Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating

Identifieur interne : 005D72 ( Istex/Corpus ); précédent : 005D71; suivant : 005D73

Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating

Auteurs : Heinz-Dieter Kurland ; Christian Stötzel ; Janet Grabow ; Ingmar Zink ; Eberhard Müller ; Gisbert Staupendahl ; Frank A. Müller

Source :

RBID : ISTEX:BC3A423B62BD0B1898FA63912D622F6031D3A51F

English descriptors

Abstract

The CO2 laser vaporization (LAVA) method was used to prepare titania nanopowders. Because this versatile method does not require special precursors, a coarse anatase raw powder was applied as starting material. Powder samples produced under varied process parameters were characterized by transmission electron microscopy (TEM), X‐ray diffraction measurements, and Brunauer–Emmett–Teller surface area measurements. The laser‐generated powders consist of spherical, single crystalline and pure anatase nanoparticles, merely softly agglomerated by weak van der Waals forces. Using TEM analysis, the influence of the process parameters on the resulting particle size distribution was investigated. The results are discussed with respect to the particle formation by gas phase condensation. The potential of a process integrated, i.e. in situ, coating procedure for the surface modification of the anatase nanoparticles is demonstrated. As an exemplary representative of organic layer materials stearic acid was chosen. The organic coating was characterized by TEM and Raman spectrometry. Because of the unavoidable soft agglomeration the coating covers entire agglomerates rather than individual primary particles. Thus, the influence of the LAVA process parameters on the agglomerate sizes was systematically studied using a scanning mobility particle sizer.

Url:
DOI: 10.1111/j.1551-2916.2009.03589.x

Links to Exploration step

ISTEX:BC3A423B62BD0B1898FA63912D622F6031D3A51F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating</title>
<author>
<name sortKey="Kurland, Heinz Ieter" sort="Kurland, Heinz Ieter" uniqKey="Kurland H" first="Heinz-Dieter" last="Kurland">Heinz-Dieter Kurland</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: h.d.kurland@gmx.net</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stotzel, Christian" sort="Stotzel, Christian" uniqKey="Stotzel C" first="Christian" last="Stötzel">Christian Stötzel</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grabow, Janet" sort="Grabow, Janet" uniqKey="Grabow J" first="Janet" last="Grabow">Janet Grabow</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zink, Ingmar" sort="Zink, Ingmar" uniqKey="Zink I" first="Ingmar" last="Zink">Ingmar Zink</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Eberhard" sort="Muller, Eberhard" uniqKey="Muller E" first="Eberhard" last="Müller">Eberhard Müller</name>
<affiliation>
<mods:affiliation>Institute of Electronic and Sensor Materials, Technical University Bergakademie Freiberg, Freiberg (Saxony) 09596, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Staupendahl, Gisbert" sort="Staupendahl, Gisbert" uniqKey="Staupendahl G" first="Gisbert" last="Staupendahl">Gisbert Staupendahl</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Frank A" sort="Muller, Frank A" uniqKey="Muller F" first="Frank A." last="Müller">Frank A. Müller</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:BC3A423B62BD0B1898FA63912D622F6031D3A51F</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1111/j.1551-2916.2009.03589.x</idno>
<idno type="url">https://api.istex.fr/document/BC3A423B62BD0B1898FA63912D622F6031D3A51F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005D72</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005D72</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Preparation of Spherical Titania Nanoparticles by CO
<hi rend="subscript">2</hi>
Laser Evaporation and Process‐Integrated Particle Coating</title>
<author>
<name sortKey="Kurland, Heinz Ieter" sort="Kurland, Heinz Ieter" uniqKey="Kurland H" first="Heinz-Dieter" last="Kurland">Heinz-Dieter Kurland</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: h.d.kurland@gmx.net</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stotzel, Christian" sort="Stotzel, Christian" uniqKey="Stotzel C" first="Christian" last="Stötzel">Christian Stötzel</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Grabow, Janet" sort="Grabow, Janet" uniqKey="Grabow J" first="Janet" last="Grabow">Janet Grabow</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zink, Ingmar" sort="Zink, Ingmar" uniqKey="Zink I" first="Ingmar" last="Zink">Ingmar Zink</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Eberhard" sort="Muller, Eberhard" uniqKey="Muller E" first="Eberhard" last="Müller">Eberhard Müller</name>
<affiliation>
