Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Osteoclast biology: Lessons from mammalian mutations

Identifieur interne : 001D04 ( Istex/Corpus ); précédent : 001D03; suivant : 001D05

Osteoclast biology: Lessons from mammalian mutations

Auteurs : Sandy C. Marks Jr.

Source :

RBID : ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188

English descriptors

Abstract

Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.

Url:
DOI: 10.1002/ajmg.1320340110

Links to Exploration step

ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
<author>
<name sortKey="Marks Jr, Sandy C" sort="Marks Jr, Sandy C" uniqKey="Marks Jr S" first="Sandy C." last="Marks Jr.">Sandy C. Marks Jr.</name>
<affiliation>
<mods:affiliation>Department of Cell Biology, University of Massachusetts Medical School, Worcester</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Cell Biology, Univ. Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188</idno>
<date when="1989" year="1989">1989</date>
<idno type="doi">10.1002/ajmg.1320340110</idno>
<idno type="url">https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D04</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D04</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
<author>
<name sortKey="Marks Jr, Sandy C" sort="Marks Jr, Sandy C" uniqKey="Marks Jr S" first="Sandy C." last="Marks Jr.">Sandy C. Marks Jr.</name>
<affiliation>
<mods:affiliation>Department of Cell Biology, University of Massachusetts Medical School, Worcester</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Cell Biology, Univ. Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">American Journal of Medical Genetics</title>
<title level="j" type="alt">AMERICAN JOURNAL OF MEDICAL GENETICS</title>
<idno type="ISSN">0148-7299</idno>
<idno type="eISSN">1096-8628</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="43">43</biblScope>
<biblScope unit="page" to="54">54</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1989-09">1989-09</date>
</imprint>
<idno type="ISSN">0148-7299</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-7299</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abstr</term>
<term>Anat</term>
<term>Anat marks</term>
<term>Anhydrase</term>
<term>Bone cell biology</term>
<term>Bone formation</term>
<term>Bone marrow</term>
<term>Bone marrow transplantation</term>
<term>Bone matrix</term>
<term>Bone resorption</term>
<term>Bone surfaces</term>
<term>Calcif tissue</term>
<term>Carbonic</term>
<term>Carbonic anhydrase</term>
<term>Cell biology</term>
<term>Clear zones</term>
<term>Congenital</term>
<term>Congenital osteopetrosis</term>
<term>Cytoplasmic</term>
<term>Cytoplasmic vacuoles</term>
<term>Heterogeneity</term>
<term>Hypercalcemic effects</term>
<term>Immune</term>
<term>Immune system</term>
<term>Liss</term>
<term>Littermate</term>
<term>Littermates</term>
<term>Mammalian osteopetroses</term>
<term>Marrow</term>
<term>Matrix</term>
<term>Mcguire</term>
<term>Metab bone</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Natural killer cell activity</term>
<term>Normal littermate</term>
<term>Normal littermates</term>
<term>Normal mouse</term>
<term>Osteoblast</term>
<term>Osteoclast</term>
<term>Osteoclast biology</term>
<term>Osteoclast function</term>
<term>Osteoclast ontogeny</term>
<term>Osteopetroses</term>
<term>Osteopetrosis</term>
<term>Osteopetrotic</term>
<term>Osteopetrotic mutants</term>
<term>Osteopetrotic mutations</term>
<term>Osteopetrotic rats</term>
<term>Parathyroid</term>
<term>Parathyroid hormone</term>
<term>Pathogenetic pathways</term>
<term>Plasma membrane</term>
<term>Popoff</term>
<term>Relfson</term>
<term>Resorption</term>
<term>Schneider</term>
<term>Seifert</term>
<term>Skeletal resistance</term>
<term>Spleen</term>
<term>Spleen cells</term>
<term>Temporary parabiosis</term>
<term>Transplantation</term>
<term>Vacuole</term>
<term>Vascular channels</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abstr</term>
<term>Anat</term>
<term>Anat marks</term>
<term>Anhydrase</term>
<term>Bone cell biology</term>
<term>Bone formation</term>
<term>Bone marrow</term>
<term>Bone marrow transplantation</term>
<term>Bone matrix</term>
<term>Bone resorption</term>
<term>Bone surfaces</term>
