Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Developing Mouse Dentition

Identifieur interne : 003874 ( Istex/Corpus ); précédent : 003873; suivant : 003875

The Developing Mouse Dentition

Auteurs : Renata Peterková ; Miroslav Peterka ; Hervé Lesot

Source :

RBID : ISTEX:72ABA95C209A7699FF4B59400E223E1692227799

English descriptors

Abstract

Abstract: Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo‐spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth‐activating and growth‐inhibiting signals, and (2) apoptosis stimulation by the failure of death‐suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth‐activating (apoptosis‐suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell “suicide” by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.

Url:
DOI: 10.1196/annals.1299.083

Links to Exploration step

ISTEX:72ABA95C209A7699FF4B59400E223E1692227799

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Developing Mouse Dentition</title>
<author>
<name sortKey="Peterkova, Renata" sort="Peterkova, Renata" uniqKey="Peterkova R" first="Renata" last="Peterková">Renata Peterková</name>
<affiliation>
<mods:affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: repete@biomed.cas.cz</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peterka, Miroslav" sort="Peterka, Miroslav" uniqKey="Peterka M" first="Miroslav" last="Peterka">Miroslav Peterka</name>
<affiliation>
<mods:affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lesot, Herve" sort="Lesot, Herve" uniqKey="Lesot H" first="Hervé" last="Lesot">Hervé Lesot</name>
<affiliation>
<mods:affiliation>INSERM U‐595, 11, rue Humann, 67085 Strasbourg, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:72ABA95C209A7699FF4B59400E223E1692227799</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1196/annals.1299.083</idno>
<idno type="url">https://api.istex.fr/document/72ABA95C209A7699FF4B59400E223E1692227799/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003874</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003874</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">The Developing Mouse Dentition</title>
<author>
<name sortKey="Peterkova, Renata" sort="Peterkova, Renata" uniqKey="Peterkova R" first="Renata" last="Peterková">Renata Peterková</name>
<affiliation>
<mods:affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: repete@biomed.cas.cz</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Peterka, Miroslav" sort="Peterka, Miroslav" uniqKey="Peterka M" first="Miroslav" last="Peterka">Miroslav Peterka</name>
<affiliation>
<mods:affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lesot, Herve" sort="Lesot, Herve" uniqKey="Lesot H" first="Hervé" last="Lesot">Hervé Lesot</name>
<affiliation>
<mods:affiliation>INSERM U‐595, 11, rue Humann, 67085 Strasbourg, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Annals of the New York Academy of Sciences</title>
<title level="j" type="alt">ANNALS OF NEW YORK ACADEMY SCIENCES</title>
<idno type="ISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<imprint>
<biblScope unit="vol">1010</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="453">453</biblScope>
<biblScope unit="page" to="466">466</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-12">2003-12</date>
</imprint>
<idno type="ISSN">0077-8923</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0077-8923</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>2udo</term>
<term>3urjudpphg fhoo ghdwk</term>
<term>6pdg</term>
<term>7klv</term>
<term>Dovr</term>
<term>Dphoreodvwv</term>
<term>Dsrswrvlv</term>
<term>Dsrswrvlv uhjxodwlrq</term>
<term>Dsrswrwlf</term>
<term>Ehhq</term>
<term>Ehwzhhq</term>
<term>Erwk</term>
<term>Exgglqj</term>
<term>Fdghplf 3uhvv</term>
<term>Fhoo</term>
<term>Fhoo ghdwk</term>
<term>Fhoov</term>
<term>Ghdwk</term>
<term>Ghqwdo</term>
<term>Ghqwdo hslwkholxp</term>
<term>Ghyhors</term>
<term>Ghyhorslqj</term>
<term>Ghyhorsphqw</term>
<term>Gldvwhpd</term>
<term>Gliihuhqwldwlrq</term>
<term>Gxulqj</term>
<term>Hduo</term>
<term>Hiihfw</term>
<term>Hiihfwv</term>
<term>Hqdpho</term>
<term>Hqdpho nqrw</term>
<term>Hslwkholdo</term>
<term>Hslwkholdo exgglqj</term>
<term>Hslwkholdo fhoov</term>
<term>Hslwkholxp</term>
<term>Hyhorsphqw</term>
<term>Iluvw</term>
<term>Iurp</term>
<term>Ixqfwlrqdo</term>
<term>Jurzwk</term>
