Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies

Identifieur interne : 003D01 ( Istex/Corpus ); précédent : 003D00; suivant : 003D02

Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies

Auteurs : Junwu Zhu ; Chi Cheng ; Xiaowei Yang ; Yufei Wang ; Ling Qiu ; Dan Li

Source :

RBID : ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A

English descriptors

Abstract

Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.

Url:
DOI: 10.1002/chem.201203219

Links to Exploration step

ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
<author>
<name sortKey="Zhu, Junwu" sort="Zhu, Junwu" uniqKey="Zhu J" first="Junwu" last="Zhu">Junwu Zhu</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (P. R. China)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chi" sort="Cheng, Chi" uniqKey="Cheng C" first="Chi" last="Cheng">Chi Cheng</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaowei" sort="Yang, Xiaowei" uniqKey="Yang X" first="Xiaowei" last="Yang">Xiaowei Yang</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yufei" sort="Wang, Yufei" uniqKey="Wang Y" first="Yufei" last="Wang">Yufei Wang</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Ling" sort="Qiu, Ling" uniqKey="Qiu L" first="Ling" last="Qiu">Ling Qiu</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dan.li2@monash.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/chem.201203219</idno>
<idno type="url">https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003D01</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003D01</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
<author>
<name sortKey="Zhu, Junwu" sort="Zhu, Junwu" uniqKey="Zhu J" first="Junwu" last="Zhu">Junwu Zhu</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (P. R. China)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Chi" sort="Cheng, Chi" uniqKey="Cheng C" first="Chi" last="Cheng">Chi Cheng</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaowei" sort="Yang, Xiaowei" uniqKey="Yang X" first="Xiaowei" last="Yang">Xiaowei Yang</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yufei" sort="Wang, Yufei" uniqKey="Wang Y" first="Yufei" last="Wang">Yufei Wang</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Qiu, Ling" sort="Qiu, Ling" uniqKey="Qiu L" first="Ling" last="Qiu">Ling Qiu</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Dan" sort="Li, Dan" uniqKey="Li D" first="Dan" last="Li">Dan Li</name>
<affiliation>
<mods:affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: dan.li2@monash.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Materials Engineering, Monash University, VIC 3800 (Australia)</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Chemistry – A European Journal</title>
<title level="j" type="alt">CHEMISTRY - A EUROPEAN JOURNAL</title>
<idno type="ISSN">0947-6539</idno>
<idno type="eISSN">1521-3765</idno>
<imprint>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="3082">3082</biblScope>
<biblScope unit="page" to="3089">3089</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2013-02-25">2013-02-25</date>
</imprint>
<idno type="ISSN">0947-6539</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0947-6539</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accessible surface area</term>
<term>Adsorption</term>
<term>Ambient conditions</term>
<term>Annealed</term>
<term>Annealing</term>
<term>Aqueous solution</term>
<term>Assembly structure</term>
<term>Average pore size</term>
<term>Bulk forms</term>
<term>Bulk graphene assemblies</term>
<term>Bulk materials</term>
<term>Capacitance</term>
<term>Capacitance values</term>
<term>Carbon materials</term>
<term>Cellulose esters filter membrane</term>
<term>Certain amount</term>
<term>Characterisation</term>
<term>Characteristic relaxation time</term>
<term>Chem</term>
<term>Corrugation</term>
<term>Current density</term>
<term>Different level</term>
<term>Different temperatures</term>
<term>Dynamic electrosorption analysis</term>
<term>Effective method</term>
<term>Electrochemical</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electrolyte</term>
<term>Electrosorption</term>
<term>Elementary analysis</term>
<term>Emimbf4</term>
<term>Energy environ</term>
<term>Experimental design</term>
<term>Films annealed</term>
