Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Titanium: The implant material of today

Identifieur interne : 005067 ( Istex/Corpus ); précédent : 005066; suivant : 005068

Titanium: The implant material of today

Auteurs : R. Van Noort

Source :

RBID : ISTEX:A154CD224791EBDE5D1DA9507E96F9A306D84508

English descriptors

Abstract

Abstract: The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.

Url:
DOI: 10.1007/BF01133326

Links to Exploration step

ISTEX:A154CD224791EBDE5D1DA9507E96F9A306D84508

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Titanium: The implant material of today</title>
<author>
<name sortKey="Van Noort, R" sort="Van Noort, R" uniqKey="Van Noort R" first="R." last="Van Noort">R. Van Noort</name>
<affiliation>
<mods:affiliation>Department of Restorative Dentistry, Charles Clifford Dental Hospital, University of Sheffield, Sheffield, UK</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:A154CD224791EBDE5D1DA9507E96F9A306D84508</idno>
<date when="1987" year="1987">1987</date>
<idno type="doi">10.1007/BF01133326</idno>
<idno type="url">https://api.istex.fr/document/A154CD224791EBDE5D1DA9507E96F9A306D84508/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">005067</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">005067</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Titanium: The implant material of today</title>
<author>
<name sortKey="Van Noort, R" sort="Van Noort, R" uniqKey="Van Noort R" first="R." last="Van Noort">R. Van Noort</name>
<affiliation>
<mods:affiliation>Department of Restorative Dentistry, Charles Clifford Dental Hospital, University of Sheffield, Sheffield, UK</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Materials Science</title>
<title level="j" type="abbrev">J Mater Sci</title>
<idno type="ISSN">0022-2461</idno>
<idno type="eISSN">1573-4803</idno>
<imprint>
<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="1987-11-01">1987-11-01</date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="3801">3801</biblScope>
<biblScope unit="page" to="3811">3811</biblScope>
</imprint>
<idno type="ISSN">0022-2461</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2461</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acta orthop</term>
<term>Adverse reaction</term>
<term>Alloy</term>
<term>Articulating surfaces</term>
<term>Biocompatibility</term>
<term>Biological environment</term>
<term>Biological response</term>
<term>Biomed</term>
<term>Boca raton</term>
<term>Bone cement</term>
<term>Bony ingrowth</term>
<term>Bridge structure</term>
<term>Cementless fixation</term>
<term>Clinical application</term>
<term>Clinical applications</term>
<term>Collagen fibers</term>
<term>Connective tissue</term>
<term>Corrosion</term>
<term>Corrosion resistance</term>
<term>Dent</term>
<term>Dental implant</term>
<term>Dental implants</term>
<term>Early results</term>
<term>Epithelial</term>
<term>Epithelium</term>
<term>Excellent biocompatibility</term>
<term>Excellent corrosion resistance</term>
<term>Excellent fatigue strength</term>
<term>Fatigue failure</term>
<term>Fatigue limit</term>
<term>Fatigue strength</term>
<term>Fibrous capsule</term>
<term>Fibrous tissue</term>
<term>Fibrous tissue layer</term>
<term>Fixation</term>
<term>Fracture</term>
<term>Further studies</term>
<term>Great concern</term>
<term>Great enthusiasm</term>
<term>Healthy bone</term>
<term>Hexagonal structure</term>
<term>High levels</term>
<term>High reactivity</term>
<term>Human body</term>
<term>Ibid</term>
<term>Implant</term>
<term>Implant applications</term>
<term>Implant design</term>
<term>Implant material</term>
<term>Implantation</term>
<term>Interface</term>
<term>Joint prostheses</term>
<term>Joint prosthesis</term>
<term>Joint replacement</term>
<term>Junctional epithelium</term>
<term>Light weight</term>
<term>Local tissue response</term>
<term>Mechanical properties</term>
<term>Metallic ions</term>
<term>Natural tooth</term>
<term>Operative procedure</term>
<term>Oral surg</term>
<term>Orthop</term>
<term>Orthopaedic</term>
<term>Orthopaedic implants</term>
<term>Other metals</term>
<term>Permucosal implant</term>
<term>Phase diagram</term>
<term>Porous surface</term>
<term>Porous surface coating</term>
<term>Porous surface coatings</term>
<term>Prosthesis</term>
<term>Prosthet</term>
<term>Proteoglycan layer</term>
<term>Pure titanium</term>