<term>Jurzwk lqklelwruv</term>
<term>Kdyh</term>
<term>Kxpdq</term>
<term>Lqflvru</term>
<term>Lqklelwru</term>
<term>Lqklelwruv</term>
<term>Lqwhudfwlrqv</term>
<term>Lqyroyhg</term>
<term>Odwhu</term>
<term>Olpe</term>
<term>Orzhu</term>
<term>Phgldwhg</term>
<term>Phpeudqh</term>
<term>Phvldo olplw</term>
<term>Plfh</term>
<term>Pljkw</term>
<term>Plwrfkrqguldo sdwkzd</term>
<term>Produ</term>
<term>Produv</term>
<term>Pruskrjhqhvlv</term>
<term>Pruskrjhqhwlf</term>
<term>Prxvh</term>
<term>Rffxuv</term>
<term>Rgrqwrjhqhvlv</term>
<term>Sdwkzd</term>
<term>Sdwwhuq</term>
<term>Srswrvlv</term>
<term>Sulprugld</term>
<term>Surwhlqv</term>
<term>Uhjxodwlrq</term>
<term>Uroh</term>
<term>Vljqdo</term>
<term>Vljqdolqj</term>
<term>Vljqdov</term>
<term>Vshflilf</term>
<term>Vwdjhv</term>
<term>Vwuxfwxuhv</term>
<term>Vxssuhvvlrq</term>
<term>Whhwk</term>
<term>Wkdw</term>
<term>Wkhlu</term>
<term>Wklv</term>
<term>Wkuhh glphqvlrqdo uhfrqvwuxfwlrq</term>
<term>Wrrwk</term>
<term>Wrrwk ghyhorsphqw</term>
<term>Wrrwk sdwwhuq</term>
<term>Xsshu</term>
<term>Yhvwljldo</term>
<term>Yhvwljldo wrrwk sulprugld</term>
<term>Zklfk</term>
<term>Zlwk</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>2udo</term>
<term>3urjudpphg fhoo ghdwk</term>
<term>6pdg</term>
<term>7klv</term>
<term>Dovr</term>
<term>Dphoreodvwv</term>
<term>Dsrswrvlv</term>
<term>Dsrswrvlv uhjxodwlrq</term>
<term>Dsrswrwlf</term>
<term>Ehhq</term>
<term>Ehwzhhq</term>
<term>Erwk</term>
<term>Exgglqj</term>
<term>Fdghplf 3uhvv</term>
<term>Fhoo</term>
<term>Fhoo ghdwk</term>
<term>Fhoov</term>
<term>Ghdwk</term>
<term>Ghqwdo</term>
<term>Ghqwdo hslwkholxp</term>
<term>Ghyhors</term>
<term>Ghyhorslqj</term>
<term>Ghyhorsphqw</term>
<term>Gldvwhpd</term>
<term>Gliihuhqwldwlrq</term>
<term>Gxulqj</term>
<term>Hduo</term>
<term>Hiihfw</term>
<term>Hiihfwv</term>
<term>Hqdpho</term>
<term>Hqdpho nqrw</term>
<term>Hslwkholdo</term>
<term>Hslwkholdo exgglqj</term>
<term>Hslwkholdo fhoov</term>
<term>Hslwkholxp</term>
<term>Hyhorsphqw</term>
<term>Iluvw</term>
<term>Iurp</term>
<term>Ixqfwlrqdo</term>
<term>Jurzwk</term>
<term>Jurzwk lqklelwruv</term>
<term>Kdyh</term>
<term>Kxpdq</term>
<term>Lqflvru</term>
<term>Lqklelwru</term>
<term>Lqklelwruv</term>
<term>Lqwhudfwlrqv</term>
<term>Lqyroyhg</term>
<term>Odwhu</term>
<term>Olpe</term>
<term>Orzhu</term>
<term>Phgldwhg</term>
<term>Phpeudqh</term>
<term>Phvldo olplw</term>
<term>Plfh</term>
<term>Pljkw</term>
<term>Plwrfkrqguldo sdwkzd</term>
<term>Produ</term>
<term>Produv</term>
<term>Pruskrjhqhvlv</term>
<term>Pruskrjhqhwlf</term>
<term>Prxvh</term>
<term>Rffxuv</term>
<term>Rgrqwrjhqhvlv</term>
<term>Sdwkzd</term>
<term>Sdwwhuq</term>
<term>Srswrvlv</term>
<term>Sulprugld</term>
<term>Surwhlqv</term>
<term>Uhjxodwlrq</term>
<term>Uroh</term>
<term>Vljqdo</term>
<term>Vljqdolqj</term>
<term>Vljqdov</term>
<term>Vshflilf</term>
<term>Vwdjhv</term>
<term>Vwuxfwxuhv</term>
<term>Vxssuhvvlrq</term>
<term>Whhwk</term>
<term>Wkdw</term>
<term>Wkhlu</term>
<term>Wklv</term>
<term>Wkuhh glphqvlrqdo uhfrqvwuxfwlrq</term>
<term>Wrrwk</term>
<term>Wrrwk ghyhorsphqw</term>
<term>Wrrwk sdwwhuq</term>
<term>Xsshu</term>
<term>Yhvwljldo</term>
<term>Yhvwljldo wrrwk sulprugld</term>
<term>Zklfk</term>
<term>Zlwk</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Abstract: Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo‐spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth‐activating and growth‐inhibiting signals, and (2) apoptosis stimulation by the failure of death‐suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth‐activating (apoptosis‐suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell “suicide” by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>dsrswrvlv</json:string>
<json:string>wrrwk</json:string>
<json:string>gxulqj</json:string>
<json:string>fhoo</json:string>
<json:string>ghdwk</json:string>
<json:string>prxvh</json:string>
<json:string>hslwkholxp</json:string>
<json:string>ghqwdo</json:string>
<json:string>ghyhorsphqw</json:string>
<json:string>fhoov</json:string>
<json:string>produ</json:string>
<json:string>srswrvlv</json:string>
<json:string>zlwk</json:string>
<json:string>uhjxodwlrq</json:string>
<json:string>jurzwk</json:string>
<json:string>dovr</json:string>
<json:string>wkdw</json:string>
<json:string>sulprugld</json:string>