<term>Filter membrane</term>
<term>Filtration</term>
<term>Financial support</term>
<term>Frequency response</term>
<term>Ftir results</term>
<term>Full paper</term>
<term>Gmbh</term>
<term>Good agreement</term>
<term>Graphene</term>
<term>Graphene assemblies</term>
<term>Graphene films</term>
<term>Graphene oxide</term>
<term>Graphene product</term>
<term>Graphene sheets</term>
<term>Gravimetric capacitances</term>
<term>Hydrothermal</term>
<term>Hydrothermal treatment</term>
<term>Identical chemical structure</term>
<term>Kgaa</term>
<term>Liquid phase</term>
<term>Mater</term>
<term>Model system</term>
<term>Multilayered</term>
<term>Nano lett</term>
<term>Operation rate</term>
<term>Operation rates</term>
<term>Other hand</term>
<term>Pore</term>
<term>Pore size</term>
<term>Pore structure</term>
<term>Porous carbon</term>
<term>Porous structure</term>
<term>Power density</term>
<term>Quantitative manner</term>
<term>Restacking</term>
<term>Same amount</term>
<term>Samples annealed</term>
<term>Samples drop</term>
<term>Similar procedure</term>
<term>Structural difference</term>
<term>Structural variation</term>
<term>Subtle variation</term>
<term>Supercapacitors</term>
<term>Surface area</term>
<term>Thermal annealing</term>
<term>Vacuum filtration</term>
<term>Various hydrothermal temperatures</term>
<term>Various temperatures</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Weinheim chem</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accessible surface area</term>
<term>Adsorption</term>
<term>Ambient conditions</term>
<term>Annealed</term>
<term>Annealing</term>
<term>Aqueous solution</term>
<term>Assembly structure</term>
<term>Average pore size</term>
<term>Bulk forms</term>
<term>Bulk graphene assemblies</term>
<term>Bulk materials</term>
<term>Capacitance</term>
<term>Capacitance values</term>
<term>Carbon materials</term>
<term>Cellulose esters filter membrane</term>
<term>Certain amount</term>
<term>Characterisation</term>
<term>Characteristic relaxation time</term>
<term>Chem</term>
<term>Corrugation</term>
<term>Current density</term>
<term>Different level</term>
<term>Different temperatures</term>
<term>Dynamic electrosorption analysis</term>
<term>Effective method</term>
<term>Electrochemical</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electrolyte</term>
<term>Electrosorption</term>
<term>Elementary analysis</term>
<term>Emimbf4</term>
<term>Energy environ</term>
<term>Experimental design</term>
<term>Films annealed</term>
<term>Filter membrane</term>
<term>Filtration</term>
<term>Financial support</term>
<term>Frequency response</term>
<term>Ftir results</term>
<term>Full paper</term>
<term>Gmbh</term>
<term>Good agreement</term>
<term>Graphene</term>
<term>Graphene assemblies</term>
<term>Graphene films</term>
<term>Graphene oxide</term>
<term>Graphene product</term>
<term>Graphene sheets</term>
<term>Gravimetric capacitances</term>
<term>Hydrothermal</term>
<term>Hydrothermal treatment</term>
<term>Identical chemical structure</term>
<term>Kgaa</term>
<term>Liquid phase</term>
<term>Mater</term>
<term>Model system</term>
<term>Multilayered</term>
<term>Nano lett</term>
<term>Operation rate</term>
<term>Operation rates</term>
<term>Other hand</term>
<term>Pore</term>
<term>Pore size</term>
<term>Pore structure</term>
<term>Porous carbon</term>
<term>Porous structure</term>
<term>Power density</term>
<term>Quantitative manner</term>
<term>Restacking</term>
<term>Same amount</term>
<term>Samples annealed</term>
<term>Samples drop</term>
<term>Similar procedure</term>
<term>Structural difference</term>
<term>Structural variation</term>
<term>Subtle variation</term>
<term>Supercapacitors</term>
<term>Surface area</term>
<term>Thermal annealing</term>
<term>Vacuum filtration</term>
<term>Various hydrothermal temperatures</term>
<term>Various temperatures</term>
<term>Verlag</term>
<term>Verlag gmbh</term>
<term>Weinheim</term>
<term>Weinheim chem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>graphene</json:string>
<json:string>chem</json:string>
<json:string>electrosorption</json:string>
<json:string>capacitance</json:string>
<json:string>characterisation</json:string>
<json:string>annealed</json:string>
<json:string>multilayered</json:string>