<mods:affiliation>Institute of Electronic and Sensor Materials, Technical University Bergakademie Freiberg, Freiberg (Saxony) 09596, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Staupendahl, Gisbert" sort="Staupendahl, Gisbert" uniqKey="Staupendahl G" first="Gisbert" last="Staupendahl">Gisbert Staupendahl</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Muller, Frank A" sort="Muller, Frank A" uniqKey="Muller F" first="Frank A." last="Müller">Frank A. Müller</name>
<affiliation>
<mods:affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of the American Ceramic Society</title>
<title level="j" type="alt">JOURNAL OF AMERICAN CERAMIC SOCIETY</title>
<idno type="ISSN">0002-7820</idno>
<idno type="eISSN">1551-2916</idno>
<imprint>
<biblScope unit="vol">93</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1282">1282</biblScope>
<biblScope unit="page" to="1289">1289</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2010-05">2010-05</date>
</imprint>
<idno type="ISSN">0002-7820</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0002-7820</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Additive</term>
<term>Additive vapor</term>
<term>Aerosol</term>
<term>Aerosol particles</term>
<term>Agglomerate</term>
<term>Agglomerate sizes</term>
<term>Anatase</term>
<term>Anatase nanoparticles</term>
<term>Anatase particles</term>
<term>Apatite formation</term>
<term>Atmospheric pressure</term>
<term>Biomedical applications</term>
<term>Carboxylic acid</term>
<term>Chem</term>
<term>Coagulation</term>
<term>Condensation nuclei</term>
<term>Condensation particle counter</term>
<term>Condensation zone</term>
<term>Continuous laser radiation</term>
<term>Continuous radiation</term>
<term>Crystallite</term>
<term>Crystallite sizes</term>
<term>Density distributions</term>
<term>Diffraction measurements</term>
<term>Discrete values</term>
<term>Droplet</term>
<term>Equilibrium conditions</term>
<term>Evaporation</term>
<term>Evaporation rate</term>
<term>Evaporation zone</term>
<term>Flame spray pyrolysis</term>
<term>Gmbh</term>
<term>Grimm aerosol technik gmbh</term>
<term>Interaction zone</term>
<term>International gmbh</term>
<term>Laser</term>
<term>Laser ablation</term>
<term>Laser evaporation</term>
<term>Laser power</term>
<term>Laser pulse length</term>
<term>Laser radiation</term>
<term>Laser regime</term>
<term>Laser vaporization</term>
<term>Lava</term>
<term>Lava laboratory setup</term>
<term>Lava method</term>
<term>Lava process</term>
<term>Lava process parameters</term>
<term>Lower curve</term>
<term>Ltering unit</term>
<term>Magnetic iron oxide nanopowders</term>
<term>Mater</term>
<term>Materials research society</term>
<term>Materials science</term>
<term>Mobility diameter</term>
<term>Mobility diameter distributions</term>
<term>Mobility diameters</term>
<term>Nanoparticles</term>
<term>Nanopowder</term>
<term>Nanopowders</term>
<term>Nanoscaled particles</term>
<term>Nanoscaled powders</term>
<term>Nonaqueous solvents</term>
<term>Nucleation zone</term>
<term>Number basis</term>
<term>Optical properties</term>
<term>Organic layer</term>
<term>Organic layer materials</term>
<term>Organic solvents</term>
<term>Owing carrier</term>
<term>Particle</term>
<term>Particle aerosol</term>
<term>Particle coating</term>
<term>Particle diameter distributions</term>
<term>Particle diameters</term>
<term>Particle formation</term>
<term>Phase condensation</term>
<term>Powder samples</term>
<term>Primary particles</term>
<term>Process parameters</term>
<term>Pulse lengths</term>
<term>Raman spectrometry</term>
<term>Rapid quenching</term>
<term>Rate vadd</term>
<term>Rutile</term>
<term>Sample aerosol</term>
<term>Scanning mobility particle sizer</term>
<term>Shaker verlag</term>
<term>Sinter necks</term>
<term>Size distributions</term>
<term>Smaller agglomerates</term>
<term>Smps</term>
<term>Smps measurements</term>
<term>Soft agglomerates</term>
<term>Solar cells</term>
<term>Solar energy conversion</term>
<term>Spherical particles</term>
<term>Spherical shape</term>
<term>Standard deviations</term>
<term>Stearic</term>
<term>Stearic acid</term>
<term>Stretch bands</term>
<term>Surface areas</term>
<term>Surface condensation</term>
<term>Surface energy</term>
<term>Tio2</term>
<term>Tio2 nanoparticles</term>
<term>Tio2 particle aerosols</term>
<term>Tio2 particles</term>
<term>Tio2 powder</term>
<term>Titania</term>
<term>Titania nanoparticles</term>
<term>Titania nanopowders</term>
<term>Titania particles</term>
<term>Total range</term>
<term>Total volume</term>
<term>Transmission electron</term>
<term>Transmission electron microscopy</term>
<term>Upper curve</term>
<term>Vadd</term>
<term>Volume concentration</term>
<term>Waals forces</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Additive</term>
<term>Additive vapor</term>
<term>Aerosol</term>
<term>Aerosol particles</term>
<term>Agglomerate</term>