<term>Calcif tissue</term>
<term>Carbonic</term>
<term>Carbonic anhydrase</term>
<term>Cell biology</term>
<term>Clear zones</term>
<term>Congenital</term>
<term>Congenital osteopetrosis</term>
<term>Cytoplasmic</term>
<term>Cytoplasmic vacuoles</term>
<term>Heterogeneity</term>
<term>Hypercalcemic effects</term>
<term>Immune</term>
<term>Immune system</term>
<term>Liss</term>
<term>Littermate</term>
<term>Littermates</term>
<term>Mammalian osteopetroses</term>
<term>Marrow</term>
<term>Matrix</term>
<term>Mcguire</term>
<term>Metab bone</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Natural killer cell activity</term>
<term>Normal littermate</term>
<term>Normal littermates</term>
<term>Normal mouse</term>
<term>Osteoblast</term>
<term>Osteoclast</term>
<term>Osteoclast biology</term>
<term>Osteoclast function</term>
<term>Osteoclast ontogeny</term>
<term>Osteopetroses</term>
<term>Osteopetrosis</term>
<term>Osteopetrotic</term>
<term>Osteopetrotic mutants</term>
<term>Osteopetrotic mutations</term>
<term>Osteopetrotic rats</term>
<term>Parathyroid</term>
<term>Parathyroid hormone</term>
<term>Pathogenetic pathways</term>
<term>Plasma membrane</term>
<term>Popoff</term>
<term>Relfson</term>
<term>Resorption</term>
<term>Schneider</term>
<term>Seifert</term>
<term>Skeletal resistance</term>
<term>Spleen</term>
<term>Spleen cells</term>
<term>Temporary parabiosis</term>
<term>Transplantation</term>
<term>Vacuole</term>
<term>Vascular channels</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>osteoclast</json:string>
<json:string>osteopetrosis</json:string>
<json:string>resorption</json:string>
<json:string>mutation</json:string>
<json:string>osteopetrotic</json:string>
<json:string>bone resorption</json:string>
<json:string>mutant</json:string>
<json:string>anat</json:string>
<json:string>schneider</json:string>
<json:string>popoff</json:string>
<json:string>transplantation</json:string>
<json:string>seifert</json:string>
<json:string>osteoclast biology</json:string>
<json:string>congenital osteopetrosis</json:string>
<json:string>anhydrase</json:string>
<json:string>carbonic</json:string>
<json:string>osteopetrotic mutations</json:string>
<json:string>cytoplasmic</json:string>
<json:string>congenital</json:string>
<json:string>carbonic anhydrase</json:string>
<json:string>littermate</json:string>
<json:string>osteopetroses</json:string>
<json:string>vacuole</json:string>
<json:string>parathyroid</json:string>
<json:string>relfson</json:string>
<json:string>littermates</json:string>
<json:string>normal littermates</json:string>
<json:string>matrix</json:string>
<json:string>bone marrow</json:string>
<json:string>normal littermate</json:string>
<json:string>abstr</json:string>
<json:string>heterogeneity</json:string>
<json:string>cell biology</json:string>
<json:string>immune</json:string>
<json:string>mcguire</json:string>
<json:string>osteoblast</json:string>
<json:string>osteoclast function</json:string>
<json:string>spleen cells</json:string>
<json:string>parathyroid hormone</json:string>
<json:string>anat marks</json:string>
<json:string>bone marrow transplantation</json:string>
<json:string>metab bone</json:string>
<json:string>bone matrix</json:string>
<json:string>osteopetrotic mutants</json:string>
<json:string>calcif tissue</json:string>
<json:string>bone surfaces</json:string>
<json:string>osteopetrotic rats</json:string>
<json:string>liss</json:string>
<json:string>bone formation</json:string>
<json:string>normal mouse</json:string>
<json:string>bone cell biology</json:string>
<json:string>hypercalcemic effects</json:string>
<json:string>plasma membrane</json:string>
<json:string>clear zones</json:string>
<json:string>pathogenetic pathways</json:string>
<json:string>mammalian osteopetroses</json:string>
<json:string>osteoclast ontogeny</json:string>
<json:string>cytoplasmic vacuoles</json:string>
<json:string>skeletal resistance</json:string>
<json:string>natural killer cell activity</json:string>
<json:string>temporary parabiosis</json:string>
<json:string>immune system</json:string>
<json:string>vascular channels</json:string>
<json:string>spleen</json:string>
<json:string>marrow</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Dr. Sandy C. Marks Jr.</name>
