Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surface energy characterization of unalloyed titanium implants

Identifieur interne : 005279 ( Istex/Corpus ); précédent : 005278; suivant : 005280

Surface energy characterization of unalloyed titanium implants

Auteurs : Deepak V. Kilpadi ; Jack E. Lemons

Source :

RBID : ISTEX:A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605

English descriptors

Abstract

Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge‐treated Ti had the highest critical surface tension, followed by the passivated and heat‐sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.

Url:
DOI: 10.1002/jbm.820281206

Links to Exploration step

ISTEX:A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Surface energy characterization of unalloyed titanium implants</title>
<author>
<name sortKey="Kilpadi, Deepak V" sort="Kilpadi, Deepak V" uniqKey="Kilpadi D" first="Deepak V." last="Kilpadi">Deepak V. Kilpadi</name>
<affiliation>
<mods:affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lemons, Jack E" sort="Lemons, Jack E" uniqKey="Lemons J" first="Jack E." last="Lemons">Jack E. Lemons</name>
<affiliation>
<mods:affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: The University of Alabama at Birmingham, Department of Biomaterials, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham, AL 35294–0007</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1002/jbm.820281206</idno>
<idno type="url">https://api.istex.fr/document/A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005279</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Surface energy characterization of unalloyed titanium implants</title>
<author>
<name sortKey="Kilpadi, Deepak V" sort="Kilpadi, Deepak V" uniqKey="Kilpadi D" first="Deepak V." last="Kilpadi">Deepak V. Kilpadi</name>
<affiliation>
<mods:affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lemons, Jack E" sort="Lemons, Jack E" uniqKey="Lemons J" first="Jack E." last="Lemons">Jack E. Lemons</name>
<affiliation>
<mods:affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: The University of Alabama at Birmingham, Department of Biomaterials, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham, AL 35294–0007</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH</title>
<idno type="ISSN">0021-9304</idno>
<idno type="eISSN">1097-4636</idno>
<imprint>
<biblScope unit="vol">28</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1419">1419</biblScope>
<biblScope unit="page" to="1425">1425</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1994-12">1994-12</date>
</imprint>
<idno type="ISSN">0021-9304</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0021-9304</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Average contact angle</term>
<term>Average grain size</term>
<term>Biologic environment</term>
<term>Bulk grain size</term>
<term>Colloid</term>
<term>Colloid interface</term>
<term>Composite value</term>
<term>Confidence level</term>
<term>Contact angle</term>
<term>Contact angle measurements</term>
<term>Contact angles</term>
<term>Critical surface tension</term>
<term>Critical surface tension values</term>
<term>Critical surface tensions</term>
<term>Cst</term>
<term>Dental implants</term>
<term>Diiodomethane</term>
<term>Dispersive</term>
<term>Dispersive component</term>
<term>Dispersive csts</term>
<term>Dispersive liquids</term>
<term>Flats</term>
<term>Grain size</term>
<term>Higher surface energy</term>
<term>Implant</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>John wiley sons</term>
<term>Machined</term>
<term>Machined flats</term>
<term>Molecular forces</term>
<term>Oral implantol</term>
<term>Passivated</term>
<term>Polar components</term>
<term>Polar liquids</term>
<term>Rougher surface</term>
<term>Roughness</term>
<term>Significant difference</term>
<term>Surface analysis</term>
<term>Surface conditions</term>
<term>Surface energies</term>
<term>Surface energy</term>
<term>Surface energy characterization</term>
<term>Surface energy measurements</term>
<term>Surface oxide</term>
<term>Surface preparation</term>
<term>Surface roughness</term>
<term>Surface tension</term>
<term>Surface tensions</term>
<term>Surface texture</term>
<term>Surface treatment</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surfaces</term>
<term>Unalloyed</term>
<term>Unalloyed titanium</term>
<term>Untreated surface</term>
<term>Zisman</term>
<term>Zisman plot</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Average contact angle</term>
<term>Average grain size</term>
<term>Biologic environment</term>
<term>Bulk grain size</term>
<term>Colloid</term>
<term>Colloid interface</term>
<term>Composite value</term>
<term>Confidence level</term>
<term>Contact angle</term>
<term>Contact angle measurements</term>
<term>Contact angles</term>
<term>Critical surface tension</term>
<term>Critical surface tension values</term>
<term>Critical surface tensions</term>