<term>Agglomerate sizes</term>
<term>Anatase</term>
<term>Anatase nanoparticles</term>
<term>Anatase particles</term>
<term>Apatite formation</term>
<term>Atmospheric pressure</term>
<term>Biomedical applications</term>
<term>Carboxylic acid</term>
<term>Chem</term>
<term>Coagulation</term>
<term>Condensation nuclei</term>
<term>Condensation particle counter</term>
<term>Condensation zone</term>
<term>Continuous laser radiation</term>
<term>Continuous radiation</term>
<term>Crystallite</term>
<term>Crystallite sizes</term>
<term>Density distributions</term>
<term>Diffraction measurements</term>
<term>Discrete values</term>
<term>Droplet</term>
<term>Equilibrium conditions</term>
<term>Evaporation</term>
<term>Evaporation rate</term>
<term>Evaporation zone</term>
<term>Flame spray pyrolysis</term>
<term>Gmbh</term>
<term>Grimm aerosol technik gmbh</term>
<term>Interaction zone</term>
<term>International gmbh</term>
<term>Laser</term>
<term>Laser ablation</term>
<term>Laser evaporation</term>
<term>Laser power</term>
<term>Laser pulse length</term>
<term>Laser radiation</term>
<term>Laser regime</term>
<term>Laser vaporization</term>
<term>Lava</term>
<term>Lava laboratory setup</term>
<term>Lava method</term>
<term>Lava process</term>
<term>Lava process parameters</term>
<term>Lower curve</term>
<term>Ltering unit</term>
<term>Magnetic iron oxide nanopowders</term>
<term>Mater</term>
<term>Materials research society</term>
<term>Materials science</term>
<term>Mobility diameter</term>
<term>Mobility diameter distributions</term>
<term>Mobility diameters</term>
<term>Nanoparticles</term>
<term>Nanopowder</term>
<term>Nanopowders</term>
<term>Nanoscaled particles</term>
<term>Nanoscaled powders</term>
<term>Nonaqueous solvents</term>
<term>Nucleation zone</term>
<term>Number basis</term>
<term>Optical properties</term>
<term>Organic layer</term>
<term>Organic layer materials</term>
<term>Organic solvents</term>
<term>Owing carrier</term>
<term>Particle</term>
<term>Particle aerosol</term>
<term>Particle coating</term>
<term>Particle diameter distributions</term>
<term>Particle diameters</term>
<term>Particle formation</term>
<term>Phase condensation</term>
<term>Powder samples</term>
<term>Primary particles</term>
<term>Process parameters</term>
<term>Pulse lengths</term>
<term>Raman spectrometry</term>
<term>Rapid quenching</term>
<term>Rate vadd</term>
<term>Rutile</term>
<term>Sample aerosol</term>
<term>Scanning mobility particle sizer</term>
<term>Shaker verlag</term>
<term>Sinter necks</term>
<term>Size distributions</term>
<term>Smaller agglomerates</term>
<term>Smps</term>
<term>Smps measurements</term>
<term>Soft agglomerates</term>
<term>Solar cells</term>
<term>Solar energy conversion</term>
<term>Spherical particles</term>
<term>Spherical shape</term>
<term>Standard deviations</term>
<term>Stearic</term>
<term>Stearic acid</term>
<term>Stretch bands</term>
<term>Surface areas</term>
<term>Surface condensation</term>
<term>Surface energy</term>
<term>Tio2</term>
<term>Tio2 nanoparticles</term>
<term>Tio2 particle aerosols</term>
<term>Tio2 particles</term>
<term>Tio2 powder</term>
<term>Titania</term>
<term>Titania nanoparticles</term>
<term>Titania nanopowders</term>
<term>Titania particles</term>
<term>Total range</term>
<term>Total volume</term>
<term>Transmission electron</term>
<term>Transmission electron microscopy</term>
<term>Upper curve</term>
<term>Vadd</term>
<term>Volume concentration</term>
<term>Waals forces</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The CO2 laser vaporization (LAVA) method was used to prepare titania nanopowders. Because this versatile method does not require special precursors, a coarse anatase raw powder was applied as starting material. Powder samples produced under varied process parameters were characterized by transmission electron microscopy (TEM), X‐ray diffraction measurements, and Brunauer–Emmett–Teller surface area measurements. The laser‐generated powders consist of spherical, single crystalline and pure anatase nanoparticles, merely softly agglomerated by weak van der Waals forces. Using TEM analysis, the influence of the process parameters on the resulting particle size distribution was investigated. The results are discussed with respect to the particle formation by gas phase condensation. The potential of a process integrated, i.e. in situ, coating procedure for the surface modification of the anatase nanoparticles is demonstrated. As an exemplary representative of organic layer materials stearic acid was chosen. The organic coating was characterized by TEM and Raman spectrometry. Because of the unavoidable soft agglomeration the coating covers entire agglomerates rather than individual primary particles. Thus, the influence of the LAVA process parameters on the agglomerate sizes was systematically studied using a scanning mobility particle sizer.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>laser</json:string>
