Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides

Identifieur interne : 000D83 ( Istex/Corpus ); précédent : 000D82; suivant : 000D84

Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides

Auteurs : Nina Broggini ; Samuele Tosatti ; Stephen J. Ferguson ; Martin Schuler ; Marcus Textor ; Michael M. Bornstein ; Dieter D. Bosshardt ; Daniel Buser

Source :

RBID : ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0

English descriptors

Abstract

Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm−2 KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm−2 RGD (KRSR/RGD‐1); (iii) 1.26 pmol cm−2 RGD (KRSR/RGD‐2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐g‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

Url:
DOI: 10.1002/jbm.a.34004

Links to Exploration step

ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides</title>
<author>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: nina.broggini@zmk.unibe.ch</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tosatti, Samuele" sort="Tosatti, Samuele" uniqKey="Tosatti S" first="Samuele" last="Tosatti">Samuele Tosatti</name>
<affiliation>
<mods:affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Stephen J" sort="Ferguson, Stephen J" uniqKey="Ferguson S" first="Stephen J." last="Ferguson">Stephen J. Ferguson</name>
<affiliation>
<mods:affiliation>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schuler, Martin" sort="Schuler, Martin" uniqKey="Schuler M" first="Martin" last="Schuler">Martin Schuler</name>
<affiliation>
<mods:affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Textor, Marcus" sort="Textor, Marcus" uniqKey="Textor M" first="Marcus" last="Textor">Marcus Textor</name>
<affiliation>
<mods:affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bornstein, Michael M" sort="Bornstein, Michael M" uniqKey="Bornstein M" first="Michael M." last="Bornstein">Michael M. Bornstein</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bosshardt, Dieter D" sort="Bosshardt, Dieter D" uniqKey="Bosshardt D" first="Dieter D." last="Bosshardt">Dieter D. Bosshardt</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buser, Daniel" sort="Buser, Daniel" uniqKey="Buser D" first="Daniel" last="Buser">Daniel Buser</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/jbm.a.34004</idno>
<idno type="url">https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D83</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
<ref type="note" target="#fn6"></ref>
<ref type="note" target="#fn7"></ref>
</title>
<author>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: nina.broggini@zmk.unibe.ch</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tosatti, Samuele" sort="Tosatti, Samuele" uniqKey="Tosatti S" first="Samuele" last="Tosatti">Samuele Tosatti</name>
<affiliation>
<mods:affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Stephen J" sort="Ferguson, Stephen J" uniqKey="Ferguson S" first="Stephen J." last="Ferguson">Stephen J. Ferguson</name>
<affiliation>
<mods:affiliation>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Schuler, Martin" sort="Schuler, Martin" uniqKey="Schuler M" first="Martin" last="Schuler">Martin Schuler</name>
<affiliation>
<mods:affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Textor, Marcus" sort="Textor, Marcus" uniqKey="Textor M" first="Marcus" last="Textor">Marcus Textor</name>
<affiliation>
<mods:affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bornstein, Michael M" sort="Bornstein, Michael M" uniqKey="Bornstein M" first="Michael M." last="Bornstein">Michael M. Bornstein</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bosshardt, Dieter D" sort="Bosshardt, Dieter D" uniqKey="Bosshardt D" first="Dieter D." last="Bosshardt">Dieter D. Bosshardt</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Buser, Daniel" sort="Buser, Daniel" uniqKey="Buser D" first="Daniel" last="Buser">Daniel Buser</name>
<affiliation>
<mods:affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">100A</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="703">703</biblScope>
<biblScope unit="page" to="711">711</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-03">2012-03</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active peptides</term>
<term>Additional improvement</term>
<term>Adhesion</term>
<term>Adsorption</term>
<term>Animal model</term>
<term>Apical chambers</term>