<term>Cst</term>
<term>Dental implants</term>
<term>Diiodomethane</term>
<term>Dispersive</term>
<term>Dispersive component</term>
<term>Dispersive csts</term>
<term>Dispersive liquids</term>
<term>Flats</term>
<term>Grain size</term>
<term>Higher surface energy</term>
<term>Implant</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>John wiley sons</term>
<term>Machined</term>
<term>Machined flats</term>
<term>Molecular forces</term>
<term>Oral implantol</term>
<term>Passivated</term>
<term>Polar components</term>
<term>Polar liquids</term>
<term>Rougher surface</term>
<term>Roughness</term>
<term>Significant difference</term>
<term>Surface analysis</term>
<term>Surface conditions</term>
<term>Surface energies</term>
<term>Surface energy</term>
<term>Surface energy characterization</term>
<term>Surface energy measurements</term>
<term>Surface oxide</term>
<term>Surface preparation</term>
<term>Surface roughness</term>
<term>Surface tension</term>
<term>Surface tensions</term>
<term>Surface texture</term>
<term>Surface treatment</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surfaces</term>
<term>Unalloyed</term>
<term>Unalloyed titanium</term>
<term>Untreated surface</term>
<term>Zisman</term>
<term>Zisman plot</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge‐treated Ti had the highest critical surface tension, followed by the passivated and heat‐sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>passivated</json:string>
<json:string>dispersive</json:string>
<json:string>machined</json:string>
<json:string>zisman</json:string>
<json:string>surface tension</json:string>
<json:string>implant</json:string>
<json:string>surface energy</json:string>
<json:string>machined flats</json:string>
<json:string>zisman plot</json:string>
<json:string>surface roughness</json:string>
<json:string>critical surface tension</json:string>
<json:string>surface treatment</json:string>
<json:string>diiodomethane</json:string>
<json:string>colloid</json:string>
<json:string>cst</json:string>
<json:string>contact angles</json:string>
<json:string>contact angle measurements</json:string>
<json:string>titanium</json:string>
<json:string>grain size</json:string>
<json:string>contact angle</json:string>
<json:string>colloid interface</json:string>
<json:string>critical surface tensions</json:string>
<json:string>titanium surfaces</json:string>
<json:string>unalloyed titanium</json:string>
<json:string>higher surface energy</json:string>
<json:string>surface energy characterization</json:string>
<json:string>implant surface</json:string>
<json:string>surface tensions</json:string>
<json:string>unalloyed</json:string>
<json:string>surface preparation</json:string>
<json:string>dental implants</json:string>
<json:string>average grain size</json:string>
<json:string>dispersive csts</json:string>
<json:string>john wiley sons</json:string>
<json:string>polar liquids</json:string>
<json:string>titanium implants</json:string>
<json:string>flats</json:string>
<json:string>surface energies</json:string>
<json:string>dispersive component</json:string>
<json:string>composite value</json:string>
<json:string>surface texture</json:string>
<json:string>biologic environment</json:string>
<json:string>significant difference</json:string>
<json:string>dispersive liquids</json:string>
<json:string>confidence level</json:string>
<json:string>polar components</json:string>
<json:string>rougher surface</json:string>
<json:string>average contact angle</json:string>
<json:string>surface conditions</json:string>
<json:string>surface oxide</json:string>
<json:string>critical surface tension values</json:string>
<json:string>untreated surface</json:string>
<json:string>surface energy measurements</json:string>
<json:string>oral implantol</json:string>
<json:string>bulk grain size</json:string>
<json:string>surface analysis</json:string>
<json:string>molecular forces</json:string>
<json:string>implant materials</json:string>
<json:string>roughness</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Deepak V. Kilpadi</name>
<affiliations>
<json:string>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jack E. Lemons</name>
<affiliations>
<json:string>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</json:string>
<json:string>Correspondence address: The University of Alabama at Birmingham, Department of Biomaterials, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham, AL 35294–0007</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>JBM820281206</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-K72MZ88G-2</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge‐treated Ti had the highest critical surface tension, followed by the passivated and heat‐sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.</abstract>
<qualityIndicators>
<score>7.223</score>
<pdfWordCount>3507</pdfWordCount>
