Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physico-chemical considerations of titanium as a biomaterial

Identifieur interne : 003531 ( Istex/Corpus ); précédent : 003530; suivant : 003532

Physico-chemical considerations of titanium as a biomaterial

Auteurs : Pentti Tengvall ; Ingemar Lundström

Source :

RBID : ISTEX:6BDBE847E5EFA60B29005434E215E9F0AD913E27

English descriptors

Abstract

Abstract: Physico-chemical properties of titanium are discussed. Special attention is paid to those of amorphous TiO2 that contact tissues in vivo. In aqueous environments TiO2(aq) has low ion-formation tendency and low reactivity with macromolecules. This is accompanied by low toxicity. Titanium does not facilitate reactive oxygen radical generation during inflammatory conditions as observed in in-vitro experiments. The outermost layers of the oxide are in the Ti(IV) oxidation state, although using electron spin resonance (ESR) techniques, formation of Ti(III) is observed at atmospheric conditions. The impact of the similarities between water and TiO2 is speculated upon, and the physico-chemical properties of titanium are tentatively linked to some in-vivo consequences.

Url:
DOI: 10.1016/0267-6605(92)90056-Y

Links to Exploration step

ISTEX:6BDBE847E5EFA60B29005434E215E9F0AD913E27

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Physico-chemical considerations of titanium as a biomaterial</title>
<author>
<name sortKey="Tengvall, Pentti" sort="Tengvall, Pentti" uniqKey="Tengvall P" first="Pentti" last="Tengvall">Pentti Tengvall</name>
<affiliation>
<mods:affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lundstrom, Ingemar" sort="Lundstrom, Ingemar" uniqKey="Lundstrom I" first="Ingemar" last="Lundström">Ingemar Lundström</name>
<affiliation>
<mods:affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6BDBE847E5EFA60B29005434E215E9F0AD913E27</idno>
<date when="1992" year="1992">1992</date>
<idno type="doi">10.1016/0267-6605(92)90056-Y</idno>
<idno type="url">https://api.istex.fr/document/6BDBE847E5EFA60B29005434E215E9F0AD913E27/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003531</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003531</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Physico-chemical considerations of titanium as a biomaterial</title>
<author>
<name sortKey="Tengvall, Pentti" sort="Tengvall, Pentti" uniqKey="Tengvall P" first="Pentti" last="Tengvall">Pentti Tengvall</name>
<affiliation>
<mods:affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lundstrom, Ingemar" sort="Lundstrom, Ingemar" uniqKey="Lundstrom I" first="Ingemar" last="Lundström">Ingemar Lundström</name>
<affiliation>
<mods:affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Clinical Materials</title>
<title level="j" type="abbrev">CLMA</title>
<idno type="ISSN">0267-6605</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1992">1992</date>
<biblScope unit="volume">9</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="115">115</biblScope>
<biblScope unit="page" to="134">134</biblScope>
</imprint>
<idno type="ISSN">0267-6605</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0267-6605</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abdominal wall</term>
<term>Abstract book</term>
<term>Active interaction</term>
<term>Adsorption</term>
<term>Alloy</term>
<term>American chemical society</term>
<term>Aqueous environments</term>
<term>Aqueous solutions</term>
<term>Biennial forum</term>
<term>Biochemical studies</term>
<term>Biocompatibility</term>
<term>Biological consequences</term>
<term>Biomaterial</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Bjursten</term>
<term>Boca raton</term>
<term>Body fluids</term>
<term>Calcium phosphate</term>
<term>Carbon reactivity</term>
<term>Cell function</term>
<term>Cellular</term>
<term>Chalmers university</term>
<term>Chem</term>
<term>Clinical experience</term>
<term>Clinical research</term>
<term>Colloid</term>
<term>Colloid interface</term>
<term>Complement activation</term>
<term>Complement system</term>
<term>Complex formation</term>
<term>Conference proceedings</term>
<term>Corrosion</term>
<term>Corrosion products</term>
<term>Crevice corrosion</term>
<term>Critical reviews</term>
<term>Degradation</term>
<term>Dental implants</term>
<term>Deutsche gesellschaft</term>
<term>Dielectric</term>
<term>Dissolution</term>
<term>Electrochemical</term>
<term>Electrochemical behaviour</term>
<term>Electrochemical corrosion</term>