<json:string>tio2</json:string>
<json:string>anatase</json:string>
<json:string>nanoparticles</json:string>
<json:string>titania</json:string>
<json:string>vadd</json:string>
<json:string>stearic</json:string>
<json:string>nanopowders</json:string>
<json:string>lava</json:string>
<json:string>laser evaporation</json:string>
<json:string>droplet</json:string>
<json:string>rutile</json:string>
<json:string>stearic acid</json:string>
<json:string>chem</json:string>
<json:string>gmbh</json:string>
<json:string>laser radiation</json:string>
<json:string>primary particles</json:string>
<json:string>smps</json:string>
<json:string>anatase nanoparticles</json:string>
<json:string>tio2 nanoparticles</json:string>
<json:string>nanopowder</json:string>
<json:string>coagulation</json:string>
<json:string>titania nanoparticles</json:string>
<json:string>evaporation</json:string>
<json:string>lava process</json:string>
<json:string>particle diameters</json:string>
<json:string>titania nanopowders</json:string>
<json:string>agglomerate</json:string>
<json:string>mobility diameter distributions</json:string>
<json:string>discrete values</json:string>
<json:string>evaporation zone</json:string>
<json:string>crystallite sizes</json:string>
<json:string>titania particles</json:string>
<json:string>crystallite</json:string>
<json:string>sample aerosol</json:string>
<json:string>laser regime</json:string>
<json:string>lava process parameters</json:string>
<json:string>agglomerate sizes</json:string>
<json:string>grimm aerosol technik gmbh</json:string>
<json:string>lava method</json:string>
<json:string>solar cells</json:string>
<json:string>interaction zone</json:string>
<json:string>pulse lengths</json:string>
<json:string>tio2 particles</json:string>
<json:string>laser power</json:string>
<json:string>density distributions</json:string>
<json:string>anatase particles</json:string>
<json:string>laser vaporization</json:string>
<json:string>surface energy</json:string>
<json:string>powder samples</json:string>
<json:string>process parameters</json:string>
<json:string>particle aerosol</json:string>
<json:string>volume concentration</json:string>
<json:string>smps measurements</json:string>
<json:string>rate vadd</json:string>
<json:string>particle formation</json:string>
<json:string>transmission electron</json:string>
<json:string>mater</json:string>
<json:string>particle</json:string>
<json:string>aerosol</json:string>
<json:string>additive</json:string>
<json:string>transmission electron microscopy</json:string>
<json:string>owing carrier</json:string>
<json:string>continuous laser radiation</json:string>
<json:string>nucleation zone</json:string>
<json:string>condensation zone</json:string>
<json:string>number basis</json:string>
<json:string>total range</json:string>
<json:string>standard deviations</json:string>
<json:string>spherical particles</json:string>
<json:string>total volume</json:string>
<json:string>particle diameter distributions</json:string>
<json:string>surface areas</json:string>
<json:string>lava laboratory setup</json:string>
<json:string>organic layer</json:string>
<json:string>optical properties</json:string>
<json:string>scanning mobility particle sizer</json:string>
<json:string>raman spectrometry</json:string>
<json:string>phase condensation</json:string>
<json:string>waals forces</json:string>
<json:string>additive vapor</json:string>
<json:string>aerosol particles</json:string>
<json:string>condensation particle counter</json:string>
<json:string>mobility diameters</json:string>
<json:string>mobility diameter</json:string>
<json:string>diffraction measurements</json:string>
<json:string>continuous radiation</json:string>
<json:string>tio2 powder</json:string>
<json:string>sinter necks</json:string>
<json:string>atmospheric pressure</json:string>
<json:string>surface condensation</json:string>
<json:string>biomedical applications</json:string>
<json:string>condensation nuclei</json:string>
<json:string>soft agglomerates</json:string>
<json:string>rapid quenching</json:string>
<json:string>size distributions</json:string>
<json:string>equilibrium conditions</json:string>
<json:string>lower curve</json:string>
<json:string>upper curve</json:string>
<json:string>spherical shape</json:string>
<json:string>nanoscaled particles</json:string>
<json:string>carboxylic acid</json:string>
<json:string>organic solvents</json:string>
<json:string>organic layer materials</json:string>
<json:string>particle coating</json:string>
<json:string>stretch bands</json:string>
<json:string>laser pulse length</json:string>
<json:string>apatite formation</json:string>
<json:string>smaller agglomerates</json:string>
