Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig

Identifieur interne : 001386 ( Istex/Corpus ); précédent : 001385; suivant : 001387

Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig

Auteurs : Jan Gottlow ; Michel Dard ; Fred Kjellson ; Marcel Obrecht ; Lars Sennerby

Source :

RBID : ISTEX:288AE84BBF4317E55C81D0F40C92E82606005BF0

English descriptors

Abstract

Background: Titanium zirconium alloy with 13–17% zirconium (TiZr1317) shows significantly better mechanical attributes than pure Ti with respect to elongation and fatigue strength. This material may be suitable for thin implants and implant components exposed to high mechanical constraints.

Url:
DOI: 10.1111/j.1708-8208.2010.00289.x

Links to Exploration step

ISTEX:288AE84BBF4317E55C81D0F40C92E82606005BF0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
<author>
<name sortKey="Gottlow, Jan" sort="Gottlow, Jan" uniqKey="Gottlow J" first="Jan" last="Gottlow">Jan Gottlow</name>
<affiliation>
<mods:affiliation>Research fellow, Department Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jan.gottlow@telia.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dard, Michel" sort="Dard, Michel" uniqKey="Dard M" first="Michel" last="Dard">Michel Dard</name>
<affiliation>
<mods:affiliation>director, PreClinical Research, Institut Straumann AG, Basel, Switzerland;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kjellson, Fred" sort="Kjellson, Fred" uniqKey="Kjellson F" first="Fred" last="Kjellson">Fred Kjellson</name>
<affiliation>
<mods:affiliation>associate professor, Biomaterial and Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Obrecht, Marcel" sort="Obrecht, Marcel" uniqKey="Obrecht M" first="Marcel" last="Obrecht">Marcel Obrecht</name>
<affiliation>
<mods:affiliation>research engineer, Institut Straumann AG, Basel, Switzerland;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sennerby, Lars" sort="Sennerby, Lars" uniqKey="Sennerby L" first="Lars" last="Sennerby">Lars Sennerby</name>
<affiliation>
<mods:affiliation>professor, Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:288AE84BBF4317E55C81D0F40C92E82606005BF0</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1111/j.1708-8208.2010.00289.x</idno>
<idno type="url">https://api.istex.fr/document/288AE84BBF4317E55C81D0F40C92E82606005BF0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001386</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001386</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
<author>
<name sortKey="Gottlow, Jan" sort="Gottlow, Jan" uniqKey="Gottlow J" first="Jan" last="Gottlow">Jan Gottlow</name>
<affiliation>
<mods:affiliation>Research fellow, Department Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: jan.gottlow@telia.com</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dard, Michel" sort="Dard, Michel" uniqKey="Dard M" first="Michel" last="Dard">Michel Dard</name>
<affiliation>
<mods:affiliation>director, PreClinical Research, Institut Straumann AG, Basel, Switzerland;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kjellson, Fred" sort="Kjellson, Fred" uniqKey="Kjellson F" first="Fred" last="Kjellson">Fred Kjellson</name>
<affiliation>
<mods:affiliation>associate professor, Biomaterial and Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Obrecht, Marcel" sort="Obrecht, Marcel" uniqKey="Obrecht M" first="Marcel" last="Obrecht">Marcel Obrecht</name>
<affiliation>
<mods:affiliation>research engineer, Institut Straumann AG, Basel, Switzerland;</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sennerby, Lars" sort="Sennerby, Lars" uniqKey="Sennerby L" first="Lars" last="Sennerby">Lars Sennerby</name>
<affiliation>
<mods:affiliation>professor, Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Clinical Implant Dentistry and Related Research</title>
<title level="j" type="alt">CLINICAL IMPLANT DENTISTRY RELATED RESEARCH</title>
<idno type="ISSN">1523-0899</idno>
<idno type="eISSN">1708-8208</idno>
<imprint>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="538">538</biblScope>
<biblScope unit="page" to="545">545</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-08">2012-08</date>
</imprint>
<idno type="ISSN">1523-0899</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1523-0899</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloy</term>
<term>Basel</term>
<term>Biomechanical</term>
<term>Biomechanical evaluation</term>
<term>Biomed mater</term>
<term>Bone apposition</term>
<term>Bone area</term>
<term>Bone chamber implant</term>
<term>Bone chamber implants</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone integration</term>
<term>Bone level</term>