<term>Electrostatic forces</term>
<term>Experimental animals</term>
<term>First congress</term>
<term>Free radicals</term>
<term>Fundamental aspects</term>
<term>Great importance</term>
<term>High dielectric</term>
<term>High extent</term>
<term>Hyaluronic acid</term>
<term>Hydrogen peroxide</term>
<term>Hydrophilic surfaces</term>
<term>Hydroxide</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite coating</term>
<term>Hydroxyl</term>
<term>Implant</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>Implantation</term>
<term>Important feature</term>
<term>Important role</term>
<term>Inflammation</term>
<term>Inflammatory</term>
<term>Inflammatory conditions</term>
<term>Ingemar</term>
<term>Ingemar lundstriim</term>
<term>Inorganic ions</term>
<term>Intercellular space</term>
<term>Interface</term>
<term>International conference biointeractions</term>
<term>International congress</term>
<term>International state</term>
<term>Intrinsic toxicity</term>
<term>Ion</term>
<term>Isoelectric point</term>
<term>Jukka lausmaa</term>
<term>Kinetic studies</term>
<term>Lipid peroxidation</term>
<term>Lundstriim</term>
<term>Lundstrom</term>
<term>Macromolecular behaviour</term>
<term>Macromolecule</term>
<term>Mater</term>
<term>Material characteristics</term>
<term>Metabolic activity</term>
<term>Metal ions</term>
<term>Metallic biomaterials</term>
<term>Metallic titanium</term>
<term>Molecule</term>
<term>Organic molecules</term>
<term>Organic radicals</term>
<term>Other hand</term>
<term>Oxidation state</term>
<term>Oxide</term>
<term>Oxide growth</term>
<term>Oxide thickness</term>
<term>Oxidized</term>
<term>Oxygen diffusion</term>
<term>Oxygen metabolism</term>
<term>Oxygen radicals</term>
<term>Oxygen toxicity</term>
<term>Oxygen vacancies</term>
<term>Passive dissolution</term>
<term>Pentti</term>
<term>Pentti tengvall</term>
<term>Pergamon press</term>
<term>Peroxide</term>
<term>Peroxy compounds</term>
<term>Physical characterization</term>
<term>Physiological conditions</term>
<term>Plasma proteins</term>
<term>Polarization effects</term>
<term>Polymer edition</term>
<term>Polymeric materials</term>
<term>Polymorphonuclear granulocytes</term>
<term>Prosthesis</term>
<term>Protein adsorption</term>
<term>Protein molecules</term>
<term>Pure oxide</term>
<term>Reactive</term>
<term>Recent study</term>
<term>Redox potentials</term>
<term>Room conditions</term>
<term>Room temperature</term>
<term>Rutile</term>
<term>Salinized water</term>
<term>Small molecules</term>
<term>Solid surfaces</term>
<term>Solubility</term>
<term>Stainless steel</term>
<term>Superoxide</term>
<term>Superoxide dismutase</term>
<term>Superoxide production</term>
<term>Surface charge</term>
<term>Surface properties</term>
<term>Surface texture</term>
<term>Surg</term>
<term>Systemic effects</term>
<term>Tengvall</term>
<term>Tentative model</term>
<term>Tissue degradation</term>
<term>Tissue reaction</term>
<term>Tissue response</term>
<term>Titanium</term>
<term>Titanium alloys</term>
<term>Titanium dioxide</term>
<term>Titanium implants</term>
<term>Titanium oxide</term>
<term>Titanium science</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Toronto press</term>
<term>Toxicity</term>
<term>Uric acid</term>
<term>Water molecules</term>
<term>White cells</term>
<term>Wound healing</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abdominal wall</term>
<term>Abstract book</term>
<term>Active interaction</term>
<term>Adsorption</term>
<term>Alloy</term>
<term>American chemical society</term>
<term>Aqueous environments</term>
<term>Aqueous solutions</term>
<term>Biennial forum</term>
<term>Biochemical studies</term>
<term>Biocompatibility</term>
<term>Biological consequences</term>
<term>Biomaterial</term>
<term>Biomaterials</term>
<term>Biomed</term>
<term>Bjursten</term>
<term>Boca raton</term>
<term>Body fluids</term>
<term>Calcium phosphate</term>
<term>Carbon reactivity</term>
<term>Cell function</term>
<term>Cellular</term>
<term>Chalmers university</term>
<term>Chem</term>
<term>Clinical experience</term>
<term>Clinical research</term>
<term>Colloid</term>
<term>Colloid interface</term>
<term>Complement activation</term>
<term>Complement system</term>
<term>Complex formation</term>
<term>Conference proceedings</term>
<term>Corrosion</term>
<term>Corrosion products</term>
<term>Crevice corrosion</term>
<term>Critical reviews</term>
<term>Degradation</term>
<term>Dental implants</term>