<term>Rigid fixation</term>
<term>Screw threads</term>
<term>Soft tissues</term>
<term>Stainless</term>
<term>Stainless steel</term>
<term>Successful implant</term>
<term>Successful implant material</term>
<term>Surface area</term>
<term>Surg</term>
<term>Titanium</term>
<term>Titanium alloy</term>
<term>Titanium alloys</term>
<term>Titanium implant</term>
<term>Titanium implants</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta orthop</term>
<term>Adverse reaction</term>
<term>Alloy</term>
<term>Articulating surfaces</term>
<term>Biocompatibility</term>
<term>Biological environment</term>
<term>Biological response</term>
<term>Biomed</term>
<term>Boca raton</term>
<term>Bone cement</term>
<term>Bony ingrowth</term>
<term>Bridge structure</term>
<term>Cementless fixation</term>
<term>Clinical application</term>
<term>Clinical applications</term>
<term>Collagen fibers</term>
<term>Connective tissue</term>
<term>Corrosion</term>
<term>Corrosion resistance</term>
<term>Dent</term>
<term>Dental implant</term>
<term>Dental implants</term>
<term>Early results</term>
<term>Epithelial</term>
<term>Epithelium</term>
<term>Excellent biocompatibility</term>
<term>Excellent corrosion resistance</term>
<term>Excellent fatigue strength</term>
<term>Fatigue failure</term>
<term>Fatigue limit</term>
<term>Fatigue strength</term>
<term>Fibrous capsule</term>
<term>Fibrous tissue</term>
<term>Fibrous tissue layer</term>
<term>Fixation</term>
<term>Fracture</term>
<term>Further studies</term>
<term>Great concern</term>
<term>Great enthusiasm</term>
<term>Healthy bone</term>
<term>Hexagonal structure</term>
<term>High levels</term>
<term>High reactivity</term>
<term>Human body</term>
<term>Ibid</term>
<term>Implant</term>
<term>Implant applications</term>
<term>Implant design</term>
<term>Implant material</term>
<term>Implantation</term>
<term>Interface</term>
<term>Joint prostheses</term>
<term>Joint prosthesis</term>
<term>Joint replacement</term>
<term>Junctional epithelium</term>
<term>Light weight</term>
<term>Local tissue response</term>
<term>Mechanical properties</term>
<term>Metallic ions</term>
<term>Natural tooth</term>
<term>Operative procedure</term>
<term>Oral surg</term>
<term>Orthop</term>
<term>Orthopaedic</term>
<term>Orthopaedic implants</term>
<term>Other metals</term>
<term>Permucosal implant</term>
<term>Phase diagram</term>
<term>Porous surface</term>
<term>Porous surface coating</term>
<term>Porous surface coatings</term>
<term>Prosthesis</term>
<term>Prosthet</term>
<term>Proteoglycan layer</term>
<term>Pure titanium</term>
<term>Rigid fixation</term>
<term>Screw threads</term>
<term>Soft tissues</term>
<term>Stainless</term>
<term>Stainless steel</term>
<term>Successful implant</term>
<term>Successful implant material</term>
<term>Surface area</term>
<term>Surg</term>
<term>Titanium</term>
<term>Titanium alloy</term>
<term>Titanium alloys</term>
<term>Titanium implant</term>
<term>Titanium implants</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.</div>
</front>
</TEI>
<istex>
<corpusName>springer</corpusName>
<keywords>
<teeft>
<json:string>implant</json:string>
<json:string>titanium</json:string>
<json:string>prosthesis</json:string>
<json:string>surg</json:string>
<json:string>biocompatibility</json:string>
<json:string>fixation</json:string>
<json:string>prosthet</json:string>
<json:string>ibid</json:string>
<json:string>biological environment</json:string>
<json:string>epithelium</json:string>
<json:string>biomed</json:string>
<json:string>stainless steel</json:string>
<json:string>titanium alloy</json:string>
<json:string>orthop</json:string>
<json:string>epithelial</json:string>
<json:string>pure titanium</json:string>
<json:string>orthopaedic</json:string>
<json:string>alloy</json:string>
<json:string>connective tissue</json:string>
<json:string>fatigue strength</json:string>
<json:string>boca raton</json:string>
<json:string>dental implants</json:string>
<json:string>implant material</json:string>
<json:string>articulating surfaces</json:string>
<json:string>titanium implants</json:string>
<json:string>junctional epithelium</json:string>
<json:string>biological response</json:string>
<json:string>titanium implant</json:string>
<json:string>fatigue limit</json:string>
<json:string>cementless fixation</json:string>
<json:string>soft tissues</json:string>