<json:string>ghyhorslqj</json:string>
<json:string>lqflvru</json:string>
<json:string>pruskrjhqhvlv</json:string>
<json:string>hqdpho</json:string>
<json:string>whhwk</json:string>
<json:string>yhvwljldo</json:string>
<json:string>hslwkholdo</json:string>
<json:string>ghqwdo hslwkholxp</json:string>
<json:string>wkhlu</json:string>
<json:string>iurp</json:string>
<json:string>produv</json:string>
<json:string>6pdg</json:string>
<json:string>ehhq</json:string>
<json:string>vshflilf</json:string>
<json:string>iluvw</json:string>
<json:string>vwdjhv</json:string>
<json:string>vljqdolqj</json:string>
<json:string>exgglqj</json:string>
<json:string>pljkw</json:string>
<json:string>sdwkzd</json:string>
<json:string>zklfk</json:string>
<json:string>plfh</json:string>
<json:string>orzhu</json:string>
<json:string>dphoreodvwv</json:string>
<json:string>lqyroyhg</json:string>
<json:string>ixqfwlrqdo</json:string>
<json:string>2udo</json:string>
<json:string>hiihfwv</json:string>
<json:string>gldvwhpd</json:string>
<json:string>hyhorsphqw</json:string>
<json:string>sdwwhuq</json:string>
<json:string>dsrswrwlf</json:string>
<json:string>rgrqwrjhqhvlv</json:string>
<json:string>lqklelwruv</json:string>
<json:string>lqwhudfwlrqv</json:string>
<json:string>fhoo ghdwk</json:string>
<json:string>vwuxfwxuhv</json:string>
<json:string>erwk</json:string>
<json:string>rffxuv</json:string>
<json:string>7klv</json:string>
<json:string>xsshu</json:string>
<json:string>kdyh</json:string>
<json:string>surwhlqv</json:string>
<json:string>vljqdov</json:string>
<json:string>uroh</json:string>
<json:string>vljqdo</json:string>
<json:string>pruskrjhqhwlf</json:string>
<json:string>gliihuhqwldwlrq</json:string>
<json:string>hiihfw</json:string>
<json:string>wklv</json:string>
<json:string>olpe</json:string>
<json:string>odwhu</json:string>
<json:string>ghyhors</json:string>
<json:string>kxpdq</json:string>
<json:string>vxssuhvvlrq</json:string>
<json:string>phgldwhg</json:string>
<json:string>ehwzhhq</json:string>
<json:string>lqklelwru</json:string>
<json:string>phpeudqh</json:string>
<json:string>hduo</json:string>
<json:string>dsrswrvlv uhjxodwlrq</json:string>
<json:string>yhvwljldo wrrwk sulprugld</json:string>
<json:string>wrrwk ghyhorsphqw</json:string>
<json:string>phvldo olplw</json:string>
<json:string>jurzwk lqklelwruv</json:string>
<json:string>plwrfkrqguldo sdwkzd</json:string>
<json:string>wrrwk sdwwhuq</json:string>
<json:string>hqdpho nqrw</json:string>
<json:string>hslwkholdo exgglqj</json:string>
<json:string>3urjudpphg fhoo ghdwk</json:string>
<json:string>fdghplf 3uhvv</json:string>
<json:string>wkuhh glphqvlrqdo uhfrqvwuxfwlrq</json:string>
<json:string>hslwkholdo fhoov</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>RENATA PETERKOVÁ</name>
<affiliations>
<json:string>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</json:string>
<json:string>E-mail: repete@biomed.cas.cz</json:string>
</affiliations>
</json:item>
<json:item>
<name>MIROSLAV PETERKA</name>
<affiliations>
<json:string>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</json:string>
</affiliations>
</json:item>
<json:item>
<name>HERVÉ LESOT</name>
<affiliations>
<json:string>INSERM U‐595, 11, rue Humann, 67085 Strasbourg, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>apoptosis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tooth</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>development</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>model</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>regulation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>growth factor</value>
</json:item>
</subject>
<articleId>
<json:string>NYAS453</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-ZQPWMSNS-9</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Abstract: Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo‐spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth‐activating and growth‐inhibiting signals, and (2) apoptosis stimulation by the failure of death‐suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth‐activating (apoptosis‐suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell “suicide” by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>249</abstractWordCount>
<abstractCharCount>1768</abstractCharCount>
<keywordCount>6</keywordCount>
<score>9.988</score>