<term>Deutsche gesellschaft</term>
<term>Dielectric</term>
<term>Dissolution</term>
<term>Electrochemical</term>
<term>Electrochemical behaviour</term>
<term>Electrochemical corrosion</term>
<term>Electrostatic forces</term>
<term>Experimental animals</term>
<term>First congress</term>
<term>Free radicals</term>
<term>Fundamental aspects</term>
<term>Great importance</term>
<term>High dielectric</term>
<term>High extent</term>
<term>Hyaluronic acid</term>
<term>Hydrogen peroxide</term>
<term>Hydrophilic surfaces</term>
<term>Hydroxide</term>
<term>Hydroxyapatite</term>
<term>Hydroxyapatite coating</term>
<term>Hydroxyl</term>
<term>Implant</term>
<term>Implant materials</term>
<term>Implant surface</term>
<term>Implantation</term>
<term>Important feature</term>
<term>Important role</term>
<term>Inflammation</term>
<term>Inflammatory</term>
<term>Inflammatory conditions</term>
<term>Ingemar</term>
<term>Ingemar lundstriim</term>
<term>Inorganic ions</term>
<term>Intercellular space</term>
<term>Interface</term>
<term>International conference biointeractions</term>
<term>International congress</term>
<term>International state</term>
<term>Intrinsic toxicity</term>
<term>Ion</term>
<term>Isoelectric point</term>
<term>Jukka lausmaa</term>
<term>Kinetic studies</term>
<term>Lipid peroxidation</term>
<term>Lundstriim</term>
<term>Lundstrom</term>
<term>Macromolecular behaviour</term>
<term>Macromolecule</term>
<term>Mater</term>
<term>Material characteristics</term>
<term>Metabolic activity</term>
<term>Metal ions</term>
<term>Metallic biomaterials</term>
<term>Metallic titanium</term>
<term>Molecule</term>
<term>Organic molecules</term>
<term>Organic radicals</term>
<term>Other hand</term>
<term>Oxidation state</term>
<term>Oxide</term>
<term>Oxide growth</term>
<term>Oxide thickness</term>
<term>Oxidized</term>
<term>Oxygen diffusion</term>
<term>Oxygen metabolism</term>
<term>Oxygen radicals</term>
<term>Oxygen toxicity</term>
<term>Oxygen vacancies</term>
<term>Passive dissolution</term>
<term>Pentti</term>
<term>Pentti tengvall</term>
<term>Pergamon press</term>
<term>Peroxide</term>
<term>Peroxy compounds</term>
<term>Physical characterization</term>
<term>Physiological conditions</term>
<term>Plasma proteins</term>
<term>Polarization effects</term>
<term>Polymer edition</term>
<term>Polymeric materials</term>
<term>Polymorphonuclear granulocytes</term>
<term>Prosthesis</term>
<term>Protein adsorption</term>
<term>Protein molecules</term>
<term>Pure oxide</term>
<term>Reactive</term>
<term>Recent study</term>
<term>Redox potentials</term>
<term>Room conditions</term>
<term>Room temperature</term>
<term>Rutile</term>
<term>Salinized water</term>
<term>Small molecules</term>
<term>Solid surfaces</term>
<term>Solubility</term>
<term>Stainless steel</term>
<term>Superoxide</term>
<term>Superoxide dismutase</term>
<term>Superoxide production</term>
<term>Surface charge</term>
<term>Surface properties</term>
<term>Surface texture</term>
<term>Surg</term>
<term>Systemic effects</term>
<term>Tengvall</term>
<term>Tentative model</term>
<term>Tissue degradation</term>
<term>Tissue reaction</term>
<term>Tissue response</term>
<term>Titanium</term>
<term>Titanium alloys</term>
<term>Titanium dioxide</term>
<term>Titanium implants</term>
<term>Titanium oxide</term>
<term>Titanium science</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Toronto press</term>
<term>Toxicity</term>
<term>Uric acid</term>
<term>Water molecules</term>
<term>White cells</term>
<term>Wound healing</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Physico-chemical properties of titanium are discussed. Special attention is paid to those of amorphous TiO2 that contact tissues in vivo. In aqueous environments TiO2(aq) has low ion-formation tendency and low reactivity with macromolecules. This is accompanied by low toxicity. Titanium does not facilitate reactive oxygen radical generation during inflammatory conditions as observed in in-vitro experiments. The outermost layers of the oxide are in the Ti(IV) oxidation state, although using electron spin resonance (ESR) techniques, formation of Ti(III) is observed at atmospheric conditions. The impact of the similarities between water and TiO2 is speculated upon, and the physico-chemical properties of titanium are tentatively linked to some in-vivo consequences.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>titanium</json:string>
<json:string>biomaterials</json:string>