<json:string>clinical application</json:string>
<json:string>orthopaedic implants</json:string>
<json:string>fracture</json:string>
<json:string>implantation</json:string>
<json:string>dent</json:string>
<json:string>other metals</json:string>
<json:string>excellent biocompatibility</json:string>
<json:string>further studies</json:string>
<json:string>joint prostheses</json:string>
<json:string>corrosion resistance</json:string>
<json:string>healthy bone</json:string>
<json:string>fatigue failure</json:string>
<json:string>mechanical properties</json:string>
<json:string>interface</json:string>
<json:string>stainless</json:string>
<json:string>proteoglycan layer</json:string>
<json:string>joint replacement</json:string>
<json:string>dental implant</json:string>
<json:string>bony ingrowth</json:string>
<json:string>screw threads</json:string>
<json:string>adverse reaction</json:string>
<json:string>fibrous capsule</json:string>
<json:string>light weight</json:string>
<json:string>bone cement</json:string>
<json:string>phase diagram</json:string>
<json:string>metallic ions</json:string>
<json:string>high levels</json:string>
<json:string>local tissue response</json:string>
<json:string>successful implant material</json:string>
<json:string>successful implant</json:string>
<json:string>fibrous tissue layer</json:string>
<json:string>porous surface coating</json:string>
<json:string>early results</json:string>
<json:string>rigid fixation</json:string>
<json:string>porous surface coatings</json:string>
<json:string>porous surface</json:string>
<json:string>surface area</json:string>
<json:string>operative procedure</json:string>
<json:string>implant applications</json:string>
<json:string>bridge structure</json:string>
<json:string>hexagonal structure</json:string>
<json:string>natural tooth</json:string>
<json:string>collagen fibers</json:string>
<json:string>permucosal implant</json:string>
<json:string>implant design</json:string>
<json:string>great enthusiasm</json:string>
<json:string>titanium alloys</json:string>
<json:string>excellent fatigue strength</json:string>
<json:string>high reactivity</json:string>
<json:string>joint prosthesis</json:string>
<json:string>excellent corrosion resistance</json:string>
<json:string>clinical applications</json:string>
<json:string>great concern</json:string>
<json:string>oral surg</json:string>
<json:string>fibrous tissue</json:string>
<json:string>human body</json:string>
<json:string>acta orthop</json:string>
<json:string>corrosion</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>R. Van Noort</name>
<affiliations>
<json:string>Department of Restorative Dentistry, Charles Clifford Dental Hospital, University of Sheffield, Sheffield, UK</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>BF01133326</json:string>
<json:string>Art1</json:string>
</articleId>
<arkIstex>ark:/67375/1BB-WLP02LVJ-J</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>ReviewPaper</json:string>
</originalGenre>
<abstract>Abstract: The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.</abstract>
<qualityIndicators>
<refBibsNative>false</refBibsNative>
<abstractWordCount>171</abstractWordCount>
<abstractCharCount>1087</abstractCharCount>
<keywordCount>0</keywordCount>
<score>9.052</score>
<pdfWordCount>8044</pdfWordCount>
<pdfCharCount>42679</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>576 x 828 pts</pdfPageSize>
</qualityIndicators>
<title>Titanium: The implant material of today</title>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Journal of Materials Science</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1987</publicationDate>
<copyrightDate>1987</copyrightDate>
<issn>
<json:string>0022-2461</json:string>
</issn>
<eissn>
<json:string>1573-4803</json:string>
</eissn>
<journalId>
<json:string>10853</json:string>
</journalId>
<volume>22</volume>
<issue>11</issue>
<pages>
<first>3801</first>
<last>3811</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Polymer Sciences</value>
</json:item>
<json:item>
<value>Industrial Chemistry/Chemical Engineering</value>
</json:item>
<json:item>
<value>Characterization and Evaluation Materials</value>
</json:item>
<json:item>
<value>Mechanics</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
<json:string>1950s</json:string>
<json:string>1979</json:string>
<json:string>1968</json:string>