<pdfWordCount>5590</pdfWordCount>
<pdfCharCount>34646</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>14</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
</qualityIndicators>
<title>The Developing Mouse Dentition</title>
<pmid>
<json:string>15033770</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Annals of the New York Academy of Sciences</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1749-6632</json:string>
</doi>
<issn>
<json:string>0077-8923</json:string>
</issn>
<eissn>
<json:string>1749-6632</json:string>
</eissn>
<publisherId>
<json:string>NYAS</json:string>
</publisherId>
<volume>1010</volume>
<issue>1</issue>
<pages>
<first>453</first>
<last>466</last>
<total>14</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2003</json:string>
</date>
<geogName></geogName>
<orgName></orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName></persName>
<placeName></placeName>
<ref_url></ref_url>
<ref_bibl></ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-ZQPWMSNS-9</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - multidisciplinary sciences</json:string>
</wos>
<scienceMetrix>
<json:string>1 - general</json:string>
<json:string>2 - general science & technology</json:string>
<json:string>3 - general science & technology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Social Sciences</json:string>
<json:string>2 - Arts and Humanities</json:string>
<json:string>3 - History and Philosophy of Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - General Biochemistry, Genetics and Molecular Biology</json:string>
</scopus>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1196/annals.1299.083</json:string>
</doi>
<id>72ABA95C209A7699FF4B59400E223E1692227799</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/72ABA95C209A7699FF4B59400E223E1692227799/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/72ABA95C209A7699FF4B59400E223E1692227799/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/72ABA95C209A7699FF4B59400E223E1692227799/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">The Developing Mouse Dentition</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-12"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">The Developing Mouse Dentition</title>
<title level="a" type="sub">A New Tool for Apoptosis Study</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">RENATA</forename>
<surname>PETERKOVÁ</surname>
</persName>
<affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic
<address>
<country key="CZ"></country>
</address>
</affiliation>
<affiliation>Address for correspondence: R. Peterková, Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic. Voice: +420‐241‐062‐232; fax: +420‐241‐062‐604. repete@biomed.cas.cz</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">MIROSLAV</forename>
<surname>PETERKA</surname>
</persName>
<affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic
<address>
<country key="CZ"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">HERVÉ</forename>
<surname>LESOT</surname>
</persName>
<affiliation>INSERM U‐595, 11, rue Humann, 67085 Strasbourg, France
<address>
<country key="FR"></country>
</address>
</affiliation>
</author>
<idno type="istex">72ABA95C209A7699FF4B59400E223E1692227799</idno>
<idno type="ark">ark:/67375/WNG-ZQPWMSNS-9</idno>
<idno type="DOI">10.1196/annals.1299.083</idno>
<idno type="unit">NYAS453</idno>
<idno type="toTypesetVersion">file:NYAS.NYAS453.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Annals of the New York Academy of Sciences</title>
<title level="j" type="alt">ANNALS OF NEW YORK ACADEMY SCIENCES</title>
<idno type="pISSN">0077-8923</idno>
<idno type="eISSN">1749-6632</idno>
<idno type="book-DOI">10.1111/(ISSN)1749-6632</idno>
<idno type="book-part-DOI">10.1111/nyas.2003.1010.issue-1</idno>
<idno type="product">NYAS</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">1010</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="453">453</biblScope>
<biblScope unit="page" to="466">466</biblScope>
<biblScope unit="page-count">14</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2003-12"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<p>
<hi rend="bold">A
<hi rend="smallCaps">bstract</hi>
: </hi>
Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo‐spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth‐activating and growth‐inhibiting signals, and (2) apoptosis stimulation by the failure of death‐suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth‐activating (apoptosis‐suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell “suicide” by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">apoptosis</term>
<term xml:id="k2">tooth</term>
<term xml:id="k3">development</term>
<term xml:id="k4">model</term>
<term xml:id="k5">regulation</term>
<term xml:id="k6">growth factor</term>
</keywords>
<keywords rend="tocHeading1">
<term>Apoptosis from Signaling Pathways to Therapeutic Tools: Part X. Apoptosis and Tissular Functions</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/72ABA95C209A7699FF4B59400E223E1692227799/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1749-6632</doi>
<issn type="print">0077-8923</issn>
<issn type="electronic">1749-6632</issn>
<idGroup>
<id type="product" value="NYAS"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="ANNALS OF NEW YORK ACADEMY SCIENCES">Annals of the New York Academy of Sciences</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="12101">
<doi origin="wiley">10.1111/nyas.2003.1010.issue-1</doi>
<titleGroup>
<title type="main">Apoptosis from Signaling Pathways to Therapeutic Tools</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="1010">1010</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="2003-12">December 2003</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="85" status="forIssue">
<doi origin="wiley">10.1196/annals.1299.083</doi>
<idGroup>
<id type="unit" value="NYAS453"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="14"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Apoptosis from Signaling Pathways to Therapeutic Tools: Part X. Apoptosis and Tissular Functions</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2006-01-24"></event>
<event type="publishedOnlineFinalForm" date="2006-01-24"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.3.5 mode:FullText" date="2014-10-03"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.3.5 mode:FullText" date="2014-10-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="453">453</numbering>
<numbering type="pageLast" number="466">466</numbering>
</numberingGroup>
<correspondenceTo>Address for correspondence: R. Peterková, Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic. Voice: +420‐241‐062‐232; fax: +420‐241‐062‐604.
<email>repete@biomed.cas.cz</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NYAS.NYAS453.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="87"></count>
<count type="linksCrossRef" number="148"></count>
</countGroup>
<titleGroup>
<title type="main">The Developing Mouse Dentition</title>
<title type="subtitle">A New Tool for Apoptosis Study</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>RENATA</givenNames>
<familyName>PETERKOVÁ</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>MIROSLAV</givenNames>
<familyName>PETERKA</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>HERVÉ</givenNames>
<familyName>LESOT</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="CZ">
<unparsedAffiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="FR">
<unparsedAffiliation>INSERM U‐595, 11, rue Humann, 67085 Strasbourg, France</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">apoptosis</keyword>
<keyword xml:id="k2">tooth</keyword>
<keyword xml:id="k3">development</keyword>
<keyword xml:id="k4">model</keyword>
<keyword xml:id="k5">regulation</keyword>
<keyword xml:id="k6">growth factor</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<p>
<b>A
<sc>bstract</sc>
: </b>
Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo‐spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth‐activating and growth‐inhibiting signals, and (2) apoptosis stimulation by the failure of death‐suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth‐activating (apoptosis‐suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell “suicide” by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>Positional information specifies cells in a coordinate system.
<link href="#b81">81</link>
Reaction‐diffusion processes generate spatial variation depending on interactions between activator and inhibitor substances.
<link href="#b63 #b82">63,82</link>
</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>The Developing Mouse Dentition</title>