<json:string>adsorption</json:string>
<json:string>macromolecule</json:string>
<json:string>toxicity</json:string>
<json:string>implant</json:string>
<json:string>tengvall</json:string>
<json:string>superoxide</json:string>
<json:string>biomaterial</json:string>
<json:string>biomed</json:string>
<json:string>lundstrom</json:string>
<json:string>reactive</json:string>
<json:string>prosthesis</json:string>
<json:string>hydrogen peroxide</json:string>
<json:string>solubility</json:string>
<json:string>biocompatibility</json:string>
<json:string>colloid</json:string>
<json:string>hydroxyl</json:string>
<json:string>ingemar</json:string>
<json:string>oxide</json:string>
<json:string>pentti</json:string>
<json:string>dielectric</json:string>
<json:string>hydroxide</json:string>
<json:string>hydroxyapatite</json:string>
<json:string>free radicals</json:string>
<json:string>pentti tengvall</json:string>
<json:string>electrochemical</json:string>
<json:string>oxidized</json:string>
<json:string>metallic titanium</json:string>
<json:string>titanium surfaces</json:string>
<json:string>lundstriim</json:string>
<json:string>chem</json:string>
<json:string>bjursten</json:string>
<json:string>rutile</json:string>
<json:string>surg</json:string>
<json:string>protein adsorption</json:string>
<json:string>titanium implants</json:string>
<json:string>colloid interface</json:string>
<json:string>peroxide</json:string>
<json:string>boca raton</json:string>
<json:string>abstract book</json:string>
<json:string>titanium alloys</json:string>
<json:string>ingemar lundstriim</json:string>
<json:string>interface</json:string>
<json:string>aqueous solutions</json:string>
<json:string>solid surfaces</json:string>
<json:string>oxygen radicals</json:string>
<json:string>polymorphonuclear granulocytes</json:string>
<json:string>physiological conditions</json:string>
<json:string>titanium oxide</json:string>
<json:string>body fluids</json:string>
<json:string>inflammatory</json:string>
<json:string>inflammation</json:string>
<json:string>implantation</json:string>
<json:string>mater</json:string>
<json:string>redox potentials</json:string>
<json:string>high dielectric</json:string>
<json:string>tissue response</json:string>
<json:string>metabolic activity</json:string>
<json:string>metallic biomaterials</json:string>
<json:string>oxide thickness</json:string>
<json:string>recent study</json:string>
<json:string>oxygen toxicity</json:string>
<json:string>isoelectric point</json:string>
<json:string>inorganic ions</json:string>
<json:string>intrinsic toxicity</json:string>
<json:string>water molecules</json:string>
<json:string>crevice corrosion</json:string>
<json:string>abdominal wall</json:string>
<json:string>conference proceedings</json:string>
<json:string>tentative model</json:string>
<json:string>stainless steel</json:string>
<json:string>oxygen diffusion</json:string>
<json:string>protein molecules</json:string>
<json:string>international state</json:string>
<json:string>fundamental aspects</json:string>
<json:string>toronto press</json:string>
<json:string>dissolution</json:string>
<json:string>corrosion</json:string>
<json:string>ion</json:string>
<json:string>peroxy compounds</json:string>
<json:string>oxide growth</json:string>
<json:string>electrostatic forces</json:string>
<json:string>polarization effects</json:string>
<json:string>polymeric materials</json:string>
<json:string>white cells</json:string>
<json:string>active interaction</json:string>
<json:string>implant surface</json:string>
<json:string>passive dissolution</json:string>
<json:string>high extent</json:string>
<json:string>surface texture</json:string>
<json:string>superoxide production</json:string>
<json:string>tissue reaction</json:string>
<json:string>titanium dioxide</json:string>
<json:string>superoxide dismutase</json:string>
<json:string>oxygen metabolism</json:string>
<json:string>tissue degradation</json:string>
<json:string>clinical experience</json:string>
<json:string>organic radicals</json:string>
<json:string>electrochemical behaviour</json:string>
<json:string>hyaluronic acid</json:string>
<json:string>small molecules</json:string>
<json:string>uric acid</json:string>
<json:string>metal ions</json:string>
<json:string>pure oxide</json:string>
<json:string>important feature</json:string>
<json:string>room temperature</json:string>
<json:string>polymer edition</json:string>
<json:string>other hand</json:string>