<json:string>3806</json:string>
<json:string>1986-12-08</json:string>
<json:string>1930s</json:string>
<json:string>1943</json:string>
<json:string>1940s</json:string>
<json:string>1978</json:string>
<json:string>3809</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Zimmer Ltd., Swindon, UK</json:string>
<json:string>University of Goteborg</json:string>
<json:string>Chapman and Hall Ltd.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Courtesy</json:string>
<json:string>Jordan</json:string>
<json:string>The</json:string>
<json:string>Dobbs</json:string>
<json:string>Albrektssen</json:string>
<json:string>Laing</json:string>
<json:string>Any Figure</json:string>
<json:string>Hughes</json:string>
<json:string>J. Raveh</json:string>
<json:string>T. Albrektsson</json:string>
</persName>
<placeName>
<json:string>Swindon</json:string>
<json:string>Switzerland</json:string>
<json:string>UK</json:string>
<json:string>Vevey</json:string>
<json:string>Britain</json:string>
<json:string>Sweden</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Hansson et al. [27]</json:string>
<json:string>[78]</json:string>
<json:string>[29]</json:string>
<json:string>[6]</json:string>
<json:string>[60]</json:string>
<json:string>[77]</json:string>
<json:string>Adell et aL [61]</json:string>
<json:string>[32, 33]</json:string>
<json:string>[8]</json:string>
<json:string>[72-74]</json:string>
<json:string>[70]</json:string>
<json:string>August et al. [71]</json:string>
<json:string>[1]</json:string>
<json:string>[76]</json:string>
<json:string>[7, 15, 16]</json:string>
<json:string>[48, 49]</json:string>
<json:string>[34-38]</json:string>
<json:string>[75]</json:string>
<json:string>[40, 79, 81-83]</json:string>
<json:string>Yue et al. [46]</json:string>
<json:string>Miller et al. [69]</json:string>
<json:string>[3, 4]</json:string>
<json:string>[5]</json:string>
<json:string>[59]</json:string>
<json:string>[35-38]</json:string>
<json:string>[41]</json:string>
<json:string>[7]</json:string>
<json:string>[58]</json:string>
<json:string>[7, 67]</json:string>
<json:string>Cook et al. [47]</json:string>
<json:string>[53, 54]</json:string>
<json:string>[9]</json:string>
<json:string>[40]</json:string>
<json:string>[2]</json:string>
<json:string>[68]</json:string>
<json:string>[51, 52]</json:string>
<json:string>[61-64]</json:string>
<json:string>[49, 50]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/1BB-WLP02LVJ-J</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - materials science, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - enabling & strategic technologies</json:string>
<json:string>3 - materials</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Mechanical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Mechanics of Materials</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Materials Science</json:string>
<json:string>3 - General Materials Science</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>1987</publicationDate>
<copyrightDate>1987</copyrightDate>
<doi>
<json:string>10.1007/BF01133326</json:string>
</doi>
<id>A154CD224791EBDE5D1DA9507E96F9A306D84508</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/A154CD224791EBDE5D1DA9507E96F9A306D84508/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/A154CD224791EBDE5D1DA9507E96F9A306D84508/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/A154CD224791EBDE5D1DA9507E96F9A306D84508/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Titanium: The implant material of today</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://publisher-list.data.istex.fr">Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<availability>
<licence>
<p>Chapman and Hall Ltd, 1987</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</p>
</availability>
<date>1986-12-08</date>
</publicationStmt>
<notesStmt>
<note type="review-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>Review</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Titanium: The implant material of today</title>
<author xml:id="author-0000">
<persName>
<forename type="first">R.</forename>
<surname>Van Noort</surname>
</persName>
<affiliation>Department of Restorative Dentistry, Charles Clifford Dental Hospital, University of Sheffield, Sheffield, UK</affiliation>
</author>
<idno type="istex">A154CD224791EBDE5D1DA9507E96F9A306D84508</idno>
<idno type="ark">ark:/67375/1BB-WLP02LVJ-J</idno>