<json:string>evaporation rate</json:string>
<json:string>materials science</json:string>
<json:string>tio2 particle aerosols</json:string>
<json:string>ltering unit</json:string>
<json:string>solar energy conversion</json:string>
<json:string>international gmbh</json:string>
<json:string>flame spray pyrolysis</json:string>
<json:string>nonaqueous solvents</json:string>
<json:string>shaker verlag</json:string>
<json:string>nanoscaled powders</json:string>
<json:string>materials research society</json:string>
<json:string>magnetic iron oxide nanopowders</json:string>
<json:string>laser ablation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Heinz‐Dieter Kurland</name>
<affiliations>
<json:string>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</json:string>
<json:string>E-mail: h.d.kurland@gmx.net</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christian Stötzel</name>
<affiliations>
<json:string>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Janet Grabow</name>
<affiliations>
<json:string>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ingmar Zink</name>
<affiliations>
<json:string>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Eberhard Müller</name>
<affiliations>
<json:string>Institute of Electronic and Sensor Materials, Technical University Bergakademie Freiberg, Freiberg (Saxony) 09596, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Gisbert Staupendahl</name>
<affiliations>
<json:string>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Frank A. Müller</name>
<affiliations>
<json:string>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JACE03589</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-49N2B33F-1</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>The CO2 laser vaporization (LAVA) method was used to prepare titania nanopowders. Because this versatile method does not require special precursors, a coarse anatase raw powder was applied as starting material. Powder samples produced under varied process parameters were characterized by transmission electron microscopy (TEM), X‐ray diffraction measurements, and Brunauer–Emmett–Teller surface area measurements. The laser‐generated powders consist of spherical, single crystalline and pure anatase nanoparticles, merely softly agglomerated by weak van der Waals forces. Using TEM analysis, the influence of the process parameters on the resulting particle size distribution was investigated. The results are discussed with respect to the particle formation by gas phase condensation. The potential of a process integrated, i.e. in situ, coating procedure for the surface modification of the anatase nanoparticles is demonstrated. As an exemplary representative of organic layer materials stearic acid was chosen. The organic coating was characterized by TEM and Raman spectrometry. Because of the unavoidable soft agglomeration the coating covers entire agglomerates rather than individual primary particles. Thus, the influence of the LAVA process parameters on the agglomerate sizes was systematically studied using a scanning mobility particle sizer.</abstract>
<qualityIndicators>
<score>9.22</score>
<pdfWordCount>6431</pdfWordCount>
<pdfCharCount>39980</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>593.972 x 782.986 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>185</abstractWordCount>
<abstractCharCount>1356</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of the American Ceramic Society</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1551-2916</json:string>
</doi>
<issn>
<json:string>0002-7820</json:string>
</issn>
<eissn>
<json:string>1551-2916</json:string>
</eissn>
<publisherId>
<json:string>JACE</json:string>
</publisherId>
<volume>93</volume>
<issue>5</issue>
<pages>
<first>1282</first>
<last>1289</last>
<total>8</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1000</json:string>
<json:string>May 2010 1287</json:string>
<json:string>2010</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>American Ceramic Society</json:string>
<json:string>The CO</json:string>
<json:string>VWR International</json:string>
<json:string>LAVA Laboratory Setup CO</json:string>
<json:string>Institute of Electronic and Sensor</json:string>
<json:string>Technical University</json:string>
<json:string>Bruker AXS Inc., Madison</json:string>
<json:string>Institute of Materials Science and Technology</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Frank A. Mullerz</json:string>
<json:string>Christian Stotzel</json:string>
<json:string>Carl Zeiss</json:string>
<json:string>P. Gouma</json:string>
<json:string>I. Technical</json:string>
<json:string>Data</json:string>
<json:string>Ch</json:string>
<json:string>Journal</json:string>
<json:string>Janet Grabow</json:string>
<json:string>Ingmar Zink</json:string>