<json:string>surface charge</json:string>
<json:string>oxygen vacancies</json:string>
<json:string>carbon reactivity</json:string>
<json:string>titanium surface</json:string>
<json:string>jukka lausmaa</json:string>
<json:string>chalmers university</json:string>
<json:string>physical characterization</json:string>
<json:string>complement system</json:string>
<json:string>hydrophilic surfaces</json:string>
<json:string>biological consequences</json:string>
<json:string>wound healing</json:string>
<json:string>intercellular space</json:string>
<json:string>great importance</json:string>
<json:string>corrosion products</json:string>
<json:string>complement activation</json:string>
<json:string>surface properties</json:string>
<json:string>calcium phosphate</json:string>
<json:string>important role</json:string>
<json:string>experimental animals</json:string>
<json:string>complex formation</json:string>
<json:string>room conditions</json:string>
<json:string>organic molecules</json:string>
<json:string>systemic effects</json:string>
<json:string>international congress</json:string>
<json:string>biennial forum</json:string>
<json:string>clinical research</json:string>
<json:string>first congress</json:string>
<json:string>international conference biointeractions</json:string>
<json:string>critical reviews</json:string>
<json:string>kinetic studies</json:string>
<json:string>oxidation state</json:string>
<json:string>plasma proteins</json:string>
<json:string>biochemical studies</json:string>
<json:string>american chemical society</json:string>
<json:string>pergamon press</json:string>
<json:string>implant materials</json:string>
<json:string>macromolecular behaviour</json:string>
<json:string>material characteristics</json:string>
<json:string>titanium science</json:string>
<json:string>deutsche gesellschaft</json:string>
<json:string>electrochemical corrosion</json:string>
<json:string>inflammatory conditions</json:string>
<json:string>salinized water</json:string>
<json:string>aqueous environments</json:string>
<json:string>dental implants</json:string>
<json:string>lipid peroxidation</json:string>
<json:string>cell function</json:string>
<json:string>hydroxyapatite coating</json:string>
<json:string>molecule</json:string>
<json:string>alloy</json:string>
<json:string>cellular</json:string>
<json:string>degradation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Pentti Tengvall</name>
<affiliations>
<json:string>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ingemar Lundström</name>
<affiliations>
<json:string>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-72T05GD6-V</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Review article</json:string>
</originalGenre>
<abstract>Abstract: Physico-chemical properties of titanium are discussed. Special attention is paid to those of amorphous TiO2 that contact tissues in vivo. In aqueous environments TiO2(aq) has low ion-formation tendency and low reactivity with macromolecules. This is accompanied by low toxicity. Titanium does not facilitate reactive oxygen radical generation during inflammatory conditions as observed in in-vitro experiments. The outermost layers of the oxide are in the Ti(IV) oxidation state, although using electron spin resonance (ESR) techniques, formation of Ti(III) is observed at atmospheric conditions. The impact of the similarities between water and TiO2 is speculated upon, and the physico-chemical properties of titanium are tentatively linked to some in-vivo consequences.</abstract>
<qualityIndicators>
<score>8.296</score>
<pdfWordCount>10128</pdfWordCount>
<pdfCharCount>69246</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>20</pdfPageCount>
<pdfPageSize>612 x 828 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>108</abstractWordCount>
<abstractCharCount>781</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Physico-chemical considerations of titanium as a biomaterial</title>
<pmid>
<json:string>10171197</json:string>
</pmid>
<pii>
<json:string>0267-6605(92)90056-Y</json:string>
</pii>
<genre>
<json:string>review-article</json:string>
</genre>
<serie>
<title>(Part 1)</title>
<language>
<json:string>unknown</json:string>
</language>
<volume>5</volume>
<pages>
<first>1</first>
</pages>
</serie>
<host>
<title>Clinical Materials</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1992</publicationDate>
<issn>
<json:string>0267-6605</json:string>
</issn>
<pii>
<json:string>S0267-6605(00)X0020-0</json:string>
</pii>