<idno type="DOI">10.1007/BF01133326</idno>
<idno type="article-id">BF01133326</idno>
<idno type="article-id">Art1</idno>
</analytic>
<monogr>
<title level="j">Journal of Materials Science</title>
<title level="j" type="abbrev">J Mater Sci</title>
<idno type="pISSN">0022-2461</idno>
<idno type="eISSN">1573-4803</idno>
<idno type="journal-ID">true</idno>
<idno type="issue-article-count">51</idno>
<idno type="volume-issue-count">12</idno>
<imprint>
<publisher>Kluwer Academic Publishers</publisher>
<pubPlace>Dordrecht</pubPlace>
<date type="published" when="1987-11-01"></date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="3801">3801</biblScope>
<biblScope unit="page" to="3811">3811</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1986-12-08</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>Chemistry</head>
<item>
<term>Polymer Sciences</term>
</item>
<item>
<term>Industrial Chemistry/Chemical Engineering</term>
</item>
<item>
<term>Characterization and Evaluation Materials</term>
</item>
<item>
<term>Mechanics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1986-12-08">Created</change>
<change when="1987-11-01">Published</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2017-10-3">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/A154CD224791EBDE5D1DA9507E96F9A306D84508/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Springer, Publisher found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Kluwer Academic Publishers</PublisherName>
<PublisherLocation>Dordrecht</PublisherLocation>
</PublisherInfo>
<Journal>
<JournalInfo JournalProductType="ArchiveJournal" NumberingStyle="Unnumbered">
<JournalID>10853</JournalID>
<JournalPrintISSN>0022-2461</JournalPrintISSN>
<JournalElectronicISSN>1573-4803</JournalElectronicISSN>
<JournalTitle>Journal of Materials Science</JournalTitle>
<JournalAbbreviatedTitle>J Mater Sci</JournalAbbreviatedTitle>
<JournalSubjectGroup>
<JournalSubject Type="Primary">Chemistry</JournalSubject>
<JournalSubject Type="Secondary">Polymer Sciences</JournalSubject>
<JournalSubject Type="Secondary">Industrial Chemistry/Chemical Engineering</JournalSubject>
<JournalSubject Type="Secondary">Characterization and Evaluation Materials</JournalSubject>
<JournalSubject Type="Secondary">Mechanics</JournalSubject>
</JournalSubjectGroup>
</JournalInfo>
<Volume>
<VolumeInfo VolumeType="Regular" TocLevels="0">
<VolumeIDStart>22</VolumeIDStart>
<VolumeIDEnd>22</VolumeIDEnd>
<VolumeIssueCount>12</VolumeIssueCount>
</VolumeInfo>
<Issue IssueType="Regular">
<IssueInfo TocLevels="0">
<IssueIDStart>11</IssueIDStart>
<IssueIDEnd>11</IssueIDEnd>
<IssueArticleCount>51</IssueArticleCount>
<IssueHistory>
<CoverDate>
<Year>1987</Year>
<Month>11</Month>
</CoverDate>
</IssueHistory>
<IssueCopyright>
<CopyrightHolderName>Chapman and Hall Ltd.</CopyrightHolderName>
<CopyrightYear>1987</CopyrightYear>
</IssueCopyright>
</IssueInfo>
<Article ID="Art1">
<ArticleInfo Language="En" ArticleType="ReviewPaper" NumberingStyle="Unnumbered" TocLevels="0" ContainsESM="No">
<ArticleID>BF01133326</ArticleID>
<ArticleDOI>10.1007/BF01133326</ArticleDOI>
<ArticleSequenceNumber>1</ArticleSequenceNumber>
<ArticleTitle Language="En">Titanium: The implant material of today</ArticleTitle>
<ArticleCategory>Review</ArticleCategory>
<ArticleFirstPage>3801</ArticleFirstPage>
<ArticleLastPage>3811</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>
<Year>2005</Year>
<Month>1</Month>
<Day>26</Day>
</RegistrationDate>
<Received>
<Year>1986</Year>
<Month>12</Month>
<Day>8</Day>
</Received>
<Accepted>
<Year>1987</Year>
<Month>3</Month>
<Day>20</Day>
</Accepted>
</ArticleHistory>
<ArticleCopyright>
<CopyrightHolderName>Chapman and Hall Ltd</CopyrightHolderName>
<CopyrightYear>1987</CopyrightYear>
</ArticleCopyright>
<ArticleGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ArticleGrants>
<ArticleContext>
<JournalID>10853</JournalID>
<VolumeIDStart>22</VolumeIDStart>
<VolumeIDEnd>22</VolumeIDEnd>
<IssueIDStart>11</IssueIDStart>
<IssueIDEnd>11</IssueIDEnd>
</ArticleContext>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff1">
<AuthorName DisplayOrder="Western">
<GivenName>R.</GivenName>
<Particle>Van</Particle>
<FamilyName>Noort</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff1">
<OrgDivision>Department of Restorative Dentistry, Charles Clifford Dental Hospital</OrgDivision>