<json:string>electrochemical</json:string>
<json:string>electrolyte</json:string>
<json:string>annealing</json:string>
<json:string>supercapacitors</json:string>
<json:string>pore structure</json:string>
<json:string>filtration</json:string>
<json:string>pore size</json:string>
<json:string>corrugation</json:string>
<json:string>adsorption</json:string>
<json:string>weinheim</json:string>
<json:string>kgaa</json:string>
<json:string>hydrothermal</json:string>
<json:string>restacking</json:string>
<json:string>verlag</json:string>
<json:string>gmbh</json:string>
<json:string>verlag gmbh</json:string>
<json:string>accessible surface area</json:string>
<json:string>emimbf4</json:string>
<json:string>graphene sheets</json:string>
<json:string>pore</json:string>
<json:string>vacuum filtration</json:string>
<json:string>aqueous solution</json:string>
<json:string>graphene assemblies</json:string>
<json:string>gravimetric capacitances</json:string>
<json:string>various hydrothermal temperatures</json:string>
<json:string>samples annealed</json:string>
<json:string>surface area</json:string>
<json:string>bulk materials</json:string>
<json:string>dynamic electrosorption analysis</json:string>
<json:string>thermal annealing</json:string>
<json:string>various temperatures</json:string>
<json:string>frequency response</json:string>
<json:string>weinheim chem</json:string>
<json:string>bulk graphene assemblies</json:string>
<json:string>capacitance values</json:string>
<json:string>bulk forms</json:string>
<json:string>current density</json:string>
<json:string>hydrothermal treatment</json:string>
<json:string>operation rate</json:string>
<json:string>assembly structure</json:string>
<json:string>porous structure</json:string>
<json:string>effective method</json:string>
<json:string>graphene films</json:string>
<json:string>graphene product</json:string>
<json:string>nano lett</json:string>
<json:string>mater</json:string>
<json:string>subtle variation</json:string>
<json:string>samples drop</json:string>
<json:string>graphene oxide</json:string>
<json:string>energy environ</json:string>
<json:string>porous carbon</json:string>
<json:string>carbon materials</json:string>
<json:string>other hand</json:string>
<json:string>model system</json:string>
<json:string>quantitative manner</json:string>
<json:string>structural variation</json:string>
<json:string>elementary analysis</json:string>
<json:string>electrochemical impedance spectroscopy</json:string>
<json:string>characteristic relaxation time</json:string>
<json:string>operation rates</json:string>
<json:string>different level</json:string>
<json:string>ftir results</json:string>
<json:string>liquid phase</json:string>
<json:string>identical chemical structure</json:string>
<json:string>structural difference</json:string>
<json:string>experimental design</json:string>
<json:string>films annealed</json:string>
<json:string>full paper</json:string>
<json:string>power density</json:string>
<json:string>similar procedure</json:string>
<json:string>certain amount</json:string>
<json:string>cellulose esters filter membrane</json:string>
<json:string>ambient conditions</json:string>
<json:string>different temperatures</json:string>
<json:string>filter membrane</json:string>
<json:string>financial support</json:string>
<json:string>average pore size</json:string>
<json:string>good agreement</json:string>
<json:string>same amount</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Dr. Junwu Zhu</name>
<affiliations>
<json:string>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
<json:string>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (P. R. China)</json:string>
</affiliations>
</json:item>
<json:item>
<name>Chi Cheng</name>
<affiliations>
<json:string>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
</affiliations>
</json:item>
<json:item>
<name>Xiaowei Yang</name>
<affiliations>
<json:string>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yufei Wang</name>
<affiliations>
<json:string>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ling Qiu</name>
<affiliations>
<json:string>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
</affiliations>
</json:item>
<json:item>
<name>Prof. Dan Li</name>
<affiliations>