<term>Chemical properties</term>
<term>Clinical implant dentistry</term>
<term>Contralateral side</term>
<term>Control implant</term>
<term>Control implants</term>
<term>Dental implants</term>
<term>Department biomaterials</term>
<term>Different surfaces</term>
<term>Early stages</term>
<term>Experimental study</term>
<term>Fatigue strength</term>
<term>Formaldehyde solution</term>
<term>Histologic evaluation</term>
<term>Histomorphometric measurements</term>
<term>Hydrophilic</term>
<term>Hydrophilic sandblasted</term>
<term>Image analysis system</term>
<term>Implant</term>
<term>Implant components</term>
<term>Implant contact</term>
<term>Implant position</term>
<term>Implant surface</term>
<term>Institut straumann</term>
<term>Institute straumann</term>
<term>Light microscope</term>
<term>Linear portion</term>
<term>Mandible</term>
<term>Micro structure</term>
<term>Mini</term>
<term>Mini pigs</term>
<term>More bone area</term>
<term>Native bone</term>
<term>Oral implant surfaces</term>
<term>Other material</term>
<term>Present study</term>
<term>Pure titanium</term>
<term>Removal torque</term>
<term>Sahlgrenska academy</term>
<term>Same animal</term>
<term>Same material</term>
<term>Sandblasted</term>
<term>Soft tissue</term>
<term>Squared head</term>
<term>Straumann</term>
<term>Stronger bone tissue responses</term>
<term>Thin implants</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Alloy</term>
<term>Basel</term>
<term>Biomechanical</term>
<term>Biomechanical evaluation</term>
<term>Biomed mater</term>
<term>Bone apposition</term>
<term>Bone area</term>
<term>Bone chamber implant</term>
<term>Bone chamber implants</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone integration</term>
<term>Bone level</term>
<term>Chemical properties</term>
<term>Clinical implant dentistry</term>
<term>Contralateral side</term>
<term>Control implant</term>
<term>Control implants</term>
<term>Dental implants</term>
<term>Department biomaterials</term>
<term>Different surfaces</term>
<term>Early stages</term>
<term>Experimental study</term>
<term>Fatigue strength</term>
<term>Formaldehyde solution</term>
<term>Histologic evaluation</term>
<term>Histomorphometric measurements</term>
<term>Hydrophilic</term>
<term>Hydrophilic sandblasted</term>
<term>Image analysis system</term>
<term>Implant</term>
<term>Implant components</term>
<term>Implant contact</term>
<term>Implant position</term>
<term>Implant surface</term>
<term>Institut straumann</term>
<term>Institute straumann</term>
<term>Light microscope</term>
<term>Linear portion</term>
<term>Mandible</term>
<term>Micro structure</term>
<term>Mini</term>
<term>Mini pigs</term>
<term>More bone area</term>
<term>Native bone</term>
<term>Oral implant surfaces</term>
<term>Other material</term>
<term>Present study</term>
<term>Pure titanium</term>
<term>Removal torque</term>
<term>Sahlgrenska academy</term>
<term>Same animal</term>
<term>Same material</term>
<term>Sandblasted</term>
<term>Soft tissue</term>
<term>Squared head</term>
<term>Straumann</term>
<term>Stronger bone tissue responses</term>
<term>Thin implants</term>
<term>Titanium</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Background: Titanium zirconium alloy with 13–17% zirconium (TiZr1317) shows significantly better mechanical attributes than pure Ti with respect to elongation and fatigue strength. This material may be suitable for thin implants and implant components exposed to high mechanical constraints.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>implant</json:string>
<json:string>straumann</json:string>
<json:string>mini</json:string>
<json:string>sandblasted</json:string>
<json:string>mandible</json:string>
<json:string>mini pigs</json:string>
<json:string>biomechanical</json:string>
<json:string>native bone</json:string>
<json:string>implant surface</json:string>
<json:string>hydrophilic sandblasted</json:string>
<json:string>removal torque</json:string>
<json:string>bone chamber implants</json:string>
<json:string>institut straumann</json:string>
<json:string>bone integration</json:string>
<json:string>present study</json:string>
<json:string>institute straumann</json:string>
<json:string>control implants</json:string>
<json:string>dental implants</json:string>
<json:string>bone area</json:string>
<json:string>titanium</json:string>
<json:string>squared head</json:string>
<json:string>thin implants</json:string>
<json:string>control implant</json:string>
<json:string>titanium implants</json:string>
<json:string>biomechanical evaluation</json:string>
<json:string>soft tissue</json:string>
<json:string>clinical implant dentistry</json:string>
<json:string>pure titanium</json:string>