<term>Apposition</term>
<term>Berne</term>
<term>Biofunctionalized</term>
<term>Biofunctionalized implant surfaces</term>
<term>Biomaterials</term>
<term>Biomechanical</term>
<term>Biomechanical evaluation</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Blood plasma</term>
<term>Bone apposition</term>
<term>Bone area</term>
<term>Bone chamber</term>
<term>Bone chamber implants</term>
<term>Bone chambers</term>
<term>Bone formation</term>
<term>Bone matrix</term>
<term>Bone trabeculae</term>
<term>Bony ingrowth</term>
<term>Bony wall</term>
<term>Broggini</term>
<term>Bronectin</term>
<term>Bronectin fragment</term>
<term>Buser</term>
<term>Cell adhesion</term>
<term>Cell adhesion molecules</term>
<term>Cell attachment</term>
<term>Cochran</term>
<term>Coronal chambers</term>
<term>Current investigation</term>
<term>Dental implants</term>
<term>Different concentrations</term>
<term>Early stages</term>
<term>Experimental implants</term>
<term>Extracellular matrix</term>
<term>Hepes</term>
<term>Histomorphometric</term>
<term>Histomorphometric analysis</term>
<term>Histomorphometric study</term>
<term>Hydraulic actuator</term>
<term>Implant</term>
<term>Implant surface</term>
<term>Implant surface polymer coating</term>
<term>Implant types</term>
<term>Individual animals</term>
<term>Individual variability</term>
<term>Initial analysis</term>
<term>Institut straumann</term>
<term>Interfacial shear strength</term>
<term>Interfacial stiffness</term>
<term>Krsr</term>
<term>Krsr modsla</term>
<term>Lower container</term>
<term>Mater</term>
<term>Matrix</term>
<term>Maxilla</term>
<term>Maximum torque</term>
<term>Mineralized</term>
<term>Mineralized bone</term>
<term>Mineralized bone matrix</term>
<term>Mineralized tissue</term>
<term>Miniature pigs</term>
<term>Modsla</term>
<term>Modsla surfaces</term>
<term>Molecular architecture</term>
<term>Molecular weight</term>
<term>Molecular weight lysine unit</term>
<term>Native bone</term>
<term>Novel peptides</term>
<term>Osteoblast</term>
<term>Osteoblast attachment</term>
<term>Osteoblast differentiation</term>
<term>Osteoid</term>
<term>Peptide</term>
<term>Peptide sequence</term>
<term>Peptide sequences</term>
<term>Peptide surface density</term>
<term>Pmol</term>
<term>Pmol krsr</term>
<term>Pmol krsr pmol</term>
<term>Pmol pmol</term>
<term>Polymer</term>
<term>Potential differences</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Protein adsorption</term>
<term>Rapid wound healing kinetics</term>
<term>Removal torque</term>
<term>Removal torque testing</term>
<term>Removal torque values</term>
<term>Room temperature</term>
<term>Salt buffer solution</term>
<term>Sandblasted</term>
<term>Shear strength</term>
<term>Similar outcome</term>
<term>Square interface</term>
<term>Standard deviation</term>
<term>Surface coverage</term>
<term>Surface density values</term>
<term>Surface topography</term>
<term>Surgical</term>
<term>Surgical research unit</term>
<term>Textor</term>
<term>Titanium</term>
<term>Titanium implant surfaces</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Tosatti</term>
<term>Treatment modalities</term>
<term>Treatment types</term>
<term>Wieland</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active peptides</term>
<term>Additional improvement</term>
<term>Adhesion</term>
<term>Adsorption</term>
<term>Animal model</term>
<term>Apical chambers</term>
<term>Apposition</term>
<term>Berne</term>
<term>Biofunctionalized</term>
<term>Biofunctionalized implant surfaces</term>
<term>Biomaterials</term>
<term>Biomechanical</term>
<term>Biomechanical evaluation</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Blood plasma</term>
<term>Bone apposition</term>
<term>Bone area</term>
<term>Bone chamber</term>
<term>Bone chamber implants</term>
<term>Bone chambers</term>
<term>Bone formation</term>
<term>Bone matrix</term>
<term>Bone trabeculae</term>
<term>Bony ingrowth</term>
<term>Bony wall</term>
<term>Broggini</term>
<term>Bronectin</term>
<term>Bronectin fragment</term>
<term>Buser</term>
<term>Cell adhesion</term>
<term>Cell adhesion molecules</term>
<term>Cell attachment</term>
<term>Cochran</term>
<term>Coronal chambers</term>
<term>Current investigation</term>
<term>Dental implants</term>
<term>Different concentrations</term>
<term>Early stages</term>
<term>Experimental implants</term>
<term>Extracellular matrix</term>