<json:string>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
<json:string>E-mail: dan.li2@monash.edu</json:string>
<json:string>Correspondence address: Department of Materials Engineering, Monash University, VIC 3800 (Australia)</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>electrosorption</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>graphene</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>nanostructures</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>supercapacitors</value>
</json:item>
</subject>
<articleId>
<json:string>CHEM201203219</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-7PGQ2055-L</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.</abstract>
<qualityIndicators>
<score>9.268</score>
<pdfWordCount>5964</pdfWordCount>
<pdfCharCount>34383</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>595.276 x 841.89 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>189</abstractWordCount>
<abstractCharCount>1331</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
<pmid>
<json:string>23307501</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Chemistry – A European Journal</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1521-3765</json:string>
</doi>
<issn>
<json:string>0947-6539</json:string>
</issn>
<eissn>
<json:string>1521-3765</json:string>
</eissn>
<publisherId>
<json:string>CHEM</json:string>
</publisherId>
<volume>19</volume>
<issue>9</issue>
<pages>
<first>3082</first>
<last>3089</last>
<total>8</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Full Paper</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2013</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Ministry of Education, Nanjing</json:string>
<json:string>Australian Research Council</json:string>
<json:string>China Scholarship Council</json:string>
<json:string>Key Laboratory for Soft Chemistry and Functional Materials</json:string>
<json:string>Crown Scientific</json:string>
<json:string>Nanjing University</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>E. A. Stach</json:string>
<json:string>J. Appl</json:string>
<json:string>Y. Zhu</json:string>
<json:string>M. Herrera-Alonso</json:string>
<json:string>C. Andr</json:string>
<json:string>M. J. Allen</json:string>
<json:string>R. K. Prud</json:string>
<json:string>A. Dimiev</json:string>
<json:string>T. E. Mallouk</json:string>
<json:string>G. Shi</json:string>
<json:string>J. P. Rourke</json:string>
<json:string>C. Punckt</json:string>
<json:string>Y. Gogotsi</json:string>
<json:string>S. Park</json:string>
<json:string>J. Chmiola</json:string>
<json:string>P. Bracconi</json:string>
<json:string>M. F. El-Kady</json:string>
<json:string>A. F. Hollenkamp</json:string>
<json:string>U. Lupo</json:string>
<json:string>P. J. Ferreira</json:string>
<json:string>S. Hou</json:string>
<json:string>C. Cheng</json:string>
<json:string>N. R. Wilson</json:string>
<json:string>P. Simon</json:string>
<json:string>J. R. Miller</json:string>
<json:string>G. P. Simon</json:string>
<json:string>J. L. Li</json:string>
<json:string>D. H. Adamson</json:string>
<json:string>M. Li</json:string>
<json:string>Y. Q. Sun</json:string>
<json:string>Z. Tang</json:string>
<json:string>Dan Li</json:string>
<json:string>S. A. Chizhik</json:string>
<json:string>S. J. Gregg</json:string>
<json:string>D. A. Savill</json:string>
<json:string>J. Jagiello</json:string>
<json:string>X. Ma</json:string>
<json:string>B. E. Conway</json:string>
<json:string>R. D. Piner</json:string>
<json:string>M. B. Muller</json:string>
<json:string>M. J. McAllister</json:string>
<json:string>J. Pharm</json:string>
<json:string>W. Cai</json:string>
<json:string>S. Gilje</json:string>
<json:string>B. G. Sumpter</json:string>
<json:string>A. G. Pandolfo</json:string>
<json:string>J. Huang</json:string>
<json:string>K. A. Cychosz</json:string>
<json:string>A. Pirkle</json:string>
<json:string>J. W. Suk</json:string>
<json:string>G. Cao</json:string>
<json:string>Q. Cheng</json:string>
<json:string>J. M. Gibson</json:string>
<json:string>J. Phys</json:string>
<json:string>C. Largeot</json:string>
<json:string>B. C. Holloway</json:string>
<json:string>S. Yue</json:string>
<json:string>N. I. Kovtyukhova</json:string>
<json:string>L. Jiang</json:string>
