technology, Tampere, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goransson, Harry" sort="Goransson, Harry" uniqKey="Goransson H" first="Harry" last="Göransson">Harry Göransson</name>
<affiliation>
<mods:affiliation>ORTON, Orthopaedic Hospital of Invalid Foundation, Helsinki Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Asko Seljavaara, Sirpa" sort="Asko Seljavaara, Sirpa" uniqKey="Asko Seljavaara S" first="Sirpa" last="Asko-Seljavaara">Sirpa Asko-Seljavaara</name>
<affiliation>
<mods:affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C81697907C1DA503062F5B23093DE7794310D353</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0142-9612(97)00211-1</idno>
<idno type="url">https://api.istex.fr/document/C81697907C1DA503062F5B23093DE7794310D353/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">006348</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">006348</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
<author>
<name sortKey="Vuola, Jyrki" sort="Vuola, Jyrki" uniqKey="Vuola J" first="Jyrki" last="Vuola">Jyrki Vuola</name>
<affiliation>
<mods:affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taurio, Ritva" sort="Taurio, Ritva" uniqKey="Taurio R" first="Ritva" last="Taurio">Ritva Taurio</name>
<affiliation>
<mods:affiliation>Tampere University of Technology, Institute of Plastics Technology, Tampere, Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Goransson, Harry" sort="Goransson, Harry" uniqKey="Goransson H" first="Harry" last="Göransson">Harry Göransson</name>
<affiliation>
<mods:affiliation>ORTON, Orthopaedic Hospital of Invalid Foundation, Helsinki Finland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Asko Seljavaara, Sirpa" sort="Asko Seljavaara, Sirpa" uniqKey="Asko Seljavaara S" first="Sirpa" last="Asko-Seljavaara">Sirpa Asko-Seljavaara</name>
<affiliation>
<mods:affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biomaterials</title>
<title level="j" type="abbrev">JBMT</title>
<idno type="ISSN">0142-9612</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">1–3</biblScope>
<biblScope unit="page" from="223">223</biblScope>
<biblScope unit="page" to="227">227</biblScope>
</imprint>
<idno type="ISSN">0142-9612</idno>
</series>
<idno type="istex">C81697907C1DA503062F5B23093DE7794310D353</idno>
<idno type="DOI">10.1016/S0142-9612(97)00211-1</idno>
<idno type="PII">S0142-9612(97)00211-1</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0142-9612</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autogenous bone marrow</term>
<term>Biomaterials</term>
<term>Biomed mater</term>
<term>Bone area</term>
<term>Bone formation</term>
<term>Bone graft substitute</term>
<term>Bone ingrowth</term>
<term>Bone marrow</term>
<term>Bone substitute</term>
<term>Bone substitutes</term>
<term>Bone tissue</term>
<term>Brous tissue</term>
<term>Brous tissue ingrowth</term>
<term>Cancellous bone</term>
<term>Clin orthop</term>
<term>Compressive</term>
<term>Compressive strength</term>
<term>Compressive test results</term>
<term>Control groups</term>
<term>Control implants</term>
<term>Coral</term>
<term>Coral blocks</term>
<term>Coral implants</term>
<term>Cortical bone</term>
<term>Direct contact</term>
<term>Elsevier science</term>
<term>Extraosseal sites</term>
<term>Graft</term>
<term>Helsinki university</term>
<term>Higher strength values</term>
<term>Hydroxyapatite</term>
<term>Implant</term>
<term>Ingrowth</term>
<term>Marrow</term>
<term>Marrow cells</term>
<term>Marrow group</term>
<term>Matrix resorbs</term>
<term>Mechanical properties</term>
<term>Mechanical strength</term>
<term>Modulus</term>
<term>Plast reconstr surg</term>
<term>Pore</term>
<term>Pore size</term>
<term>Porous area</term>
<term>Porous hydroxyapatite</term>
<term>Porous space</term>
<term>Present study</term>
<term>Previous study</term>
<term>Resorption</term>
<term>Soft tissue</term>
<term>Tissue ingrowth</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Autogenous bone marrow</term>
<term>Biomaterials</term>
<term>Biomed mater</term>
<term>Bone area</term>
<term>Bone formation</term>
<term>Bone graft substitute</term>
<term>Bone ingrowth</term>
<term>Bone marrow</term>
<term>Bone substitute</term>
<term>Bone substitutes</term>
<term>Bone tissue</term>
<term>Brous tissue</term>
<term>Brous tissue ingrowth</term>
<term>Cancellous bone</term>
<term>Clin orthop</term>
<term>Compressive</term>
<term>Compressive strength</term>
<term>Compressive test results</term>
<term>Control groups</term>
<term>Control implants</term>
<term>Coral</term>
<term>Coral blocks</term>
<term>Coral implants</term>
<term>Cortical bone</term>
<term>Direct contact</term>
<term>Elsevier science</term>
<term>Extraosseal sites</term>
<term>Graft</term>
<term>Helsinki university</term>
<term>Higher strength values</term>
<term>Hydroxyapatite</term>
<term>Implant</term>
<term>Ingrowth</term>
<term>Marrow</term>
<term>Marrow cells</term>
<term>Marrow group</term>
<term>Matrix resorbs</term>