<term>Hepes</term>
<term>Histomorphometric</term>
<term>Histomorphometric analysis</term>
<term>Histomorphometric study</term>
<term>Hydraulic actuator</term>
<term>Implant</term>
<term>Implant surface</term>
<term>Implant surface polymer coating</term>
<term>Implant types</term>
<term>Individual animals</term>
<term>Individual variability</term>
<term>Initial analysis</term>
<term>Institut straumann</term>
<term>Interfacial shear strength</term>
<term>Interfacial stiffness</term>
<term>Krsr</term>
<term>Krsr modsla</term>
<term>Lower container</term>
<term>Mater</term>
<term>Matrix</term>
<term>Maxilla</term>
<term>Maximum torque</term>
<term>Mineralized</term>
<term>Mineralized bone</term>
<term>Mineralized bone matrix</term>
<term>Mineralized tissue</term>
<term>Miniature pigs</term>
<term>Modsla</term>
<term>Modsla surfaces</term>
<term>Molecular architecture</term>
<term>Molecular weight</term>
<term>Molecular weight lysine unit</term>
<term>Native bone</term>
<term>Novel peptides</term>
<term>Osteoblast</term>
<term>Osteoblast attachment</term>
<term>Osteoblast differentiation</term>
<term>Osteoid</term>
<term>Peptide</term>
<term>Peptide sequence</term>
<term>Peptide sequences</term>
<term>Peptide surface density</term>
<term>Pmol</term>
<term>Pmol krsr</term>
<term>Pmol krsr pmol</term>
<term>Pmol pmol</term>
<term>Polymer</term>
<term>Potential differences</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Protein adsorption</term>
<term>Rapid wound healing kinetics</term>
<term>Removal torque</term>
<term>Removal torque testing</term>
<term>Removal torque values</term>
<term>Room temperature</term>
<term>Salt buffer solution</term>
<term>Sandblasted</term>
<term>Shear strength</term>
<term>Similar outcome</term>
<term>Square interface</term>
<term>Standard deviation</term>
<term>Surface coverage</term>
<term>Surface density values</term>
<term>Surface topography</term>
<term>Surgical</term>
<term>Surgical research unit</term>
<term>Textor</term>
<term>Titanium</term>
<term>Titanium implant surfaces</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Tosatti</term>
<term>Treatment modalities</term>
<term>Treatment types</term>
<term>Wieland</term>
<term>Wiley periodicals</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm−2 KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm−2 RGD (KRSR/RGD‐1); (iii) 1.26 pmol cm−2 RGD (KRSR/RGD‐2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐g‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>implant</json:string>
<json:string>modsla</json:string>
<json:string>krsr</json:string>
<json:string>osteoblast</json:string>
<json:string>pmol</json:string>
<json:string>peptide</json:string>
<json:string>bronectin</json:string>
<json:string>biofunctionalized</json:string>
<json:string>apposition</json:string>
<json:string>biomed</json:string>
<json:string>biomed mater</json:string>
<json:string>biomaterials</json:string>
<json:string>histomorphometric</json:string>
<json:string>textor</json:string>
<json:string>maxilla</json:string>
<json:string>buser</json:string>
<json:string>implant surface</json:string>
<json:string>tosatti</json:string>
<json:string>sandblasted</json:string>
<json:string>bone apposition</json:string>
<json:string>polymer</json:string>
<json:string>broggini</json:string>
<json:string>osteoid</json:string>
<json:string>bone area</json:string>
<json:string>bone formation</json:string>
<json:string>titanium</json:string>
<json:string>removal torque testing</json:string>
<json:string>hepes</json:string>
<json:string>biomechanical</json:string>
<json:string>miniature pigs</json:string>
<json:string>adsorption</json:string>
<json:string>present study</json:string>
<json:string>bone chamber</json:string>
<json:string>native bone</json:string>
<json:string>interfacial shear strength</json:string>
<json:string>bone chambers</json:string>
<json:string>bony wall</json:string>
<json:string>biomechanical evaluation</json:string>
<json:string>mineralized</json:string>
<json:string>matrix</json:string>
<json:string>cochran</json:string>
<json:string>biofunctionalized implant surfaces</json:string>
<json:string>institut straumann</json:string>
<json:string>mineralized bone</json:string>
<json:string>titanium implants</json:string>
<json:string>modsla surfaces</json:string>
<json:string>protein adsorption</json:string>
<json:string>titanium surface</json:string>