<OrgName>University of Sheffield</OrgName>
<OrgAddress>
<City>Sheffield</City>
<Country>UK</Country>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para>The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.</Para>
</Abstract>
</ArticleHeader>
<NoBody></NoBody>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Titanium: The implant material of today</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Titanium: The implant material of today</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">Van Noort</namePart>
<affiliation>Department of Restorative Dentistry, Charles Clifford Dental Hospital, University of Sheffield, Sheffield, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="ReviewPaper" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>Kluwer Academic Publishers</publisher>
<place>
<placeTerm type="text">Dordrecht</placeTerm>
</place>
<dateCreated encoding="w3cdtf">1986-12-08</dateCreated>
<dateIssued encoding="w3cdtf">1987-11-01</dateIssued>
<dateIssued encoding="w3cdtf">1987</dateIssued>
<copyrightDate encoding="w3cdtf">1987</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: The use of metals for the replacement of structural components of the human body has been with us for some considerable time. The metals originally used were stainless steels which have gradually been replaced by cobalt-chromium alloys. Although titanium has been used since the late forties, it is only relatively recently that it has gained widespread interest. Titanium and its alloys are being used more and more in preference to the cobalt-chromium alloys and has broadened the field of applications. The features which make titanium such an interesting material are its excellent corrosion resistance in the biological environment, combined with an exception degree of biocompatibility which it shares with only a handful of other materials. In this review the background to the clinical use of titanium is discussed with particular attention to the biological aspects of the material. While there are now many clinical uses for titanium and its alloys their main areas of application are in the field of dentistry and orthopaedics and these are described in some detail.</abstract>
<note>Review</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Materials Science</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J Mater Sci</title>
</titleInfo>
<genre type="journal" displayLabel="Archive Journal" authority="ISTEX" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Springer</publisher>
<dateIssued encoding="w3cdtf">1987-11-01</dateIssued>
<copyrightDate encoding="w3cdtf">1987</copyrightDate>
</originInfo>
<subject>
<genre>Chemistry</genre>
<topic>Polymer Sciences</topic>
<topic>Industrial Chemistry/Chemical Engineering</topic>
<topic>Characterization and Evaluation Materials</topic>
<topic>Mechanics</topic>
</subject>
<identifier type="ISSN">0022-2461</identifier>
<identifier type="eISSN">1573-4803</identifier>
<identifier type="JournalID">10853</identifier>
<identifier type="IssueArticleCount">51</identifier>
<identifier type="VolumeIssueCount">12</identifier>
<part>
<date>1987</date>
<detail type="volume">
<number>22</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>11</number>
<caption>no.</caption>
</detail>
<extent unit="pages">
<start>3801</start>
<end>3811</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Chapman and Hall Ltd., 1987</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">A154CD224791EBDE5D1DA9507E96F9A306D84508</identifier>
<identifier type="ark">ark:/67375/1BB-WLP02LVJ-J</identifier>
<identifier type="DOI">10.1007/BF01133326</identifier>
<identifier type="ArticleID">BF01133326</identifier>
<identifier type="ArticleID">Art1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Chapman and Hall Ltd, 1987</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-3XSW68JL-F">springer</recordContentSource>
<recordOrigin>Chapman and Hall Ltd, 1987</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/A154CD224791EBDE5D1DA9507E96F9A306D84508/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005067 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 005067 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:A154CD224791EBDE5D1DA9507E96F9A306D84508
   |texte=   Titanium: The implant material of today
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022