<term>Mechanical properties</term>
<term>Mechanical strength</term>
<term>Modulus</term>
<term>Plast reconstr surg</term>
<term>Pore</term>
<term>Pore size</term>
<term>Porous area</term>
<term>Porous hydroxyapatite</term>
<term>Porous space</term>
<term>Present study</term>
<term>Previous study</term>
<term>Resorption</term>
<term>Soft tissue</term>
<term>Tissue ingrowth</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Natural coral and structurally similar porous hydroxyapatite (HA) have been used as bone substitutes. They are not osteoinductive but bone formation can be induced by marrow cells, even in extraosseal sites. In our previous study we induced bone formation in porous coral and HA after having implanted the materials in intramuscular pockets in rat. New bone formed only in HA or coral implants soaked with marrow cells; fibrous tissue ingrowth alone was observed in the controls (without marrow). In the present study we examined the effect of tissue ingrowth on the mechanical properties of coral and HA implants obtained in a similar process to that used before. At 12 weeks the compressive strength of HA was higher in the marrow group than in the controls; it was also higher than that of the wet unimplanted material. The HA blocks did not show resorption. Coral resorbed quickly and lost its compressive strength, which was originally higher than in HA. At three weeks the marrow group was stronger than the control specimens. After six weeks only the marrow group, but not the controls, could be tested. Bone ingrowth seemed to maintain the strength of the coral implant even if it was dissolving. The mechanical strength of both materials was comparable to that of cancellous bone.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>compressive strength</json:string>
<json:string>ingrowth</json:string>
<json:string>hydroxyapatite</json:string>
<json:string>modulus</json:string>
<json:string>implant</json:string>
<json:string>bone ingrowth</json:string>
<json:string>biomaterials</json:string>
<json:string>resorption</json:string>
<json:string>marrow group</json:string>
<json:string>compressive</json:string>
<json:string>bone marrow</json:string>
<json:string>bone formation</json:string>
<json:string>tissue ingrowth</json:string>
<json:string>previous study</json:string>
<json:string>cancellous bone</json:string>
<json:string>mechanical properties</json:string>
<json:string>porous area</json:string>
<json:string>coral</json:string>
<json:string>graft</json:string>
<json:string>marrow</json:string>
<json:string>coral implants</json:string>
<json:string>porous hydroxyapatite</json:string>
<json:string>direct contact</json:string>
<json:string>marrow cells</json:string>
<json:string>pore size</json:string>
<json:string>brous tissue ingrowth</json:string>
<json:string>control implants</json:string>
<json:string>mechanical strength</json:string>
<json:string>brous tissue</json:string>
<json:string>plast reconstr surg</json:string>
<json:string>biomed mater</json:string>
<json:string>autogenous bone marrow</json:string>
<json:string>bone substitutes</json:string>
<json:string>control groups</json:string>
<json:string>helsinki university</json:string>
<json:string>higher strength values</json:string>
<json:string>coral blocks</json:string>
<json:string>compressive test results</json:string>
<json:string>bone area</json:string>
<json:string>extraosseal sites</json:string>
<json:string>cortical bone</json:string>
<json:string>porous space</json:string>
<json:string>soft tissue</json:string>
<json:string>matrix resorbs</json:string>
<json:string>bone tissue</json:string>
<json:string>present study</json:string>
<json:string>bone substitute</json:string>
<json:string>bone graft substitute</json:string>
<json:string>elsevier science</json:string>
<json:string>clin orthop</json:string>
<json:string>pore</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jyrki Vuola</name>
<affiliations>
<json:string>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ritva Taurio</name>
<affiliations>
<json:string>Tampere University of Technology, Institute of Plastics Technology, Tampere, Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Harry Göransson</name>
<affiliations>
<json:string>ORTON, Orthopaedic Hospital of Invalid Foundation, Helsinki Finland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sirpa Asko-Seljavaara</name>
<affiliations>