<json:string>biomedical materials research</json:string>
<json:string>pmol krsr</json:string>
<json:string>removal torque values</json:string>
<json:string>bone chamber implants</json:string>
<json:string>treatment types</json:string>
<json:string>histomorphometric analysis</json:string>
<json:string>surgical</json:string>
<json:string>mater</json:string>
<json:string>wieland</json:string>
<json:string>berne</json:string>
<json:string>implant types</json:string>
<json:string>cell attachment</json:string>
<json:string>histomorphometric study</json:string>
<json:string>interfacial stiffness</json:string>
<json:string>standard deviation</json:string>
<json:string>room temperature</json:string>
<json:string>removal torque</json:string>
<json:string>initial analysis</json:string>
<json:string>bone trabeculae</json:string>
<json:string>peptide sequences</json:string>
<json:string>bony ingrowth</json:string>
<json:string>molecular weight</json:string>
<json:string>experimental implants</json:string>
<json:string>individual variability</json:string>
<json:string>individual animals</json:string>
<json:string>adhesion</json:string>
<json:string>titanium implant surfaces</json:string>
<json:string>pmol krsr pmol</json:string>
<json:string>surface coverage</json:string>
<json:string>peptide surface density</json:string>
<json:string>molecular weight lysine unit</json:string>
<json:string>molecular architecture</json:string>
<json:string>surface density values</json:string>
<json:string>salt buffer solution</json:string>
<json:string>treatment modalities</json:string>
<json:string>square interface</json:string>
<json:string>blood plasma</json:string>
<json:string>osteoblast attachment</json:string>
<json:string>peptide sequence</json:string>
<json:string>apical chambers</json:string>
<json:string>coronal chambers</json:string>
<json:string>bronectin fragment</json:string>
<json:string>hydraulic actuator</json:string>
<json:string>lower container</json:string>
<json:string>mineralized tissue</json:string>
<json:string>surgical research unit</json:string>
<json:string>maximum torque</json:string>
<json:string>potential differences</json:string>
<json:string>dental implants</json:string>
<json:string>similar outcome</json:string>
<json:string>bone matrix</json:string>
<json:string>active peptides</json:string>
<json:string>pmol pmol</json:string>
<json:string>wiley periodicals</json:string>
<json:string>mineralized bone matrix</json:string>
<json:string>implant surface polymer coating</json:string>
<json:string>krsr modsla</json:string>
<json:string>shear strength</json:string>
<json:string>previous studies</json:string>
<json:string>current investigation</json:string>
<json:string>surface topography</json:string>
<json:string>additional improvement</json:string>
<json:string>cell adhesion molecules</json:string>
<json:string>animal model</json:string>
<json:string>different concentrations</json:string>
<json:string>osteoblast differentiation</json:string>
<json:string>rapid wound healing kinetics</json:string>
<json:string>early stages</json:string>
<json:string>extracellular matrix</json:string>
<json:string>cell adhesion</json:string>
<json:string>titanium surfaces</json:string>
<json:string>novel peptides</json:string>
<json:string>torque</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Nina Broggini</name>
<affiliations>
<json:string>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</json:string>
<json:string>E-mail: nina.broggini@zmk.unibe.ch</json:string>
<json:string>Correspondence address: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Samuele Tosatti</name>
<affiliations>
<json:string>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Stephen J. Ferguson</name>
<affiliations>
<json:string>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Martin Schuler</name>
<affiliations>
<json:string>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</json:string>
<json:string>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marcus Textor</name>
<affiliations>
<json:string>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Michael M. Bornstein</name>
<affiliations>
<json:string>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dieter D. Bosshardt</name>
<affiliations>
<json:string>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</json:string>
</affiliations>
</json:item>