<affiliations>
<json:string>Department of Cell Biology, University of Massachusetts Medical School, Worcester</json:string>
<json:string>Correspondence address: Department of Cell Biology, Univ. Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>osteoclast</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>osteopetrosis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bone resorption</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vitamin D</value>
</json:item>
</subject>
<articleId>
<json:string>AJMG1320340110</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-8KKX3G0W-8</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>6307</pdfWordCount>
<pdfCharCount>40069</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>12</pdfPageCount>
<pdfPageSize>612 x 828 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>262</abstractWordCount>
<abstractCharCount>1887</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Osteoclast biology: Lessons from mammalian mutations</title>
<pmid>
<json:string>2683780</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>American Journal of Medical Genetics</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1096-8628</json:string>
</doi>
<issn>
<json:string>0148-7299</json:string>
</issn>
<eissn>
<json:string>1096-8628</json:string>
</eissn>
<publisherId>
<json:string>AJMG</json:string>
</publisherId>
<volume>34</volume>
<issue>1</issue>
<pages>
<first>43</first>
<last>54</last>
<total>12</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Article</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1904</json:string>
<json:string>1989</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Department of Cell Biology, University of Massachusetts Medical School, Worcester Major</json:string>
<json:string>Liss, Inc</json:string>
<json:string>Department of Cell Biology, Univ</json:string>
<json:string>Liss, Inc.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Sandy C. Marks</json:string>
<json:string>I. Note</json:string>
<json:string>M. Nijhoff</json:string>
<json:string>P. Kleinman</json:string>
<json:string>T. Chambers</json:string>
<json:string>Donald Walker</json:string>
</persName>
<placeName>
<json:string>MA</json:string>
<json:string>Trelstad</json:string>
<json:string>Worcester</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Horton et al.</json:string>
<json:string>Marks and Popoff, 19891</json:string>
<json:string>Sly et al., 19851</json:string>
<json:string>Marks and Walker 1969, 19761</json:string>
<json:string>Schneider and Relfson, 1987</json:string>
<json:string>Green et al., 19861</json:string>
<json:string>Anderson et al., 1982</json:string>
<json:string>Lian et al.</json:string>
<json:string>Glorieux et al., 1981</json:string>
<json:string>Popoff et al., 19881</json:string>
<json:string>Beighton et al., 19791</json:string>
<json:string>Schneider et al., 19791</json:string>
<json:string>Malkani et al., 19731</json:string>
<json:string>Baron et al., 1985, 1986</json:string>
<json:string>[1941]</json:string>
<json:string>Coccia et al., 19801</json:string>
<json:string>Marks and Walker, 19811</json:string>
<json:string>Akisaka and Gay, 19861</json:string>
<json:string>Schneider et al., 19861</json:string>
<json:string>Lovisetto et al., 19781</json:string>
<json:string>Sorell et al., 1981</json:string>
<json:string>Schneider et al., 1988</json:string>
<json:string>Milhaud et al., 19811</json:string>
<json:string>Key et al., 19871</json:string>
<json:string>Whyte et al., 19801</json:string>
<json:string>Marks and Popoff, 1989</json:string>
<json:string>Key et al.</json:string>
<json:string>Popoff et al., 19891</json:string>
<json:string>Raisz et al., 1977, 19811</json:string>
<json:string>Popoff et al., 1988</json:string>
<json:string>Ash et al., 1980</json:string>
<json:string>Marks and McGuire, 19881</json:string>
<json:string>Graham et al., 19731</json:string>
<json:string>Zerwekh et al., 19871</json:string>
<json:string>Milhaud et al., 19751</json:string>
<json:string>Bonucci et al., 1975</json:string>
<json:string>Rodan and Martin, 19811</json:string>
<json:string>Thesingh and Scherft, 1985</json:string>
<json:string>Milhaud et al., 1981</json:string>
<json:string>Marks et al., 19871</json:string>