<json:string>Gisbert Staupendahl</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Halle</json:string>
<json:string>Jena</json:string>
<json:string>Darmstadt</json:string>
<json:string>Freiberg</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[5]</json:string>
<json:string>Kurland et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-49N2B33F-1</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - materials science, ceramics</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - enabling & strategic technologies</json:string>
<json:string>3 - materials</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Materials Chemistry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Ceramics and Composites</json:string>
</scopus>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1111/j.1551-2916.2009.03589.x</json:string>
</doi>
<id>BC3A423B62BD0B1898FA63912D622F6031D3A51F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/BC3A423B62BD0B1898FA63912D622F6031D3A51F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/BC3A423B62BD0B1898FA63912D622F6031D3A51F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/BC3A423B62BD0B1898FA63912D622F6031D3A51F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Preparation of Spherical Titania Nanoparticles by CO
<hi rend="subscript">2</hi>
Laser Evaporation and Process‐Integrated Particle Coating</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<availability>
<licence>© 2010 The American Ceramic Society</licence>
</availability>
<date type="published" when="2010-05"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Preparation of Spherical Titania Nanoparticles by CO
<hi rend="subscript">2</hi>
Laser Evaporation and Process‐Integrated Particle Coating</title>
<title level="a" type="short">Titania Nanoparticles by CO2 Laser Evaporation and Particle Coating</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Heinz‐Dieter</forename>
<surname>Kurland</surname>
</persName>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
<affiliation>†Author to whom correspondence should be addressed. e‐mail: h.d.kurland@gmx.net</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Christian</forename>
<surname>Stötzel</surname>
</persName>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Janet</forename>
<surname>Grabow</surname>
</persName>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Ingmar</forename>
<surname>Zink</surname>
</persName>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Eberhard</forename>
<surname>Müller</surname>
</persName>
<affiliation>Institute of Electronic and Sensor Materials, Technical University Bergakademie Freiberg, Freiberg (Saxony) 09596, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Gisbert</forename>
<surname>Staupendahl</surname>
</persName>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Frank A.</forename>
<surname>Müller</surname>
</persName>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<idno type="istex">BC3A423B62BD0B1898FA63912D622F6031D3A51F</idno>
<idno type="ark">ark:/67375/WNG-49N2B33F-1</idno>
<idno type="DOI">10.1111/j.1551-2916.2009.03589.x</idno>
<idno type="unit">JACE03589</idno>
<idno type="supplier">03589</idno>
<idno type="toTypesetVersion">file:JACE.JACE03589.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of the American Ceramic Society</title>
<title level="j" type="alt">JOURNAL OF AMERICAN CERAMIC SOCIETY</title>
<idno type="pISSN">0002-7820</idno>
<idno type="eISSN">1551-2916</idno>
<idno type="book-DOI">10.1111/(ISSN)1551-2916</idno>
<idno type="book-part-DOI">10.1111/jace.2010.93.issue-5</idno>
<idno type="product">JACE</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">93</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="1282">1282</biblScope>
<biblScope unit="page" to="1289">1289</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>Blackwell Publishing Inc</publisher>
<pubPlace>Malden, USA</pubPlace>
<date type="published" when="2010-05"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>
<hi rend="bold">The CO
<hi rend="subscript">2</hi>
laser vaporization (LAVA) method was used to prepare titania nanopowders. Because this versatile method does not require special precursors, a coarse anatase raw powder was applied as starting material. Powder samples produced under varied process parameters were characterized by transmission electron microscopy (TEM), X‐ray diffraction measurements, and Brunauer–Emmett–Teller surface area measurements. The laser‐generated powders consist of spherical, single crystalline and pure anatase nanoparticles, merely softly agglomerated by weak van der Waals forces. Using TEM analysis, the influence of the process parameters on the resulting particle size distribution was investigated. The results are discussed with respect to the particle formation by gas phase condensation. The potential of a process integrated, i.e.