<json:item>
<name>Daniel Buser</name>
<affiliations>
<json:string>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>extracellular matrix protein binding sequences</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>titanium surfaces biofunctionalized with biologically active peptides</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chemically modified sandblasted and acid‐etched titanium implant surfaces</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>removal torque value</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>histomorphometry</value>
</json:item>
</subject>
<articleId>
<json:string>JBM34004</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-SQP04H5G-G</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm−2 KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm−2 RGD (KRSR/RGD‐1); (iii) 1.26 pmol cm−2 RGD (KRSR/RGD‐2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐g‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</abstract>
<qualityIndicators>
<score>9.832</score>
<pdfWordCount>5789</pdfWordCount>
<pdfCharCount>38796</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>236</abstractWordCount>
<abstractCharCount>1758</abstractCharCount>
<keywordCount>5</keywordCount>
</qualityIndicators>
<title>Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides</title>
<pmid>
<json:string>22213622</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Biomedical Materials Research Part A</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1552-4965</json:string>
</doi>
<issn>
<json:string>1549-3296</json:string>
</issn>
<eissn>
<json:string>1552-4965</json:string>
</eissn>
<publisherId>
<json:string>JBM</json:string>
</publisherId>
<volume>100A</volume>
<issue>3</issue>
<pages>
<first>703</first>
<last>711</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2012</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>WILEY PERIODICALS, INC.</json:string>
<json:string>Laboratory for Surface Science and Technology</json:string>
<json:string>Switzerland Received</json:string>
<json:string>Surgical Research Unit ESI and Clinic</json:string>
<json:string>University of Berne</json:string>
<json:string>Committee for Animal Research, State of Berne, Switzerland</json:string>
<json:string>ITI Foundation for the Promotion of Oral Implantology, Basel, Switzerland</json:string>
<json:string>Institute for Surgical Technology</json:string>
<json:string>Department of Materials, ETH, Wolfgang-Pauli-Strasse</json:string>
<json:string>JPT Peptide Technologies</json:string>
<json:string>Wiley Periodicals, Inc</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>O. Beslac</json:string>
<json:string>Michael M. Bornstein</json:string>
<json:string>D. Reist</json:string>
<json:string>Michael de Wild</json:string>
<json:string>Martin Schuler</json:string>
<json:string>Dieter D. Bosshardt</json:string>
<json:string>Daniel Buser</json:string>
<json:string>I. Abbreviations</json:string>
<json:string>B. Hofmann</json:string>
<json:string>Marcus Textor</json:string>
<json:string>Samuele Tosatti</json:string>
<json:string>D. Mettler</json:string>
<json:string>Peter Merian-Weg</json:string>
<json:string>Bo</json:string>
<json:string>N. Broggini</json:string>
<json:string>Erik Hjorting-Hansen</json:string>
<json:string>C. Moser</json:string>
<json:string>P. Gdet</json:string>
<json:string>S. Owusu</json:string>
<json:string>Stephen J. Ferguson</json:string>
<json:string>D. Zalokar</json:string>
</persName>
<placeName>
<json:string>Minneapolis</json:string>
<json:string>Bradford</json:string>
<json:string>Switzerland</json:string>
<json:string>Europe</json:string>
<json:string>Basel</json:string>
<json:string>United Kingdom</json:string>
<json:string>Leuven</json:string>
<json:string>MN</json:string>
<json:string>Zurich</json:string>
<json:string>Belgium</json:string>
</placeName>
<ref_url>
<json:string>http://www.r-project.org</json:string>
</ref_url>
<ref_bibl>
<json:string>Ferguson et al.</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-SQP04H5G-G</json:string>
</ark>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1002/jbm.a.34004</json:string>
</doi>
<id>1BD2DB6C700568FC790627412AE8C57887E735D0</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
<ref type="note" target="#fn6"></ref>
<ref type="note" target="#fn7"></ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<licence>Copyright © 2011 Wiley Periodicals, Inc.</licence>