<json:string>implant components</json:string>
<json:string>biomed mater</json:string>
<json:string>basel</json:string>
<json:string>image analysis system</json:string>
<json:string>department biomaterials</json:string>
<json:string>experimental study</json:string>
<json:string>stronger bone tissue responses</json:string>
<json:string>bone chamber implant</json:string>
<json:string>histologic evaluation</json:string>
<json:string>implant contact</json:string>
<json:string>bone level</json:string>
<json:string>histomorphometric measurements</json:string>
<json:string>formaldehyde solution</json:string>
<json:string>contralateral side</json:string>
<json:string>linear portion</json:string>
<json:string>light microscope</json:string>
<json:string>chemical properties</json:string>
<json:string>fatigue strength</json:string>
<json:string>sahlgrenska academy</json:string>
<json:string>bone contact</json:string>
<json:string>same material</json:string>
<json:string>same animal</json:string>
<json:string>other material</json:string>
<json:string>implant position</json:string>
<json:string>bone apposition</json:string>
<json:string>early stages</json:string>
<json:string>bone formation</json:string>
<json:string>more bone area</json:string>
<json:string>micro structure</json:string>
<json:string>oral implant surfaces</json:string>
<json:string>different surfaces</json:string>
<json:string>titanium surface</json:string>
<json:string>alloy</json:string>
<json:string>hydrophilic</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Jan Gottlow DDS, PhD</name>
<affiliations>
<json:string>Research fellow, Department Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;</json:string>
<json:string>E-mail: jan.gottlow@telia.com</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michel Dard DDS, PhD</name>
<affiliations>
<json:string>director, PreClinical Research, Institut Straumann AG, Basel, Switzerland;</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fred Kjellson PhD</name>
<affiliations>
<json:string>associate professor, Biomaterial and Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden;</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marcel Obrecht B.E</name>
<affiliations>
<json:string>research engineer, Institut Straumann AG, Basel, Switzerland;</json:string>
</affiliations>
</json:item>
<json:item>
<name>Lars Sennerby DDS, PhD</name>
<affiliations>
<json:string>professor, Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>experimental study</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>histology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pig mandible</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>removal torque</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>TiZr1317</value>
</json:item>
</subject>
<articleId>
<json:string>CID289</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-JR9ZB360-M</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Background: Titanium zirconium alloy with 13–17% zirconium (TiZr1317) shows significantly better mechanical attributes than pure Ti with respect to elongation and fatigue strength. This material may be suitable for thin implants and implant components exposed to high mechanical constraints.</abstract>
<qualityIndicators>
<refBibsNative>true</refBibsNative>
<abstractWordCount>39</abstractWordCount>
<abstractCharCount>291</abstractCharCount>
<keywordCount>5</keywordCount>
<score>6.09</score>
<pdfWordCount>3622</pdfWordCount>
<pdfCharCount>22473</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>585 x 783 pts</pdfPageSize>
</qualityIndicators>
<title>Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
<pmid>
<json:string>20586785</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Clinical Implant Dentistry and Related Research</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1708-8208</json:string>
</doi>
<issn>
<json:string>1523-0899</json:string>
</issn>
<eissn>
<json:string>1708-8208</json:string>
</eissn>
<publisherId>
<json:string>CID</json:string>
</publisherId>
<volume>14</volume>
<issue>4</issue>
<pages>
<first>538</first>
<last>545</last>
<total>8</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Wiley Periodicals, Inc.</json:string>
<json:string>Research, Institut Straumann AG, Basel, Switzerland</json:string>
<json:string>University of Basel</json:string>
<json:string>University of Gothenburg</json:string>
<json:string>Institute Straumann AG, Basel, Switzerland</json:string>
<json:string>Department of Environmental and Health</json:string>
<json:string>Visiopharm</json:string>
<json:string>Institute of Social and Preventive Medicine</json:string>