<json:string>G. Q. Lu</json:string>
<json:string>L. Hu</json:string>
<json:string>X. Li</json:string>
<json:string>P. L. Taberna</json:string>
<json:string>Y. Wang</json:string>
<json:string>A. Kajdos</json:string>
<json:string>J. Liang</json:string>
<json:string>R. Beanland</json:string>
<json:string>Q. Y. Yan</json:string>
<json:string>S. Murali</json:string>
<json:string>B. Tribollet</json:string>
<json:string>B. Z. Jang</json:string>
<json:string>Nano Lett</json:string>
<json:string>J. Wang</json:string>
<json:string>X. S. Zhao</json:string>
<json:string>D. Neff</json:string>
<json:string>M. Thommes</json:string>
<json:string>R. S. Ruoff</json:string>
<json:string>W. Yang</json:string>
<json:string>G. H. B. Dommett</json:string>
<json:string>J. J. Kipling</json:string>
<json:string>L. Taberna</json:string>
<json:string>R. A. Rçmer</json:string>
<json:string>S. Stankovich</json:string>
<json:string>V. C. Tung</json:string>
<json:string>T. Sun</json:string>
<json:string>Z. Sun</json:string>
<json:string>D. Su</json:string>
<json:string>H. Zhang</json:string>
<json:string>Y. Yang</json:string>
<json:string>X. Zhang</json:string>
<json:string>J. Liu</json:string>
<json:string>K. M. Kohlhaas</json:string>
<json:string>J. Xia</json:string>
<json:string>R. B. Kaner</json:string>
<json:string>G. Yushin</json:string>
<json:string>L. L. Zhang</json:string>
<json:string>Z. Yu</json:string>
<json:string>G. Rowlands</json:string>
<json:string>L. Qiu</json:string>
<json:string>X. Y. Qi</json:string>
<json:string>J. Zhu</json:string>
<json:string>A. Zhamu</json:string>
<json:string>Y. Lin</json:string>
<json:string>K. J. Ganesh</json:string>
<json:string>F. Chen</json:string>
<json:string>Q. O. Wu</json:string>
<json:string>F. Boey</json:string>
<json:string>B. Xu</json:string>
<json:string>B. R. Martin</json:string>
<json:string>J. R. Potts</json:string>
<json:string>G. Q. Shi</json:string>
<json:string>H. Chen</json:string>
<json:string>C. Portet</json:string>
<json:string>N. Tao</json:string>
<json:string>A. D. Gorchinskiy</json:string>
<json:string>A. Kvit</json:string>
<json:string>M. Segal</json:string>
<json:string>L. Pan</json:string>
<json:string>Z. Y. Yin</json:string>
<json:string>M. G. Kanatzidis</json:string>
<json:string>S. X. Wu</json:string>
<json:string>Z. Sui</json:string>
<json:string>J. N. Coleman</json:string>
<json:string>Y. Cui</json:string>
<json:string>E. T. Samulski</json:string>
<json:string>R. Ruoff</json:string>
<json:string>L. F. Cui</json:string>
<json:string>P. H. Emmett</json:string>
<json:string>J. Li</json:string>
<json:string>Bay Carbon</json:string>
<json:string>F. Ma</json:string>
<json:string>S. Jeong</json:string>
<json:string>Y. Wu</json:string>
<json:string>F. Jones</json:string>
<json:string>L. P. Ma</json:string>
<json:string>G. G. Wallace</json:string>
<json:string>R. Car</json:string>
<json:string>H. C. Schniepp</json:string>
<json:string>E. Frackowiak</json:string>
<json:string>Y. Huang</json:string>
<json:string>Q. C. Zhang</json:string>
<json:string>H. Li</json:string>
<json:string>P. J. Ollivier</json:string>
<json:string>DEA Keywords</json:string>
<json:string>L. Xiao</json:string>
<json:string>D. W. Wang</json:string>
<json:string>E. Teller</json:string>
<json:string>M. R. Zachariah</json:string>
<json:string>M. A. Pope</json:string>
<json:string>Kovtyukhaova</json:string>
<json:string>F. Li</json:string>
<json:string>A. K. Geim</json:string>
<json:string>R. B. Wilson</json:string>
<json:string>R. A. Outlaw</json:string>
<json:string>L. Zou</json:string>
<json:string>J. Luo</json:string>
<json:string>X. Yang</json:string>
<json:string>M. D. Stoller</json:string>
<json:string>D. V. Kosynkin</json:string>
<json:string>R. M. Wallace</json:string>
<json:string>J. M. Tour</json:string>
<json:string>D. Li</json:string>
<json:string>E. V. Buzaneva</json:string>
<json:string>H. D. Jang</json:string>
<json:string>Y. Pourcelot</json:string>
<json:string>C. Liu</json:string>
<json:string>V. Meunier</json:string>
<json:string>C. D. Zangmeister</json:string>
<json:string>M. Liu</json:string>
<json:string>S. Dubin</json:string>
<json:string>S. Brunauer</json:string>
<json:string>J. W. Choi</json:string>
<json:string>F. La Mantia</json:string>
<json:string>D. A. Dikin</json:string>