<subTitle>A New Tool for Apoptosis Study</subTitle>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>The Developing Mouse Dentition</title>
</titleInfo>
<name type="personal">
<namePart type="given">RENATA</namePart>
<namePart type="family">PETERKOVÁ</namePart>
<affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</affiliation>
<affiliation>E-mail: repete@biomed.cas.cz</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MIROSLAV</namePart>
<namePart type="family">PETERKA</namePart>
<affiliation>Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 142 20 Prague 4, Czech Republic</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">HERVÉ</namePart>
<namePart type="family">LESOT</namePart>
<affiliation>INSERM U‐595, 11, rue Humann, 67085 Strasbourg, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2003-12</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">4</extent>
<extent unit="tables">0</extent>
<extent unit="formulas">0</extent>
<extent unit="references">87</extent>
<extent unit="linksCrossRef">148</extent>
</physicalDescription>
<abstract>Abstract: Developing limb or differentiating neural and blood cells are traditional models used to study programmed cell death in mammals. The developing mouse dentition can also be an attractive model for studying apoptosis regulation. Apoptosis is most extant during early odontogenesis in mice. The embryonic tooth pattern is comprised not only of anlagen of functional teeth (incisor, molars), but also of vestiges of ancestral tooth primordia that must be suppressed. Apoptosis is involved in (a) the elimination of vestigial tooth primordia in the prospective toothless gap (diastema) between the incisor and molars and (b) the shaping of germs in functional teeth. This type of apoptosis occurs in the dental epithelium according to a characteristic temporo‐spatial pattern. Where apoptosis concentrates, specific signaling is also found. We proposed a hypothesis to explain the stimulation of apoptosis in the dental epithelium by integrating two concepts: (1) The regulation of epithelial budding by positional information generated from interactions between growth‐activating and growth‐inhibiting signals, and (2) apoptosis stimulation by the failure of death‐suppressing signals. During the budding of the dental epithelium, local excess in growth inhibitors (e.g., Bmps) might lead to the epithelial cells' failure to receive adequate growth‐activating (apoptosis‐suppressing) signals (e.g., Fgfs). The resulting signal imbalance leads to cell “suicide” by apoptosis. Understanding of apoptosis regulation in the vestigial tooth primordia can help to elucidate the mechanism of their suppression during evolution and to identify factors essential for tooth survival. The latter knowledge will be important for developing a technology of tooth engineering.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>apoptosis</topic>
<topic>tooth</topic>
<topic>development</topic>
<topic>model</topic>
<topic>regulation</topic>
<topic>growth factor</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Annals of the New York Academy of Sciences</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0077-8923</identifier>
<identifier type="eISSN">1749-6632</identifier>
<identifier type="DOI">10.1111/(ISSN)1749-6632</identifier>
<identifier type="PublisherID">NYAS</identifier>
<part>
<date>2003</date>
<detail type="title">
<title>Apoptosis from Signaling Pathways to Therapeutic Tools</title>
</detail>
<detail type="volume">
<caption>vol.</caption>
<number>1010</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>453</start>
<end>466</end>
<total>14</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">72ABA95C209A7699FF4B59400E223E1692227799</identifier>
<identifier type="ark">ark:/67375/WNG-ZQPWMSNS-9</identifier>
<identifier type="DOI">10.1196/annals.1299.083</identifier>
<identifier type="ArticleID">NYAS453</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/72ABA95C209A7699FF4B59400E223E1692227799/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003874 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003874 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:72ABA95C209A7699FF4B59400E223E1692227799
   |texte=   The Developing Mouse Dentition
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022