<json:string>Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden Titanium</json:string>
<json:string>Malmö University, Sweden</json:string>
<json:string>Related Research, Volume</json:string>
<json:string>Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden</json:string>
<json:string>CH</json:string>
<json:string>SAS Institute, Cary, NC, USA</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Fred Kjellson</json:string>
<json:string>Michael De Wild</json:string>
<json:string>Marcel Obrecht</json:string>
<json:string>Leticia Grize</json:string>
<json:string>Buser</json:string>
<json:string>Ferguson</json:string>
<json:string>Michel Dard</json:string>
<json:string>Jan Gottlow</json:string>
<json:string>Lars Sennerby</json:string>
<json:string>Sciences</json:string>
<json:string>Bernhard</json:string>
</persName>
<placeName>
<json:string>Switzerland</json:string>
<json:string>Germany</json:string>
<json:string>UK</json:string>
<json:string>Friedrichsdorf</json:string>
<json:string>Gothenburg</json:string>
<json:string>Basel</json:string>
<json:string>Göttingen</json:string>
<json:string>Denmark</json:string>
<json:string>Sweden</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>TiZr1317</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-JR9ZB360-M</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - dentistry, oral surgery & medicine</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - dentistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Dentistry</json:string>
<json:string>3 - General Dentistry</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Dentistry</json:string>
<json:string>3 - Oral Surgery</json:string>
</scopus>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1111/j.1708-8208.2010.00289.x</json:string>
</doi>
<id>288AE84BBF4317E55C81D0F40C92E82606005BF0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/288AE84BBF4317E55C81D0F40C92E82606005BF0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/288AE84BBF4317E55C81D0F40C92E82606005BF0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/288AE84BBF4317E55C81D0F40C92E82606005BF0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<availability>
<licence>© 2010 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2012-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
<title level="a" type="short">Bone integration of TiZr1317 implants</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Jan</forename>
<surname>Gottlow</surname>
<roleName type="degree">DDS, PhD</roleName>
</persName>
<affiliation>Research fellow, Department Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;
<address>
<country key="SE"></country>
</address>
</affiliation>
<affiliation>Dr. Jan Gottlow, Dept Biomaterials, University of Gothenburg, PO Box 412, SE 405 30 Gothenburg, Sweden; e‐mail: jan.gottlow@telia.com</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Michel</forename>
<surname>Dard</surname>
<roleName type="degree">DDS, PhD</roleName>
</persName>
<affiliation>director, PreClinical Research, Institut Straumann AG, Basel, Switzerland;
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Fred</forename>
<surname>Kjellson</surname>
<roleName type="degree">PhD</roleName>
</persName>
<affiliation>associate professor, Biomaterial and Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden;
<address>
<country key="SE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Marcel</forename>
<surname>Obrecht</surname>
<roleName type="degree">B.E</roleName>
</persName>
<affiliation>research engineer, Institut Straumann AG, Basel, Switzerland;
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Lars</forename>
<surname>Sennerby</surname>
<roleName type="degree">DDS, PhD</roleName>
</persName>
<affiliation>professor, Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
<address>
<country key="SE"></country>
</address>
</affiliation>
</author>
<idno type="istex">288AE84BBF4317E55C81D0F40C92E82606005BF0</idno>
<idno type="ark">ark:/67375/WNG-JR9ZB360-M</idno>
<idno type="DOI">10.1111/j.1708-8208.2010.00289.x</idno>
<idno type="unit">CID289</idno>
<idno type="toTypesetVersion">file:CID.CID289.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Clinical Implant Dentistry and Related Research</title>
<title level="j" type="alt">CLINICAL IMPLANT DENTISTRY RELATED RESEARCH</title>
<idno type="pISSN">1523-0899</idno>
<idno type="eISSN">1708-8208</idno>
<idno type="book-DOI">10.1111/(ISSN)1708-8208</idno>
<idno type="book-part-DOI">10.1111/cid.2012.14.issue-4</idno>
<idno type="product">CID</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="538">538</biblScope>
<biblScope unit="page" to="545">545</biblScope>