<json:string>Marks and Walker, 1981</json:string>
<json:string>Marks and Popoff, 1988</json:string>
<json:string>Marks and Schneider, 19821</json:string>
<json:string>Banco et al., 1985</json:string>
<json:string>Ballet et al., 19771</json:string>
<json:string>Mundy and Roodman, 19871</json:string>
<json:string>Lian and Marks, 19871</json:string>
<json:string>Loria-Cortes et al., 19771</json:string>
<json:string>Zamboni et al., 1977</json:string>
<json:string>Marks et al., 1984</json:string>
<json:string>Sieff et al., 19831</json:string>
<json:string>Key et al., 19841</json:string>
<json:string>Seifert et al., 1986, 19881</json:string>
<json:string>Zamboni et al., 19771</json:string>
<json:string>Marks and Popoff, 19881</json:string>
<json:string>Rasmussen and Bosdier, 19741</json:string>
<json:string>Reeves et al., 1979</json:string>
<json:string>Schneider and Relfson, 1988133</json:string>
<json:string>Osier et al., 19871</json:string>
<json:string>Banco et al.</json:string>
<json:string>Coccia et al., 1980</json:string>
<json:string>Vaananen and Parvinen, 19831</json:string>
<json:string>Ozdirim et al., 1981</json:string>
<json:string>Schneider and Relfson, 1988</json:string>
<json:string>Glorieux et al., 19811</json:string>
<json:string>Marks and Seifert, 19851</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-8KKX3G0W-8</json:string>
</ark>
<categories>
<wos></wos>
<scienceMetrix></scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Genetics(clinical)</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>1989</publicationDate>
<copyrightDate>1989</copyrightDate>
<doi>
<json:string>10.1002/ajmg.1320340110</json:string>
</doi>
<id>3B6E64BD8D35E3650BAEF3E092663925FA698188</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<availability>
<licence>Copyright © 1989 Wiley‐Liss, Inc., A Wiley Company</licence>
</availability>
<date type="published" when="1989-09"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
<title level="a" type="short" xml:lang="en">Osteoclast Biology and Osteopetrosis</title>
<author xml:id="author-0000" role="corresp">
<persName>
<addName>Dr.</addName>
<genName>Jr.</genName>
<forename type="first">Sandy C.</forename>
<surname>Marks</surname>
</persName>
<affiliation>Department of Cell Biology, University of Massachusetts Medical School, Worcester
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Cell Biology, Univ. Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655</affiliation>
</author>
<idno type="istex">3B6E64BD8D35E3650BAEF3E092663925FA698188</idno>
<idno type="ark">ark:/67375/WNG-8KKX3G0W-8</idno>
<idno type="DOI">10.1002/ajmg.1320340110</idno>
<idno type="unit">AJMG1320340110</idno>
<idno type="toTypesetVersion">file:AJMG.AJMG1320340110.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">American Journal of Medical Genetics</title>
<title level="j" type="alt">AMERICAN JOURNAL OF MEDICAL GENETICS</title>
<idno type="pISSN">0148-7299</idno>
<idno type="eISSN">1096-8628</idno>
<idno type="book-DOI">10.1002/(ISSN)1096-8628</idno>
<idno type="book-part-DOI">10.1002/ajmg.v34:1</idno>
<idno type="product">AJMG</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="43">43</biblScope>
<biblScope unit="page" to="54">54</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1989-09"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">osteoclast</term>
<term xml:id="kwd2">osteopetrosis</term>
<term xml:id="kwd3">bone resorption</term>
<term xml:id="kwd4">vitamin D</term>
</keywords>
<keywords rend="articleCategory">
<term>Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>New York</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1096-8628</doi>
<issn type="print">0148-7299</issn>
<issn type="electronic">1096-8628</issn>
<idGroup>
<id type="product" value="AJMG"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="AMERICAN JOURNAL OF MEDICAL GENETICS">American Journal of Medical Genetics</title>
<title type="short">Am. J. Med. Genet.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi origin="wiley" registered="yes">10.1002/ajmg.v34:1</doi>
<numberingGroup>
<numbering type="journalVolume" number="34">34</numbering>
<numbering type="journalIssue">1</numbering>
</numberingGroup>