</persName>
<placeName>
<json:string>China</json:string>
<json:string>York</json:string>
<json:string>Compton</json:string>
</placeName>
<ref_url>
<json:string>http://dx.doi.org/</json:string>
</ref_url>
<ref_bibl>
<json:string>[34]</json:string>
<json:string>[11]</json:string>
<json:string>D. Li et al.</json:string>
<json:string>Hu et al.[32]</json:string>
<json:string>[24]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-7PGQ2055-L</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - general chemistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - General Chemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences exactes et technologie</json:string>
<json:string>3 - chimie</json:string>
<json:string>4 - chimie generale et chimie physique</json:string>
</inist>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/chem.201203219</json:string>
</doi>
<id>7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<availability>
<licence>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</licence>
</availability>
<date type="published" when="2013-02-25"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
<author xml:id="author-0000">
<persName>
<addName>Dr.</addName>
<forename type="first">Junwu</forename>
<surname>Zhu</surname>
</persName>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (P. R. China)
<address>
<country key="CN"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Chi</forename>
<surname>Cheng</surname>
</persName>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Xiaowei</forename>
<surname>Yang</surname>
</persName>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Yufei</forename>
<surname>Wang</surname>
</persName>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Ling</forename>
<surname>Qiu</surname>
</persName>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)
<address>
<country key="AU"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<addName>Prof.</addName>
<forename type="first">Dan</forename>
<surname>Li</surname>
</persName>
<email>dan.li2@monash.edu</email>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)
<address>
<country key="AU"></country>
</address>
</affiliation>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
</author>
<idno type="istex">7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A</idno>
<idno type="ark">ark:/67375/WNG-7PGQ2055-L</idno>
<idno type="DOI">10.1002/chem.201203219</idno>
<idno type="unit">CHEM201203219</idno>
<idno type="toTypesetVersion">file:CHEM.CHEM201203219.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Chemistry – A European Journal</title>
<title level="j" type="alt">CHEMISTRY - A EUROPEAN JOURNAL</title>
<idno type="pISSN">0947-6539</idno>
<idno type="eISSN">1521-3765</idno>
<idno type="book-DOI">10.1002/(ISSN)1521-3765</idno>
<idno type="book-part-DOI">10.1002/chem.v19.9</idno>
<idno type="product">CHEM</idno>
<imprint>
<biblScope unit="vol">19</biblScope>
<biblScope unit="issue">9</biblScope>
<biblScope unit="page" from="3082">3082</biblScope>
<biblScope unit="page" to="3089">3089</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>WILEY‐VCH Verlag</publisher>
<pubPlace>Weinheim</pubPlace>
<date type="published" when="2013-02-25"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>
<hi rend="bold">Stacked up</hi>
: Dynamic electrosorption analysis on multilayered chemically converted graphene films proves itself an easily accessible and powerful method for probing the stacking behaviour of graphene sheets (see figure). This method revealed a number of experimental and characterisation issues that are crucial for production and utilisation of graphene‐base d‐bulk materials, but are often overlooked in practice due to the limitations of the traditional characterisation techniques.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:09476539:media:CHEM201203219:content"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">electrosorption</term>
<term xml:id="kwd2">graphene</term>
<term xml:id="kwd3">nanostructures</term>
<term xml:id="kwd4">supercapacitors</term>
</keywords>
<keywords rend="articleCategory">
<term>Full Paper</term>
</keywords>
<keywords rend="tocHeading1">
<term>Full Papers</term>
</keywords>
<keywords rend="tocHeading2">