<json:string>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Coral</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Hydroxyapatite</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Compressive strength and modulus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Biodegradation</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-H660QJNH-Q</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Natural coral and structurally similar porous hydroxyapatite (HA) have been used as bone substitutes. They are not osteoinductive but bone formation can be induced by marrow cells, even in extraosseal sites. In our previous study we induced bone formation in porous coral and HA after having implanted the materials in intramuscular pockets in rat. New bone formed only in HA or coral implants soaked with marrow cells; fibrous tissue ingrowth alone was observed in the controls (without marrow). In the present study we examined the effect of tissue ingrowth on the mechanical properties of coral and HA implants obtained in a similar process to that used before. At 12 weeks the compressive strength of HA was higher in the marrow group than in the controls; it was also higher than that of the wet unimplanted material. The HA blocks did not show resorption. Coral resorbed quickly and lost its compressive strength, which was originally higher than in HA. At three weeks the marrow group was stronger than the control specimens. After six weeks only the marrow group, but not the controls, could be tested. Bone ingrowth seemed to maintain the strength of the coral implant even if it was dissolving. The mechanical strength of both materials was comparable to that of cancellous bone.</abstract>
<qualityIndicators>
<score>7.613</score>
<pdfWordCount>3045</pdfWordCount>
<pdfCharCount>18464</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>5</pdfPageCount>
<pdfPageSize>552 x 775 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>214</abstractWordCount>
<abstractCharCount>1299</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
<pmid>
<json:string>9678871</json:string>
</pmid>
<pii>
<json:string>S0142-9612(97)00211-1</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biomaterials</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1998</publicationDate>
<issn>
<json:string>0142-9612</json:string>
</issn>
<pii>
<json:string>S0142-9612(00)X0083-X</json:string>
</pii>
<volume>19</volume>
<issue>1–3</issue>
<pages>
<first>223</first>
<last>227</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1998</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Helsinki University</json:string>
<json:string>SAS Institute Inc</json:string>
<json:string>Elsevier Science Ltd.</json:string>
<json:string>JJ LLOYD INSTRUMENTS, Southampton, UK</json:string>
<json:string>INTERPORE INTERNATIONAL</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName>
<json:string>Finland</json:string>
<json:string>France</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Piecuch et al.</json:string>
<json:string>[12]</json:string>
<json:string>[23, 24]</json:string>
<json:string>[14, 18]</json:string>
<json:string>[11]</json:string>
<json:string>Piecuch et al. [11]</json:string>
<json:string>[8]</json:string>
<json:string>[9, 11]</json:string>
<json:string>[1]</json:string>
<json:string>[10]</json:string>
<json:string>Martin et al.</json:string>
<json:string>[16]</json:string>
<json:string>[3]</json:string>
<json:string>[13, 14]</json:string>
<json:string>[15]</json:string>
<json:string>Martin et al. [14]</json:string>
<json:string>Ohgushi et al. [15]</json:string>
<json:string>[25]</json:string>
<json:string>J. Vuola et al.</json:string>
<json:string>[9]</json:string>
<json:string>[2]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-H660QJNH-Q</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - materials science, biomaterials</json:string>
<json:string>2 - engineering, biomedical</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - engineering</json:string>
<json:string>3 - biomedical engineering</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Mechanics of Materials</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Biomaterials</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biophysics</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Ceramics and Composites</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Bioengineering</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0142-9612(97)00211-1</json:string>
</doi>
<id>C81697907C1DA503062F5B23093DE7794310D353</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C81697907C1DA503062F5B23093DE7794310D353/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C81697907C1DA503062F5B23093DE7794310D353/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C81697907C1DA503062F5B23093DE7794310D353/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1998</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
<author xml:id="author-1">
<persName>
<forename type="first">Jyrki</forename>
<surname>Vuola</surname>
</persName>
<note type="correspondence">
<p>Correspondence address: Topeliuksenkatu 5, FIN-00260, Helsinki, Finland. Tel: 358-9-4711; fax: +358-9-4717570; e-mail; jyrkivuola@helsinki.fi</p>
</note>
<affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</affiliation>
</author>
<author xml:id="author-2">
<persName>
<forename type="first">Ritva</forename>
<surname>Taurio</surname>
</persName>
<affiliation>Tampere University of Technology, Institute of Plastics Technology, Tampere, Finland</affiliation>