<pdfCharCount>23010</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>594 x 791.759 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>143</abstractWordCount>
<abstractCharCount>929</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Surface energy characterization of unalloyed titanium implants</title>
<pmid>
<json:string>7876280</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Biomedical Materials Research</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1097-4636</json:string>
</doi>
<issn>
<json:string>0021-9304</json:string>
</issn>
<eissn>
<json:string>1097-4636</json:string>
</eissn>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<volume>28</volume>
<issue>12</issue>
<pages>
<first>1419</first>
<last>1425</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1994</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Sons, Inc.</json:string>
<json:string>Sons, Inc</json:string>
<json:string>University of Alabama</json:string>
<json:string>Biomedical Materials Research, Vol</json:string>
<json:string>Department of Biomaterials</json:string>
<json:string>University of Alabama System</json:string>
<json:string>Federal Inc.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>On</json:string>
<json:string>John Wiley</json:string>
<json:string>Edwin Bradley</json:string>
<json:string>Journal</json:string>
<json:string>Hugo Retief</json:string>
<json:string>Don Peterson</json:string>
<json:string>Norma Z. Ramsay</json:string>
<json:string>Jack E. Lemons</json:string>
</persName>
<placeName>
<json:string>Providence</json:string>
<json:string>Birmingham</json:string>
<json:string>Pittsburgh</json:string>
<json:string>America</json:string>
<json:string>AL</json:string>
<json:string>RI</json:string>
<json:string>PA</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-K72MZ88G-2</json:string>
</ark>
<categories>
<wos></wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - engineering</json:string>
<json:string>3 - biomedical engineering</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - Biomaterials</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - industries agroalimentaires</json:string>
</inist>
</categories>
<publicationDate>1994</publicationDate>
<copyrightDate>1994</copyrightDate>
<doi>
<json:string>10.1002/jbm.820281206</json:string>
</doi>
<id>A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Surface energy characterization of unalloyed titanium implants</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>Copyright © 1994 John Wiley & Sons, Inc.</licence>
</availability>
<date type="published" when="1994-12"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Surface energy characterization of unalloyed titanium implants</title>
<title level="a" type="short" xml:lang="en">SURFACE ENERGY CHARACTERIZATION OF TITANIUM</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Deepak V.</forename>
<surname>Kilpadi</surname>
</persName>
<affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<forename type="first">Jack E.</forename>
<surname>Lemons</surname>
</persName>
<affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>The University of Alabama at Birmingham, Department of Biomaterials, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham, AL 35294–0007</affiliation>
</author>
<idno type="istex">A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605</idno>
<idno type="ark">ark:/67375/WNG-K72MZ88G-2</idno>
<idno type="DOI">10.1002/jbm.820281206</idno>
<idno type="unit">JBM820281206</idno>
<idno type="toTypesetVersion">file:JBM.JBM820281206.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Biomedical Materials Research</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH</title>
<idno type="pISSN">0021-9304</idno>
<idno type="eISSN">1097-4636</idno>
<idno type="book-DOI">10.1002/(ISSN)1097-4636</idno>
<idno type="book-part-DOI">10.1002/jbm.v28:12</idno>
<idno type="product">JBM</idno>
<imprint>
<biblScope unit="vol">28</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="1419">1419</biblScope>
<biblScope unit="page" to="1425">1425</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1994-12"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge‐treated Ti had the highest critical surface tension, followed by the passivated and heat‐sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.</p>
</abstract>
<textClass>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Inc.</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-4636</doi>
<issn type="print">0021-9304</issn>
<issn type="electronic">1097-4636</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH">Journal of Biomedical Materials Research</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="120">
<doi origin="wiley" registered="yes">10.1002/jbm.v28:12</doi>
<numberingGroup>
<numbering type="journalVolume" number="28">28</numbering>
<numbering type="journalIssue">12</numbering>
</numberingGroup>