<term>Graphene</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>WILEY‐VCH Verlag</publisherName>
<publisherLoc>Weinheim</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-3765</doi>
<issn type="print">0947-6539</issn>
<issn type="electronic">1521-3765</issn>
<idGroup>
<id type="product" value="CHEM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="CHEMISTRY - A EUROPEAN JOURNAL">Chemistry – A European Journal</title>
<title type="short">Chem. Eur. J.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="90">
<doi origin="wiley" registered="yes">10.1002/chem.v19.9</doi>
<numberingGroup>
<numbering type="journalVolume" number="19">19</numbering>
<numbering type="journalIssue">9</numbering>
</numberingGroup>
<coverDate startDate="2013-02-25">February 25, 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="24" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/chem.201203219</doi>
<idGroup>
<id type="unit" value="CHEM201203219"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Full Paper</title>
<title type="tocHeading1">Full Papers</title>
<title type="tocHeading2">Graphene</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2012-09-10"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.2.0 mode:FullText" date="2013-02-14"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-01-10"></event>
<event type="firstOnline" date="2013-01-10"></event>
<event type="publishedOnlineFinalForm" date="2013-02-14"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-09"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-02"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">3082</numbering>
<numbering type="pageLast">3089</numbering>
</numberingGroup>
<correspondenceTo>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CHEM.CHEM201203219.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="7"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="64"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#aa #ab">
<personName>
<honorifics>Dr.</honorifics>
<givenNames>Junwu</givenNames>
<familyName>Zhu</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#aa">
<personName>
<givenNames>Chi</givenNames>
<familyName>Cheng</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#aa">
<personName>
<givenNames>Xiaowei</givenNames>
<familyName>Yang</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#aa">
<personName>
<givenNames>Yufei</givenNames>
<familyName>Wang</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#aa">
<personName>
<givenNames>Ling</givenNames>
<familyName>Qiu</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#aa" corresponding="yes">
<personName>
<honorifics>Prof.</honorifics>
<givenNames>Dan</givenNames>
<familyName>Li</familyName>
</personName>
<contactDetails>
<email>dan.li2@monash.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="aa" countryCode="AU" type="organization">
<unparsedAffiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</unparsedAffiliation>
</affiliation>
<affiliation xml:id="ab" countryCode="CN" type="organization">
<unparsedAffiliation>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (P. R. China)</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">electrosorption</keyword>
<keyword xml:id="kwd2">graphene</keyword>
<keyword xml:id="kwd3">nanostructures</keyword>
<keyword xml:id="kwd4">supercapacitors</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Australian Research Council</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Jiangsu Funds for Distinguished Young Scientists</fundingAgency>
<fundingNumber>BK2012035</fundingNumber>
</fundingInfo>
<fundingInfo>
<fundingAgency>Program for New Century Excellent Talents in University</fundingAgency>
</fundingInfo>
<supportingInformation>
<p>As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:09476539:media:chem201203219:chem_201203219_sm_miscellaneous_information"></mediaResource>
<caption>miscellaneous_information</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>
<b>Stacked up</b>