</author>
<author xml:id="author-3">
<persName>
<forename type="first">Harry</forename>
<surname>Göransson</surname>
</persName>
<affiliation>ORTON, Orthopaedic Hospital of Invalid Foundation, Helsinki Finland</affiliation>
</author>
<author xml:id="author-4">
<persName>
<forename type="first">Sirpa</forename>
<surname>Asko-Seljavaara</surname>
</persName>
<affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Biomaterials</title>
<title level="j" type="abbrev">JBMT</title>
<idno type="pISSN">0142-9612</idno>
<idno type="PII">S0142-9612(00)X0083-X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">19</biblScope>
<biblScope unit="issue">1–3</biblScope>
<biblScope unit="page" from="223">223</biblScope>
<biblScope unit="page" to="227">227</biblScope>
</imprint>
</monogr>
<idno type="istex">C81697907C1DA503062F5B23093DE7794310D353</idno>
<idno type="DOI">10.1016/S0142-9612(97)00211-1</idno>
<idno type="PII">S0142-9612(97)00211-1</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Natural coral and structurally similar porous hydroxyapatite (HA) have been used as bone substitutes. They are not osteoinductive but bone formation can be induced by marrow cells, even in extraosseal sites. In our previous study we induced bone formation in porous coral and HA after having implanted the materials in intramuscular pockets in rat. New bone formed only in HA or coral implants soaked with marrow cells; fibrous tissue ingrowth alone was observed in the controls (without marrow). In the present study we examined the effect of tissue ingrowth on the mechanical properties of coral and HA implants obtained in a similar process to that used before. At 12 weeks the compressive strength of HA was higher in the marrow group than in the controls; it was also higher than that of the wet unimplanted material. The HA blocks did not show resorption. Coral resorbed quickly and lost its compressive strength, which was originally higher than in HA. At three weeks the marrow group was stronger than the control specimens. After six weeks only the marrow group, but not the controls, could be tested. Bone ingrowth seemed to maintain the strength of the coral implant even if it was dissolving. The mechanical strength of both materials was comparable to that of cancellous bone.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Coral</term>
</item>
<item>
<term>Hydroxyapatite</term>
</item>
<item>
<term>Compressive strength and modulus</term>
</item>
<item>
<term>Biodegradation</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1998">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2016-11-21">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-01-16">References added</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-10-1">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C81697907C1DA503062F5B23093DE7794310D353/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier converted-article found">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>JBMT</jid>
<aid>798</aid>
<ce:pii>S0142-9612(97)00211-1</ce:pii>
<ce:doi>10.1016/S0142-9612(97)00211-1</ce:doi>
<ce:copyright type="unknown" year="1998"></ce:copyright>
</item-info>
<head>
<ce:title>Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Jyrki</ce:given-name>
<ce:surname>Vuola</ce:surname>
<ce:cross-ref refid="ORFA">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Ritva</ce:given-name>
<ce:surname>Taurio</ce:surname>
<ce:cross-ref refid="ORFB">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Harry</ce:given-name>
<ce:surname>Göransson</ce:surname>
<ce:cross-ref refid="ORFC">
<ce:sup>c</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Sirpa</ce:given-name>
<ce:surname>Asko-Seljavaara</ce:surname>
<ce:cross-ref refid="ORFA">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="ORFA">
<ce:label>a</ce:label>
<ce:textfn>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</ce:textfn>
</ce:affiliation>
<ce:affiliation id="ORFB">
<ce:label>b</ce:label>
<ce:textfn>Tampere University of Technology, Institute of Plastics Technology, Tampere, Finland</ce:textfn>
</ce:affiliation>
<ce:affiliation id="ORFC">
<ce:label>c</ce:label>
<ce:textfn>ORTON, Orthopaedic Hospital of Invalid Foundation, Helsinki Finland</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Correspondence address: Topeliuksenkatu 5, FIN-00260, Helsinki, Finland. Tel: 358-9-4711; fax: +358-9-4717570; e-mail; jyrkivuola@helsinki.fi</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="10" month="4" year="1997"></ce:date-received>
<ce:date-accepted day="10" month="10" year="1997"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Natural coral and structurally similar porous hydroxyapatite (HA) have been used as bone substitutes. They are not osteoinductive but bone formation can be induced by marrow cells, even in extraosseal sites. In our previous study we induced bone formation in porous coral and HA after having implanted the materials in intramuscular pockets in rat. New bone formed only in HA or coral implants soaked with marrow cells; fibrous tissue ingrowth alone was observed in the controls (without marrow).</ce:simple-para>