<biblScope unit="page-count">8</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2012-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>ABSTRACT</head>
<p>
<hi rend="bold">Background:</hi>
Titanium zirconium alloy with 13–17% zirconium (TiZr1317) shows significantly better mechanical attributes than pure Ti with respect to elongation and fatigue strength. This material may be suitable for thin implants and implant components exposed to high mechanical constraints.</p>
<p>
<hi rend="bold">Purpose:</hi>
The aim of this study was to test the hypothesis that TiZr1317 and Ti implants show comparable osseointegration and stability.</p>
<p>
<hi rend="bold">Materials and Methods:</hi>
The mandibular premolars (P1, P2, P3) and the first molar (M1) in 12 adult miniature pigs were extracted 3 months prior to the study. Six specially designed implants made from Ti (commercially pure, Grade 4) or TiZr1317 (Roxolid®, Institut Straumann AG, Basel, Switzerland) with a hydrophilic sandblasted and acid‐etched (SLActive, Institut Straumann AG, Basel, Switzerland) surface were placed in each mandible; three standard implants modified for evaluation of removal torque (RT) in one side and three bone‐chamber implants for histologic observations in the contralateral side. RT tests were performed after 4 weeks when also the bone chamber implants and surrounding tissue were biopsied for histologic analyses in ground sections.</p>
<p>
<hi rend="bold">Results:</hi>
The RT results indicated significantly higher stability (
<hi rend="italic">p</hi>
 = 0.013) for TiZr1317 (230.9 ± 22.4 Ncm) than for Ti implants (204.7 ± 24.0 Ncm). The histology showed similar osteoconductive properties for both implant types. Histomorphometric measurements showed a statistically significant higher (
<hi rend="italic">p</hi>
 = 0.023) bone area within the chamber for the TiZr1317 implants (45.5 ± 13.2%) than did the Ti implants (40.2 ± 15.2%). No difference was observed concerning the bone to implant contact between the groups with 72.3 ± 20.5% for Ti and 70.2 ± 17.3% for TiZr1317 implants.</p>
<p>
<hi rend="bold">Conclusion:</hi>
It is concluded that the TiZr1317 implant with a hydrophilic sandblasted and acid‐etched surface showed similar or even stronger bone tissue responses than the Ti control implant</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">experimental study</term>
<term xml:id="k2">histology</term>
<term xml:id="k3">pig mandible</term>
<term xml:id="k4">removal torque</term>
<term xml:id="k5">TiZr1317</term>
</keywords>
<keywords rend="tocHeading1">
<term>ARTICLES</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/288AE84BBF4317E55C81D0F40C92E82606005BF0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1708-8208</doi>
<issn type="print">1523-0899</issn>
<issn type="electronic">1708-8208</issn>
<idGroup>
<id type="product" value="CID"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="CLINICAL IMPLANT DENTISTRY RELATED RESEARCH">Clinical Implant Dentistry and Related Research</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="08104">
<doi origin="wiley">10.1111/cid.2012.14.issue-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="14">14</numbering>
<numbering type="journalIssue" number="4">4</numbering>
</numberingGroup>
<coverDate startDate="2012-08">August 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="8" status="forIssue">
<doi origin="wiley">10.1111/j.1708-8208.2010.00289.x</doi>
<idGroup>
<id type="unit" value="CID289"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="8"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">ARTICLES</title>
</titleGroup>
<copyright>© 2010 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="firstOnline" date="2010-06-25"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2010-06-25"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:3.1.6 mode:FullText" date="2012-08-01"></event>
<event type="publishedOnlineFinalForm" date="2012-08-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-15"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-25"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="538">538</numbering>
<numbering type="pageLast" number="545">545</numbering>
</numberingGroup>
<correspondenceTo>Dr. Jan Gottlow, Dept Biomaterials, University of Gothenburg, PO Box 412, SE 405 30 Gothenburg, Sweden; e‐mail:
<email>jan.gottlow@telia.com</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CID.CID289.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="0"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="16"></count>
<count type="wordTotal" number="4144"></count>
<count type="linksPubMed" number="0"></count>