<volume>9</volume>
<issue>2</issue>
<pages>
<first>115</first>
<last>134</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1992</json:string>
<json:string>1960s</json:string>
<json:string>1940s</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Laboratory of Chemical Physics</json:string>
<json:string>Gothenburg Department of Physics</json:string>
<json:string>Elsevier Science Publishers Ltd, England</json:string>
<json:string>Institute of Applied Biotechnology, Gothenburg, Sweden</json:string>
<json:string>Chalmers University</json:string>
<json:string>NUTEK</json:string>
<json:string>Technical Development</json:string>
<json:string>Swedish National Board for Industrial</json:string>
</orgName>
<orgName_funder>
<json:string>NUTEK</json:string>
<json:string>Technical Development</json:string>
<json:string>Swedish National Board for Industrial</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Drs Lars</json:string>
<json:string>Jan Westerling</json:string>
<json:string>L. Bjursten</json:string>
<json:string>Agneta Askendal</json:string>
<json:string>Jukka Lausmaa</json:string>
</persName>
<placeName>
<json:string>Toxicity</json:string>
<json:string>Gothenburg</json:string>
<json:string>Sweden</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Gold et aL</json:string>
<json:string>Catton et al.</json:string>
<json:string>Albrektsson et aL</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-72T05GD6-V</json:string>
</ark>
<categories>
<wos></wos>
<scienceMetrix></scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biophysics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1992</publicationDate>
<copyrightDate>1992</copyrightDate>
<doi>
<json:string>10.1016/0267-6605(92)90056-Y</json:string>
</doi>
<id>6BDBE847E5EFA60B29005434E215E9F0AD913E27</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/6BDBE847E5EFA60B29005434E215E9F0AD913E27/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/6BDBE847E5EFA60B29005434E215E9F0AD913E27/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/6BDBE847E5EFA60B29005434E215E9F0AD913E27/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Physico-chemical considerations of titanium as a biomaterial</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>ELSEVIER</p>
</availability>
<date>1992</date>
</publicationStmt>
<notesStmt>
<note type="content">Section title: Review paper</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Physico-chemical considerations of titanium as a biomaterial</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Pentti</forename>
<surname>Tengvall</surname>
</persName>
<affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Ingemar</forename>
<surname>Lundström</surname>
</persName>
<affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</affiliation>
</author>
<idno type="istex">6BDBE847E5EFA60B29005434E215E9F0AD913E27</idno>
<idno type="DOI">10.1016/0267-6605(92)90056-Y</idno>
<idno type="PII">0267-6605(92)90056-Y</idno>
</analytic>
<monogr>
<title level="j">Clinical Materials</title>
<title level="j" type="abbrev">CLMA</title>
<idno type="pISSN">0267-6605</idno>
<idno type="PII">S0267-6605(00)X0020-0</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1992"></date>
<biblScope unit="volume">9</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="115">115</biblScope>
<biblScope unit="page" to="134">134</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1992</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Physico-chemical properties of titanium are discussed. Special attention is paid to those of amorphous TiO2 that contact tissues in vivo. In aqueous environments TiO2(aq) has low ion-formation tendency and low reactivity with macromolecules. This is accompanied by low toxicity. Titanium does not facilitate reactive oxygen radical generation during inflammatory conditions as observed in in-vitro experiments. The outermost layers of the oxide are in the Ti(IV) oxidation state, although using electron spin resonance (ESR) techniques, formation of Ti(III) is observed at atmospheric conditions. The impact of the similarities between water and TiO2 is speculated upon, and the physico-chemical properties of titanium are tentatively linked to some in-vivo consequences.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1992">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/6BDBE847E5EFA60B29005434E215E9F0AD913E27/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="rev">
<item-info>