<ce:simple-para>In the present study we examined the effect of tissue ingrowth on the mechanical properties of coral and HA implants obtained in a similar process to that used before. At 12 weeks the compressive strength of HA was higher in the marrow group than in the controls; it was also higher than that of the wet unimplanted material.</ce:simple-para>
<ce:simple-para>The HA blocks did not show resorption. Coral resorbed quickly and lost its compressive strength, which was originally higher than in HA. At three weeks the marrow group was stronger than the control specimens. After six weeks only the marrow group, but not the controls, could be tested. Bone ingrowth seemed to maintain the strength of the coral implant even if it was dissolving. The mechanical strength of both materials was comparable to that of cancellous bone.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Coral</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Hydroxyapatite</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Compressive strength and modulus</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Biodegradation</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jyrki</namePart>
<namePart type="family">Vuola</namePart>
<affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</affiliation>
<description>Correspondence address: Topeliuksenkatu 5, FIN-00260, Helsinki, Finland. Tel: 358-9-4711; fax: +358-9-4717570; e-mail; jyrkivuola@helsinki.fi</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ritva</namePart>
<namePart type="family">Taurio</namePart>
<affiliation>Tampere University of Technology, Institute of Plastics Technology, Tampere, Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harry</namePart>
<namePart type="family">Göransson</namePart>
<affiliation>ORTON, Orthopaedic Hospital of Invalid Foundation, Helsinki Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sirpa</namePart>
<namePart type="family">Asko-Seljavaara</namePart>
<affiliation>Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Natural coral and structurally similar porous hydroxyapatite (HA) have been used as bone substitutes. They are not osteoinductive but bone formation can be induced by marrow cells, even in extraosseal sites. In our previous study we induced bone formation in porous coral and HA after having implanted the materials in intramuscular pockets in rat. New bone formed only in HA or coral implants soaked with marrow cells; fibrous tissue ingrowth alone was observed in the controls (without marrow). In the present study we examined the effect of tissue ingrowth on the mechanical properties of coral and HA implants obtained in a similar process to that used before. At 12 weeks the compressive strength of HA was higher in the marrow group than in the controls; it was also higher than that of the wet unimplanted material. The HA blocks did not show resorption. Coral resorbed quickly and lost its compressive strength, which was originally higher than in HA. At three weeks the marrow group was stronger than the control specimens. After six weeks only the marrow group, but not the controls, could be tested. Bone ingrowth seemed to maintain the strength of the coral implant even if it was dissolving. The mechanical strength of both materials was comparable to that of cancellous bone.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Coral</topic>
<topic>Hydroxyapatite</topic>
<topic>Compressive strength and modulus</topic>
<topic>Biodegradation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biomaterials</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>JBMT</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">199801</dateIssued>
</originInfo>
<identifier type="ISSN">0142-9612</identifier>
<identifier type="PII">S0142-9612(00)X0083-X</identifier>
<part>
<date>199801</date>
<detail type="volume">
<number>19</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>1–3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>1</start>
<end>300</end>
</extent>
<extent unit="pages">
<start>223</start>
<end>227</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">C81697907C1DA503062F5B23093DE7794310D353</identifier>
<identifier type="ark">ark:/67375/6H6-H660QJNH-Q</identifier>
<identifier type="DOI">10.1016/S0142-9612(97)00211-1</identifier>
<identifier type="PII">S0142-9612(97)00211-1</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/C81697907C1DA503062F5B23093DE7794310D353/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006348 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 006348 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C81697907C1DA503062F5B23093DE7794310D353
   |texte=   Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022