<count type="linksCrossRef" number="0"></count>
</countGroup>
<titleGroup>
<title type="main">Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
<title type="shortAuthors">Clinical Implant Dentistry and Related Research, Volume *, Number *, 2010</title>
<title type="short">Bone integration of TiZr1317 implants</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1" corresponding="yes">
<personName>
<givenNames>Jan</givenNames>
<familyName>Gottlow</familyName>
<degrees>DDS, PhD</degrees>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a2">
<personName>
<givenNames>Michel</givenNames>
<familyName>Dard</familyName>
<degrees>DDS, PhD</degrees>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a3">
<personName>
<givenNames>Fred</givenNames>
<familyName>Kjellson</familyName>
<degrees>PhD</degrees>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a4">
<personName>
<givenNames>Marcel</givenNames>
<familyName>Obrecht</familyName>
<degrees>B.E</degrees>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a5">
<personName>
<givenNames>Lars</givenNames>
<familyName>Sennerby</familyName>
<degrees>DDS, PhD</degrees>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="SE">
<unparsedAffiliation>Research fellow, Department Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="CH">
<unparsedAffiliation>director, PreClinical Research, Institut Straumann AG, Basel, Switzerland;</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="SE">
<unparsedAffiliation>associate professor, Biomaterial and Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden;</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a4" countryCode="CH">
<unparsedAffiliation>research engineer, Institut Straumann AG, Basel, Switzerland;</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a5" countryCode="SE">
<unparsedAffiliation>professor, Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">experimental study</keyword>
<keyword xml:id="k2">histology</keyword>
<keyword xml:id="k3">pig mandible</keyword>
<keyword xml:id="k4">removal torque</keyword>
<keyword xml:id="k5">TiZr1317</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">ABSTRACT</title>
<p>
<b>Background:</b>
Titanium zirconium alloy with 13–17% zirconium (TiZr1317) shows significantly better mechanical attributes than pure Ti with respect to elongation and fatigue strength. This material may be suitable for thin implants and implant components exposed to high mechanical constraints.</p>
<p>
<b>Purpose:</b>
The aim of this study was to test the hypothesis that TiZr1317 and Ti implants show comparable osseointegration and stability.</p>
<p>
<b>Materials and Methods:</b>
The mandibular premolars (P1, P2, P3) and the first molar (M1) in 12 adult miniature pigs were extracted 3 months prior to the study. Six specially designed implants made from Ti (commercially pure, Grade 4) or TiZr1317 (Roxolid®, Institut Straumann AG, Basel, Switzerland) with a hydrophilic sandblasted and acid‐etched (SLActive, Institut Straumann AG, Basel, Switzerland) surface were placed in each mandible; three standard implants modified for evaluation of removal torque (RT) in one side and three bone‐chamber implants for histologic observations in the contralateral side. RT tests were performed after 4 weeks when also the bone chamber implants and surrounding tissue were biopsied for histologic analyses in ground sections.</p>
<p>
<b>Results:</b>
The RT results indicated significantly higher stability (
<i>p</i>
 = 0.013) for TiZr1317 (230.9 ± 22.4 Ncm) than for Ti implants (204.7 ± 24.0 Ncm). The histology showed similar osteoconductive properties for both implant types. Histomorphometric measurements showed a statistically significant higher (
<i>p</i>
 = 0.023) bone area within the chamber for the TiZr1317 implants (45.5 ± 13.2%) than did the Ti implants (40.2 ± 15.2%). No difference was observed concerning the bone to implant contact between the groups with 72.3 ± 20.5% for Ti and 70.2 ± 17.3% for TiZr1317 implants.</p>
<p>
<b>Conclusion:</b>
It is concluded that the TiZr1317 implant with a hydrophilic sandblasted and acid‐etched surface showed similar or even stronger bone tissue responses than the Ti control implant</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Bone integration of TiZr1317 implants</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Gottlow</namePart>
<namePart type="termsOfAddress">DDS, PhD</namePart>
<affiliation>Research fellow, Department Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden;</affiliation>
<affiliation>E-mail: jan.gottlow@telia.com</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Dard</namePart>
<namePart type="termsOfAddress">DDS, PhD</namePart>