</availability>
<date type="published" when="2012-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
<ref type="note" target="#fn6"></ref>
<ref type="note" target="#fn7"></ref>
</title>
<title level="a" type="short" xml:lang="en">Histomorphometric and Biomechanical Evaluation of Biofunctionalized Implant Surfaces</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Nina</forename>
<surname>Broggini</surname>
</persName>
<email>nina.broggini@zmk.unibe.ch</email>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010, Switzerland</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Samuele</forename>
<surname>Tosatti</surname>
</persName>
<affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Stephen J.</forename>
<surname>Ferguson</surname>
</persName>
<affiliation>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Martin</forename>
<surname>Schuler</surname>
</persName>
<affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
<affiliation>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Marcus</forename>
<surname>Textor</surname>
</persName>
<affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Michael M.</forename>
<surname>Bornstein</surname>
</persName>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Dieter D.</forename>
<surname>Bosshardt</surname>
</persName>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">Daniel</forename>
<surname>Buser</surname>
</persName>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland
<address>
<country key="CH"></country>
</address>
</affiliation>
</author>
<idno type="istex">1BD2DB6C700568FC790627412AE8C57887E735D0</idno>
<idno type="ark">ark:/67375/WNG-SQP04H5G-G</idno>
<idno type="DOI">10.1002/jbm.a.34004</idno>
<idno type="unit">JBM34004</idno>
<idno type="toTypesetVersion">file:JBM.JBM34004.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="pISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<idno type="book-DOI">10.1002/(ISSN)1552-4965</idno>
<idno type="book-part-DOI">10.1002/jbm.a.v100a.3</idno>
<idno type="product">JBM</idno>
<imprint>
<biblScope unit="vol">100A</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="703">703</biblScope>
<biblScope unit="page" to="711">711</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐
<hi rend="italic">graft</hi>
‐poly(ethylene glycol) (PLL‐
<hi rend="italic">g</hi>
‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm
<hi rend="superscript">−2</hi>
KRSR alone (
<hi rend="bold">KRSR</hi>
); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm
<hi rend="superscript">−2</hi>
RGD (
<hi rend="bold">KRSR/RGD‐1</hi>
); (iii) 1.26 pmol cm
<hi rend="superscript">−2</hi>
RGD (
<hi rend="bold">KRSR/RGD‐2</hi>
)] were compared with (iv) control
<hi rend="bold">modSLA</hi>
. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐
<hi rend="italic">g</hi>
‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">extracellular matrix protein binding sequences</term>
<term xml:id="kwd2">titanium surfaces biofunctionalized with biologically active peptides</term>
<term xml:id="kwd3">chemically modified sandblasted and acid‐etched titanium implant surfaces</term>
<term xml:id="kwd4">removal torque value</term>
<term xml:id="kwd5">histomorphometry</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1552-4965</doi>
<issn type="print">1549-3296</issn>
<issn type="electronic">1552-4965</issn>
<idGroup>
<id type="product" value="JBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A">Journal of Biomedical Materials Research Part A</title>
<title type="short">J. Biomed. Mater. Res.</title>
</titleGroup>
<selfCitationGroup>
<citation type="ancestor" xml:id="cit1">
<journalTitle>Journal of Biomedical Materials Research</journalTitle>
<accessionId ref="info:x-wiley/issn/00219304">0021-9304</accessionId>
<accessionId ref="info:x-wiley/issn/10974636">1097-4636</accessionId>
<pubYear year="2004">2004</pubYear>
</citation>
</selfCitationGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/jbm.a.v100a.3</doi>
<numberingGroup>
<numbering type="journalVolume" number="100">100A</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2012-03">March 2012</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="180" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jbm.a.34004</doi>
<idGroup>