<hi rend="italic">in situ</hi>
, coating procedure for the surface modification of the anatase nanoparticles is demonstrated. As an exemplary representative of organic layer materials stearic acid was chosen. The organic coating was characterized by TEM and Raman spectrometry. Because of the unavoidable soft agglomeration the coating covers entire agglomerates rather than individual primary particles. Thus, the influence of the LAVA process parameters on the agglomerate sizes was systematically studied using a scanning mobility particle sizer.</hi>
</p>
</abstract>
<textClass>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
<keywords rend="tocHeading2">
<term>Processing Science</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/BC3A423B62BD0B1898FA63912D622F6031D3A51F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Inc</publisherName>
<publisherLoc>Malden, USA</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1551-2916</doi>
<issn type="print">0002-7820</issn>
<issn type="electronic">1551-2916</issn>
<idGroup>
<id type="product" value="JACE"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="JOURNAL OF AMERICAN CERAMIC SOCIETY">Journal of the American Ceramic Society</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="05005">
<doi origin="wiley">10.1111/jace.2010.93.issue-5</doi>
<numberingGroup>
<numbering type="journalVolume" number="93">93</numbering>
<numbering type="journalIssue" number="5">5</numbering>
</numberingGroup>
<coverDate startDate="2010-05">May 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="17" status="forIssue">
<doi origin="wiley">10.1111/j.1551-2916.2009.03589.x</doi>
<idGroup>
<id type="unit" value="JACE03589"></id>
<id type="supplier" value="03589"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Articles</title>
<title type="tocHeading2">
<i>Processing Science</i>
</title>
</titleGroup>
<copyright>© 2010 The American Ceramic Society</copyright>
<eventGroup>
<event type="firstOnline" date="2010-02-08"></event>
<event type="publishedOnlineFinalForm" date="2010-04-26"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.6 mode:FullText source:FullText result:FullText" date="2010-05-18"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-19"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="1282">1282</numbering>
<numbering type="pageLast" number="1289">1289</numbering>
</numberingGroup>
<correspondenceTo>
<sup></sup>
Author to whom correspondence should be addressed. e‐mail:
<email normalForm="h.d.kurland@gmx.net">h.d.kurland@gmx.net</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JACE.JACE03589.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>Manuscript No. 26859. Received September 22, 2009; approved December 2, 2009.</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="3"></count>
<count type="formulaTotal" number="29"></count>
<count type="referenceTotal" number="62"></count>
<count type="wordTotal" number="8190"></count>
<count type="linksCrossRef" number="63"></count>
</countGroup>
<titleGroup>
<title type="main">Preparation of Spherical Titania Nanoparticles by CO
<sub>2</sub>
Laser Evaporation and Process‐Integrated Particle Coating</title>
<title type="shortAuthors">Kurland
<i>et al.</i>
</title>
<title type="short">Titania Nanoparticles by CO
<sub>2</sub>
Laser Evaporation and Particle Coating</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Heinz‐Dieter</givenNames>
<familyName>Kurland</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Christian</givenNames>
<familyName>Stötzel</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a1">
<personName>
<givenNames>Janet</givenNames>
<familyName>Grabow</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a1">
<personName>
<givenNames>Ingmar</givenNames>
<familyName>Zink</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a2">
<personName>
<givenNames>Eberhard</givenNames>
<familyName>Müller</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>Gisbert</givenNames>
<familyName>Staupendahl</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr7" affiliationRef="#a1">
<personName>
<givenNames>Frank A.</givenNames>
<familyName>Müller</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="DE">
<unparsedAffiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="DE">
<unparsedAffiliation>Institute of Electronic and Sensor Materials, Technical University Bergakademie Freiberg, Freiberg (Saxony) 09596, Germany</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>The CO
<sub>2</sub>
laser vaporization (LAVA) method was used to prepare titania nanopowders. Because this versatile method does not require special precursors, a coarse anatase raw powder was applied as starting material. Powder samples produced under varied process parameters were characterized by transmission electron microscopy (TEM), X‐ray diffraction measurements, and Brunauer–Emmett–Teller surface area measurements. The laser‐generated powders consist of spherical, single crystalline and pure anatase nanoparticles, merely softly agglomerated by weak van der Waals forces. Using TEM analysis, the influence of the process parameters on the resulting particle size distribution was investigated. The results are discussed with respect to the particle formation by gas phase condensation. The potential of a process integrated, i.e.