<affiliation>director, PreClinical Research, Institut Straumann AG, Basel, Switzerland;</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fred</namePart>
<namePart type="family">Kjellson</namePart>
<namePart type="termsOfAddress">PhD</namePart>
<affiliation>associate professor, Biomaterial and Biomechanics Laboratory, Orthopaedics Department, Lund University, Sweden;</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcel</namePart>
<namePart type="family">Obrecht</namePart>
<namePart type="termsOfAddress">B.E</namePart>
<affiliation>research engineer, Institut Straumann AG, Basel, Switzerland;</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lars</namePart>
<namePart type="family">Sennerby</namePart>
<namePart type="termsOfAddress">DDS, PhD</namePart>
<affiliation>professor, Department Biomaterials, Institute of Surgical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-08</dateIssued>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">8</extent>
<extent unit="tables">0</extent>
<extent unit="formulas">0</extent>
<extent unit="references">16</extent>
<extent unit="linksCrossRef">0</extent>
<extent unit="words">4144</extent>
</physicalDescription>
<abstract>Background: Titanium zirconium alloy with 13–17% zirconium (TiZr1317) shows significantly better mechanical attributes than pure Ti with respect to elongation and fatigue strength. This material may be suitable for thin implants and implant components exposed to high mechanical constraints.</abstract>
<abstract>Purpose: The aim of this study was to test the hypothesis that TiZr1317 and Ti implants show comparable osseointegration and stability.</abstract>
<abstract>Materials and Methods: The mandibular premolars (P1, P2, P3) and the first molar (M1) in 12 adult miniature pigs were extracted 3 months prior to the study. Six specially designed implants made from Ti (commercially pure, Grade 4) or TiZr1317 (Roxolid®, Institut Straumann AG, Basel, Switzerland) with a hydrophilic sandblasted and acid‐etched (SLActive, Institut Straumann AG, Basel, Switzerland) surface were placed in each mandible; three standard implants modified for evaluation of removal torque (RT) in one side and three bone‐chamber implants for histologic observations in the contralateral side. RT tests were performed after 4 weeks when also the bone chamber implants and surrounding tissue were biopsied for histologic analyses in ground sections.</abstract>
<abstract>Results: The RT results indicated significantly higher stability (p = 0.013) for TiZr1317 (230.9 ± 22.4 Ncm) than for Ti implants (204.7 ± 24.0 Ncm). The histology showed similar osteoconductive properties for both implant types. Histomorphometric measurements showed a statistically significant higher (p = 0.023) bone area within the chamber for the TiZr1317 implants (45.5 ± 13.2%) than did the Ti implants (40.2 ± 15.2%). No difference was observed concerning the bone to implant contact between the groups with 72.3 ± 20.5% for Ti and 70.2 ± 17.3% for TiZr1317 implants.</abstract>
<abstract>Conclusion: It is concluded that the TiZr1317 implant with a hydrophilic sandblasted and acid‐etched surface showed similar or even stronger bone tissue responses than the Ti control implant</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>experimental study</topic>
<topic>histology</topic>
<topic>pig mandible</topic>
<topic>removal torque</topic>
<topic>TiZr1317</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Clinical Implant Dentistry and Related Research</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1523-0899</identifier>
<identifier type="eISSN">1708-8208</identifier>
<identifier type="DOI">10.1111/(ISSN)1708-8208</identifier>
<identifier type="PublisherID">CID</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>538</start>
<end>545</end>
<total>8</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">288AE84BBF4317E55C81D0F40C92E82606005BF0</identifier>
<identifier type="ark">ark:/67375/WNG-JR9ZB360-M</identifier>
<identifier type="DOI">10.1111/j.1708-8208.2010.00289.x</identifier>
<identifier type="ArticleID">CID289</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2010 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/288AE84BBF4317E55C81D0F40C92E82606005BF0/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001386 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001386 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:288AE84BBF4317E55C81D0F40C92E82606005BF0
   |texte=   Evaluation of a New Titanium‐Zirconium Dental Implant: A Biomechanical and Histological Comparative Study in the Mini Pig
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022