<jid>CLMA</jid>
<aid>9290056Y</aid>
<ce:pii>0267-6605(92)90056-Y</ce:pii>
<ce:doi>10.1016/0267-6605(92)90056-Y</ce:doi>
<ce:copyright type="unknown" year="1992"></ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Review paper</ce:textfn>
</ce:dochead>
<ce:title>Physico-chemical considerations of titanium as a biomaterial</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Pentti</ce:given-name>
<ce:surname>Tengvall</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Ingemar</ce:given-name>
<ce:surname>Lundström</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="8" month="1" year="1991"></ce:date-received>
<ce:date-accepted day="16" month="3" year="1991"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Physico-chemical properties of titanium are discussed. Special attention is paid to those of amorphous TiO
<ce:inf>2</ce:inf>
that contact tissues
<ce:italic>in vivo</ce:italic>
. In aqueous environments TiO
<ce:inf>2(aq)</ce:inf>
has low ion-formation tendency and low reactivity with macromolecules. This is accompanied by low toxicity. Titanium does not facilitate reactive oxygen radical generation during inflammatory conditions as observed in
<ce:italic>in-vitro</ce:italic>
experiments. The outermost layers of the oxide are in the Ti(IV) oxidation state, although using electron spin resonance (ESR) techniques, formation of Ti(III) is observed at atmospheric conditions. The impact of the similarities between water and TiO
<ce:inf>2</ce:inf>
is speculated upon, and the physico-chemical properties of titanium are tentatively linked to some
<ce:italic>in-vivo</ce:italic>
consequences.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Physico-chemical considerations of titanium as a biomaterial</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Physico-chemical considerations of titanium as a biomaterial</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pentti</namePart>
<namePart type="family">Tengvall</namePart>
<affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ingemar</namePart>
<namePart type="family">Lundström</namePart>
<affiliation>Linköping University, Department of Physics and Measurement Technology, S-581 83 Linköping, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1992</dateIssued>
<copyrightDate encoding="w3cdtf">1992</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Physico-chemical properties of titanium are discussed. Special attention is paid to those of amorphous TiO2 that contact tissues in vivo. In aqueous environments TiO2(aq) has low ion-formation tendency and low reactivity with macromolecules. This is accompanied by low toxicity. Titanium does not facilitate reactive oxygen radical generation during inflammatory conditions as observed in in-vitro experiments. The outermost layers of the oxide are in the Ti(IV) oxidation state, although using electron spin resonance (ESR) techniques, formation of Ti(III) is observed at atmospheric conditions. The impact of the similarities between water and TiO2 is speculated upon, and the physico-chemical properties of titanium are tentatively linked to some in-vivo consequences.</abstract>
<note type="content">Section title: Review paper</note>
<relatedItem type="host">
<titleInfo>
<title>Clinical Materials</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>CLMA</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1992</dateIssued>
</originInfo>
<identifier type="ISSN">0267-6605</identifier>
<identifier type="PII">S0267-6605(00)X0020-0</identifier>
<part>
<date>1992</date>
<detail type="volume">
<number>9</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>71</start>
<end>136</end>
</extent>
<extent unit="pages">
<start>115</start>
<end>134</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">6BDBE847E5EFA60B29005434E215E9F0AD913E27</identifier>
<identifier type="ark">ark:/67375/6H6-72T05GD6-V</identifier>
<identifier type="DOI">10.1016/0267-6605(92)90056-Y</identifier>
<identifier type="PII">0267-6605(92)90056-Y</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/6BDBE847E5EFA60B29005434E215E9F0AD913E27/metadata/json</uri>
</json:item>
</metadata>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003531 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003531 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6BDBE847E5EFA60B29005434E215E9F0AD913E27
   |texte=   Physico-chemical considerations of titanium as a biomaterial
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022