<i>in situ</i>
, coating procedure for the surface modification of the anatase nanoparticles is demonstrated. As an exemplary representative of organic layer materials stearic acid was chosen. The organic coating was characterized by TEM and Raman spectrometry. Because of the unavoidable soft agglomeration the coating covers entire agglomerates rather than individual primary particles. Thus, the influence of the LAVA process parameters on the agglomerate sizes was systematically studied using a scanning mobility particle sizer.</b>
</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1" numbered="no">
<p>P. Gouma—contributing editor</p>
</note>
<note xml:id="fn2" numbered="no">
<p>This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. STA 400 / 14‐1.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Titania Nanoparticles by CO2 Laser Evaporation and Particle Coating</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating</title>
</titleInfo>
<name type="personal">
<namePart type="given">Heinz‐Dieter</namePart>
<namePart type="family">Kurland</namePart>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</affiliation>
<affiliation>E-mail: h.d.kurland@gmx.net</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Stötzel</namePart>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janet</namePart>
<namePart type="family">Grabow</namePart>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingmar</namePart>
<namePart type="family">Zink</namePart>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eberhard</namePart>
<namePart type="family">Müller</namePart>
<affiliation>Institute of Electronic and Sensor Materials, Technical University Bergakademie Freiberg, Freiberg (Saxony) 09596, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gisbert</namePart>
<namePart type="family">Staupendahl</namePart>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frank A.</namePart>
<namePart type="family">Müller</namePart>
<affiliation>Institute of Materials Science and Technology, Friedrich‐Schiller‐University Jena, Jena 07743, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Inc</publisher>
<place>
<placeTerm type="text">Malden, USA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-05</dateIssued>
<edition>Manuscript No. 26859. Received September 22, 2009; approved December 2, 2009.</edition>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">6</extent>
<extent unit="tables">3</extent>
<extent unit="formulas">29</extent>
<extent unit="references">62</extent>
<extent unit="linksCrossRef">63</extent>
<extent unit="words">8190</extent>
</physicalDescription>
<abstract>The CO2 laser vaporization (LAVA) method was used to prepare titania nanopowders. Because this versatile method does not require special precursors, a coarse anatase raw powder was applied as starting material. Powder samples produced under varied process parameters were characterized by transmission electron microscopy (TEM), X‐ray diffraction measurements, and Brunauer–Emmett–Teller surface area measurements. The laser‐generated powders consist of spherical, single crystalline and pure anatase nanoparticles, merely softly agglomerated by weak van der Waals forces. Using TEM analysis, the influence of the process parameters on the resulting particle size distribution was investigated. The results are discussed with respect to the particle formation by gas phase condensation. The potential of a process integrated, i.e. in situ, coating procedure for the surface modification of the anatase nanoparticles is demonstrated. As an exemplary representative of organic layer materials stearic acid was chosen. The organic coating was characterized by TEM and Raman spectrometry. Because of the unavoidable soft agglomeration the coating covers entire agglomerates rather than individual primary particles. Thus, the influence of the LAVA process parameters on the agglomerate sizes was systematically studied using a scanning mobility particle sizer.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of the American Ceramic Society</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0002-7820</identifier>
<identifier type="eISSN">1551-2916</identifier>
<identifier type="DOI">10.1111/(ISSN)1551-2916</identifier>
<identifier type="PublisherID">JACE</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>93</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>1282</start>
<end>1289</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">BC3A423B62BD0B1898FA63912D622F6031D3A51F</identifier>
<identifier type="ark">ark:/67375/WNG-49N2B33F-1</identifier>
<identifier type="DOI">10.1111/j.1551-2916.2009.03589.x</identifier>
<identifier type="ArticleID">JACE03589</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 The American Ceramic Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Inc</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/BC3A423B62BD0B1898FA63912D622F6031D3A51F/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005D72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 005D72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:BC3A423B62BD0B1898FA63912D622F6031D3A51F
   |texte=   Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022