<id type="unit" value="JBM34004"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<copyright ownership="publisher">Copyright © 2011 Wiley Periodicals, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2011-04-13"></event>
<event type="manuscriptRevised" date="2011-08-25"></event>
<event type="manuscriptAccepted" date="2011-08-31"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:3.0.1 mode:FullText" date="2012-01-24"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2011-12-30"></event>
<event type="firstOnline" date="2011-12-30"></event>
<event type="publishedOnlineFinalForm" date="2012-01-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-28"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.3.4 mode:FullText" date="2015-02-24"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">703</numbering>
<numbering type="pageLast">711</numbering>
</numberingGroup>
<correspondenceTo>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010, Switzerland</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JBM.JBM34004.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="3"></count>
<count type="tableTotal" number="5"></count>
<count type="referenceTotal" number="44"></count>
<count type="wordTotal" number="7594"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
<link href="#fn6"></link>
<link href="#fn7"></link>
</title>
<title type="short" xml:lang="en">Histomorphometric and Biomechanical Evaluation of Biofunctionalized Implant Surfaces</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Nina</givenNames>
<familyName>Broggini</familyName>
</personName>
<contactDetails>
<email>nina.broggini@zmk.unibe.ch</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Samuele</givenNames>
<familyName>Tosatti</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af3">
<personName>
<givenNames>Stephen J.</givenNames>
<familyName>Ferguson</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af2 #af4">
<personName>
<givenNames>Martin</givenNames>
<familyName>Schuler</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af2">
<personName>
<givenNames>Marcus</givenNames>
<familyName>Textor</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Michael M.</givenNames>
<familyName>Bornstein</familyName>
</personName>
</creator>
<creator xml:id="au7" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Dieter D.</givenNames>
<familyName>Bosshardt</familyName>
</personName>
</creator>
<creator xml:id="au8" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Daniel</givenNames>
<familyName>Buser</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="CH" type="organization">
<unparsedAffiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="CH" type="organization">
<unparsedAffiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="CH" type="organization">
<unparsedAffiliation>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne, Switzerland</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="CH" type="organization">
<unparsedAffiliation>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel, Switzerland</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">extracellular matrix protein binding sequences</keyword>
<keyword xml:id="kwd2">titanium surfaces biofunctionalized with biologically active peptides</keyword>
<keyword xml:id="kwd3">chemically modified sandblasted and acid‐etched titanium implant surfaces</keyword>
<keyword xml:id="kwd4">removal torque value</keyword>
<keyword xml:id="kwd5">histomorphometry</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>ITI Foundation for the Promotion of Oral Implantology, Basel, Switzerland</fundingAgency>
<fundingNumber>459_2006</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐
<i>graft</i>
‐poly(ethylene glycol) (PLL‐
<i>g</i>
‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm
<sup>−2</sup>
KRSR alone (
<b>KRSR</b>
); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm
<sup>−2</sup>
RGD (
<b>KRSR/RGD‐1</b>
); (iii) 1.26 pmol cm
<sup>−2</sup>
RGD (
<b>KRSR/RGD‐2</b>
)] were compared with (iv) control
<b>modSLA</b>
. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐
<i>g</i>
‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn6">
<p>No benefit of any kind will be received either directly or indirectly by the author(s). Company affiliation took place with one author only after the study was completed.</p>
</note>
<note xml:id="fn7">
<p>
<b>How to cite this article</b>