: Dynamic electrosorption analysis on multilayered chemically converted graphene films proves itself an easily accessible and powerful method for probing the stacking behaviour of graphene sheets (see figure). This method revealed a number of experimental and characterisation issues that are crucial for production and utilisation of graphene‐base d‐bulk materials, but are often overlooked in practice due to the limitations of the traditional characterisation techniques.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="WILEY-VCH" href="urn:x-wiley:09476539:media:CHEM201203219:content"></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies</title>
</titleInfo>
<name type="personal">
<namePart type="termsOfAddress">Dr.</namePart>
<namePart type="given">Junwu</namePart>
<namePart type="family">Zhu</namePart>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<affiliation>Key Laboratory for Soft Chemistry and Functional Materials, Nanjing University of Science and Technology, Ministry of Education, Nanjing 210094 (P. R. China)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chi</namePart>
<namePart type="family">Cheng</namePart>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaowei</namePart>
<namePart type="family">Yang</namePart>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufei</namePart>
<namePart type="family">Wang</namePart>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ling</namePart>
<namePart type="family">Qiu</namePart>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="termsOfAddress">Prof.</namePart>
<namePart type="given">Dan</namePart>
<namePart type="family">Li</namePart>
<affiliation>Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<affiliation>E-mail: dan.li2@monash.edu</affiliation>
<affiliation>Correspondence address: Department of Materials Engineering, Monash University, VIC 3800 (Australia)</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>WILEY‐VCH Verlag</publisher>
<place>
<placeTerm type="text">Weinheim</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2013-02-25</dateIssued>
<dateCaptured encoding="w3cdtf">2012-09-10</dateCaptured>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">7</extent>
<extent unit="tables">0</extent>
<extent unit="references">64</extent>
</physicalDescription>
<abstract lang="en">Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.</abstract>
<abstract>Stacked up: Dynamic electrosorption analysis on multilayered chemically converted graphene films proves itself an easily accessible and powerful method for probing the stacking behaviour of graphene sheets (see figure). This method revealed a number of experimental and characterisation issues that are crucial for production and utilisation of graphene‐base d‐bulk materials, but are often overlooked in practice due to the limitations of the traditional characterisation techniques.</abstract>
<note type="funding">Australian Research Council</note>
<note type="funding">Jiangsu Funds for Distinguished Young Scientists - No. BK2012035; </note>
<note type="funding">Program for New Century Excellent Talents in University</note>
<subject lang="en">
<genre>keywords</genre>
<topic>electrosorption</topic>
<topic>graphene</topic>
<topic>nanostructures</topic>
<topic>supercapacitors</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Chemistry – A European Journal</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Chem. Eur. J.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.Supporting Info Item: miscellaneous_information - </note>
<subject>
<genre>article-category</genre>
<topic>Full Paper</topic>
</subject>
<identifier type="ISSN">0947-6539</identifier>
<identifier type="eISSN">1521-3765</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-3765</identifier>
<identifier type="PublisherID">CHEM</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>3082</start>
<end>3089</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A</identifier>
<identifier type="ark">ark:/67375/WNG-7PGQ2055-L</identifier>
<identifier type="DOI">10.1002/chem.201203219</identifier>
<identifier type="ArticleID">CHEM201203219</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>WILEY‐VCH Verlag</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D01 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003D01 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7B6ACC5A24EB4AF62EDF24CEBB8D3D5EE5BB5D9A
   |texte=   Dynamic Electrosorption Analysis as an Effective Means to Characterise the Structure of Bulk Graphene Assemblies
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022