<coverDate startDate="1989-09">September 1989</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="10" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/ajmg.1320340110</doi>
<idGroup>
<id type="unit" value="AJMG1320340110"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="12"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Article</title>
<title type="tocHeading1">Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 1989 Wiley‐Liss, Inc., A Wiley Company</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1988-07-18"></event>
<event type="manuscriptRevised" date="1988-11-07"></event>
<event type="firstOnline" date="2005-06-03"></event>
<event type="publishedOnlineFinalForm" date="2005-06-03"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.9 mode:FullText" date="2010-06-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-02"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-14"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">43</numbering>
<numbering type="pageLast">54</numbering>
</numberingGroup>
<correspondenceTo>Department of Cell Biology, Univ. Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:AJMG.AJMG1320340110.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="17"></count>
<count type="tableTotal" number="1"></count>
<count type="referenceTotal" number="93"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
<title type="short" xml:lang="en">Osteoclast Biology and Osteopetrosis</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<honorifics>Dr.</honorifics>
<givenNames>Sandy C.</givenNames>
<familyName>Marks</familyName>
<nameSuffix>Jr.</nameSuffix>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Department of Cell Biology, University of Massachusetts Medical School, Worcester</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">osteoclast</keyword>
<keyword xml:id="kwd2">osteopetrosis</keyword>
<keyword xml:id="kwd3">bone resorption</keyword>
<keyword xml:id="kwd4">vitamin D</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Osteoclast biology: Lessons from mammalian mutations</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Osteoclast Biology and Osteopetrosis</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Osteoclast biology: Lessons from mammalian mutations</title>
</titleInfo>
<name type="personal">
<namePart type="termsOfAddress">Dr.</namePart>
<namePart type="given">Sandy C.</namePart>
<namePart type="family">Marks Jr.</namePart>
<affiliation>Department of Cell Biology, University of Massachusetts Medical School, Worcester</affiliation>
<affiliation>Correspondence address: Department of Cell Biology, Univ. Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">New York</placeTerm>
</place>
<dateIssued encoding="w3cdtf">1989-09</dateIssued>
<dateCaptured encoding="w3cdtf">1988-07-18</dateCaptured>
<copyrightDate encoding="w3cdtf">1989</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">17</extent>
<extent unit="tables">1</extent>
<extent unit="references">93</extent>
</physicalDescription>
<abstract lang="en">Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>osteoclast</topic>
<topic>osteopetrosis</topic>
<topic>bone resorption</topic>
<topic>vitamin D</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>American Journal of Medical Genetics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Am. J. Med. Genet.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Article</topic>
</subject>
<identifier type="ISSN">0148-7299</identifier>
<identifier type="eISSN">1096-8628</identifier>
<identifier type="DOI">10.1002/(ISSN)1096-8628</identifier>
<identifier type="PublisherID">AJMG</identifier>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>43</start>
<end>54</end>
<total>12</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">3B6E64BD8D35E3650BAEF3E092663925FA698188</identifier>
<identifier type="ark">ark:/67375/WNG-8KKX3G0W-8</identifier>
<identifier type="DOI">10.1002/ajmg.1320340110</identifier>
<identifier type="ArticleID">AJMG1320340110</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 1989 Wiley‐Liss, Inc., A Wiley Company</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188
   |texte=   Osteoclast biology: Lessons from mammalian mutations
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022