: Broggini N, Tosatti S, Ferguson SJ, Schuler M, Textor M, Bornstein MM, Bosshardt DD, Buser D. 2012. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides. J Biomed Mater Res Part A 2012:100A:703–711.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Histomorphometric and Biomechanical Evaluation of Biofunctionalized Implant Surfaces</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Broggini</namePart>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</affiliation>
<affiliation>E-mail: nina.broggini@zmk.unibe.ch</affiliation>
<affiliation>Correspondence address: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Samuele</namePart>
<namePart type="family">Tosatti</namePart>
<affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stephen J.</namePart>
<namePart type="family">Ferguson</namePart>
<affiliation>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Schuler</namePart>
<affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</affiliation>
<affiliation>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcus</namePart>
<namePart type="family">Textor</namePart>
<affiliation>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael M.</namePart>
<namePart type="family">Bornstein</namePart>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieter D.</namePart>
<namePart type="family">Bosshardt</namePart>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Buser</namePart>
<affiliation>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne, Switzerland</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2012-03</dateIssued>
<dateCaptured encoding="w3cdtf">2011-04-13</dateCaptured>
<dateValid encoding="w3cdtf">2011-08-31</dateValid>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">3</extent>
<extent unit="tables">5</extent>
<extent unit="references">44</extent>
<extent unit="words">7594</extent>
</physicalDescription>
<abstract>Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm−2 KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm−2 RGD (KRSR/RGD‐1); (iii) 1.26 pmol cm−2 RGD (KRSR/RGD‐2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐g‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</abstract>
<note type="content">*No benefit of any kind will be received either directly or indirectly by the author(s). Company affiliation took place with one author only after the study was completed.</note>
<note type="content">*How to cite this article: Broggini N, Tosatti S, Ferguson SJ, Schuler M, Textor M, Bornstein MM, Bosshardt DD, Buser D. 2012. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides. J Biomed Mater Res Part A 2012:100A:703–711.</note>
<note type="funding">ITI Foundation for the Promotion of Oral Implantology, Basel, Switzerland - No. 459_2006; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>extracellular matrix protein binding sequences</topic>
<topic>titanium surfaces biofunctionalized with biologically active peptides</topic>
<topic>chemically modified sandblasted and acid‐etched titanium implant surfaces</topic>
<topic>removal torque value</topic>
<topic>histomorphometry</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Biomedical Materials Research Part A</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Biomed. Mater. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1549-3296</identifier>
<identifier type="eISSN">1552-4965</identifier>
<identifier type="DOI">10.1002/(ISSN)1552-4965</identifier>
<identifier type="PublisherID">JBM</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>100A</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>703</start>
<end>711</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<relatedItem type="preceding">
<titleInfo>
<title>Journal of Biomedical Materials Research</title>
</titleInfo>
<identifier type="ISSN">0021-9304</identifier>
<identifier type="ISSN">1097-4636</identifier>
<part>
<date point="end">2004</date>
</part>
</relatedItem>
<identifier type="istex">1BD2DB6C700568FC790627412AE8C57887E735D0</identifier>
<identifier type="ark">ark:/67375/WNG-SQP04H5G-G</identifier>
<identifier type="DOI">10.1002/jbm.a.34004</identifier>
<identifier type="ArticleID">JBM34004</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2011 Wiley Periodicals, Inc.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000D83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0
   |texte=   Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022