<coverDate startDate="1994-12">December 1994</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="6" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jbm.820281206</doi>
<idGroup>
<id type="unit" value="JBM820281206"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1994 John Wiley & Sons, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1993-10-21"></event>
<event type="manuscriptAccepted" date="1994-05-19"></event>
<event type="firstOnline" date="2004-09-13"></event>
<event type="publishedOnlineFinalForm" date="2004-09-13"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.9 mode:FullText source:HeaderRef result:HeaderRef" date="2010-06-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1419</numbering>
<numbering type="pageLast">1425</numbering>
</numberingGroup>
<correspondenceTo>The University of Alabama at Birmingham, Department of Biomaterials, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham, AL 35294–0007</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBM820281206.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="6"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="39"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Surface energy characterization of unalloyed titanium implants</title>
<title type="short" xml:lang="en">SURFACE ENERGY CHARACTERIZATION OF TITANIUM</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Deepak V.</givenNames>
<familyName>Kilpadi</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Jack E.</givenNames>
<familyName>Lemons</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge‐treated Ti had the highest critical surface tension, followed by the passivated and heat‐sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Surface energy characterization of unalloyed titanium implants</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>SURFACE ENERGY CHARACTERIZATION OF TITANIUM</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Surface energy characterization of unalloyed titanium implants</title>
</titleInfo>
<name type="personal">
<namePart type="given">Deepak V.</namePart>
<namePart type="family">Kilpadi</namePart>
<affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jack E.</namePart>
<namePart type="family">Lemons</namePart>
<affiliation>Department of Biomaterials and Joint Materials Science PhD Program of The University of Alabama System, University of Alabama at Birmingham, Birmingham, Alabama</affiliation>
<affiliation>Correspondence address: The University of Alabama at Birmingham, Department of Biomaterials, 616 School of Dentistry Building, 1919 7th Avenue South, Birmingham, AL 35294–0007</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Inc.</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1994-12</dateIssued>
<dateCaptured encoding="w3cdtf">1993-10-21</dateCaptured>
<dateValid encoding="w3cdtf">1994-05-19</dateValid>
<copyrightDate encoding="w3cdtf">1994</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">6</extent>
<extent unit="tables">2</extent>
<extent unit="references">39</extent>
</physicalDescription>
<abstract lang="en">Osteointegration is dependent on a variety of biomechanical and biochemical factors. One factor is the wettability of an implant surface that is directly influenced by its surface energy. This investigation used the Zisman plot to determine critical surface energy. The effects of surface treatment, bulk grain size, and surface roughness on the critical surface tension of unalloyed titanium (Ti) were examined. Radio frequency glow discharge‐treated Ti had the highest critical surface tension, followed by the passivated and heat‐sterlized conditions. Titanium with no surface treatment had the lowest critical surface tension. The surface energy of Ti with an average grain size of 23 μm was not significantly different from that with a grain size of 70 μm. Surface roughness was shown to cause significant difference in measurements and definitely should be considered in studies of this kind. © 1994 John Wiley & Sons, Inc.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0021-9304</identifier>
<identifier type="eISSN">1097-4636</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-4636</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>1419</start>
<end>1425</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605</identifier>
<identifier type="ark">ark:/67375/WNG-K72MZ88G-2</identifier>
<identifier type="DOI">10.1002/jbm.820281206</identifier>
<identifier type="ArticleID">JBM820281206</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1994 John Wiley & Sons, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>John Wiley & Sons, Inc.</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005279 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 005279 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A5495F0FBE07C0D9BFA934E6C91AA5E2691FF605
   |texte=   Surface energy characterization of unalloyed titanium implants
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022