Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit

Identifieur interne : 000355 ( Istex/Corpus ); précédent : 000354; suivant : 000356

Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit

Auteurs : Katleen Vandamme ; Ignace Naert ; Liesbet Geris ; Jozef Vander Sloten ; Robert Puers ; Joke Duyck

Source :

RBID : ISTEX:073EDC74706E6CF8CA2184195A651D7C7EE37430

English descriptors

Abstract

Objectives: The local mechanical environment influences early peri‐implant tissue formation. It is still unclear whether immediate loading limits or promotes peri‐implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well‐controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.

Url:
DOI: 10.1111/j.1600-0501.2007.01339.x

Links to Exploration step

ISTEX:073EDC74706E6CF8CA2184195A651D7C7EE37430

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
<author>
<name sortKey="Vandamme, Katleen" sort="Vandamme, Katleen" uniqKey="Vandamme K" first="Katleen" last="Vandamme">Katleen Vandamme</name>
<affiliation>
<mods:affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Naert, Ignace" sort="Naert, Ignace" uniqKey="Naert I" first="Ignace" last="Naert">Ignace Naert</name>
<affiliation>
<mods:affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geris, Liesbet" sort="Geris, Liesbet" uniqKey="Geris L" first="Liesbet" last="Geris">Liesbet Geris</name>
<affiliation>
<mods:affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sloten, Jozef Vander" sort="Sloten, Jozef Vander" uniqKey="Sloten J" first="Jozef Vander" last="Sloten">Jozef Vander Sloten</name>
<affiliation>
<mods:affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Puers, Robert" sort="Puers, Robert" uniqKey="Puers R" first="Robert" last="Puers">Robert Puers</name>
<affiliation>
<mods:affiliation>Department ESAT‐MICAS, Faculty of Electrotechnics, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duyck, Joke" sort="Duyck, Joke" uniqKey="Duyck J" first="Joke" last="Duyck">Joke Duyck</name>
<affiliation>
<mods:affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:073EDC74706E6CF8CA2184195A651D7C7EE37430</idno>
<date when="2007" year="2007">2007</date>
<idno type="doi">10.1111/j.1600-0501.2007.01339.x</idno>
<idno type="url">https://api.istex.fr/document/073EDC74706E6CF8CA2184195A651D7C7EE37430/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000355</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000355</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
<author>
<name sortKey="Vandamme, Katleen" sort="Vandamme, Katleen" uniqKey="Vandamme K" first="Katleen" last="Vandamme">Katleen Vandamme</name>
<affiliation>
<mods:affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Naert, Ignace" sort="Naert, Ignace" uniqKey="Naert I" first="Ignace" last="Naert">Ignace Naert</name>
<affiliation>
<mods:affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Geris, Liesbet" sort="Geris, Liesbet" uniqKey="Geris L" first="Liesbet" last="Geris">Liesbet Geris</name>
<affiliation>
<mods:affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sloten, Jozef Vander" sort="Sloten, Jozef Vander" uniqKey="Sloten J" first="Jozef Vander" last="Sloten">Jozef Vander Sloten</name>
<affiliation>
<mods:affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Puers, Robert" sort="Puers, Robert" uniqKey="Puers R" first="Robert" last="Puers">Robert Puers</name>
<affiliation>
<mods:affiliation>Department ESAT‐MICAS, Faculty of Electrotechnics, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Duyck, Joke" sort="Duyck, Joke" uniqKey="Duyck J" first="Joke" last="Duyck">Joke Duyck</name>
<affiliation>
<mods:affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Clinical Oral Implants Research</title>
<title level="j" type="alt">CLINICAL ORAL IMPLANTS RESEARCH</title>
<idno type="ISSN">0905-7161</idno>
<idno type="eISSN">1600-0501</idno>
<imprint>
<biblScope unit="vol">18</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="471">471</biblScope>
<biblScope unit="page" to="480">480</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2007-08">2007-08</date>
</imprint>
<idno type="ISSN">0905-7161</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0905-7161</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amin area</term>
<term>Belgium</term>
<term>Biomechanics</term>
<term>Biomedical materials research</term>
<term>Blackwell munksgaard</term>
<term>Blackwell munksgaard vandamme</term>
<term>Blood vessels</term>
<term>Body weight</term>
<term>Bone</term>
<term>Bone area</term>
<term>Bone area fraction</term>
<term>Bone cells</term>
<term>Bone chamber</term>
<term>Bone chamber model</term>
<term>Bone chambers</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone fraction</term>
<term>Bone marrow</term>
<term>Bone response</term>
<term>Bone tissue</term>
<term>Bone tissue area</term>
<term>Bone tissue formation</term>
<term>Bone trabeculae</term>
<term>Brous</term>
<term>Brous encapsulation</term>
<term>Brous tissue</term>
<term>Brous tissue formation</term>
<term>Clin</term>
<term>Clinical orthopaedics</term>
<term>Cylindrical implants</term>
<term>Dental implants</term>
<term>Different experiments</term>
<term>Different loading conditions</term>
<term>Duyck</term>
<term>Early loading</term>
<term>Experimental literature</term>
<term>Extraction sites</term>
<term>Fracture</term>
<term>Fracture healing</term>
<term>Healing phase</term>
<term>Highest values</term>
<term>Histological</term>
<term>Histological section</term>
<term>Histological sections</term>
<term>Histomorphometric parameters</term>
<term>Immediate implant placement</term>
<term>Immediate loading</term>
<term>Impl</term>
<term>Implant</term>
<term>Implant area</term>
<term>Implant displacement</term>
<term>Implant loading</term>
<term>Implant perimeter</term>
<term>Implant surface</term>
<term>Implants research</term>
<term>Initial vascularization</term>
<term>Inner bone chamber</term>
<term>Inner bone chamber area</term>
<term>Interface</term>
<term>Interfragmentary movements</term>
<term>International journal</term>
<term>Joke duyck</term>
<term>Journal compilation</term>
<term>Knothe tate</term>
<term>Leuven</term>
<term>Load cycles</term>
<term>Loading</term>
<term>Loading condition</term>
<term>Loading conditions</term>
<term>Loading experiment</term>
<term>Loading experiments</term>
<term>Loading implants</term>
<term>Loading session</term>
<term>Loading state</term>
<term>Loading state table</term>
<term>Locomotor apparatus</term>
<term>Maxillofacial implants</term>
<term>Mechanical conditions</term>
<term>Mechanical loading history</term>
<term>Mechanical stability</term>
<term>Mechanical stimulation</term>
<term>Mechanical stimuli</term>
<term>Medial side</term>
<term>Mineral research</term>
<term>Mineralized</term>
<term>Mineralized bone</term>
<term>Mineralized bone area</term>
<term>Mineralized bone fraction</term>
<term>Mineralized bone trabecula</term>
<term>Mineralized bone trabeculae</term>
<term>Munksgaard</term>
<term>Oral impl</term>
<term>Oral implantology</term>
<term>Oral implants</term>
<term>Orthopaedic research</term>
<term>Osseointegrated implants</term>
<term>Osseointegration</term>
<term>Outer bone chamber</term>
<term>Parent bone</term>
<term>Percentage area</term>
<term>Perforation</term>
<term>Positive effect</term>
<term>Present study</term>
<term>Proximal tibia</term>
<term>Research flanders</term>
<term>Scar formation</term>
<term>Shear stresses</term>
<term>Skeletal tissue regeneration</term>
<term>Space maintainer</term>
<term>Surgical procedure</term>
<term>Tibia</term>
<term>Tissue area fraction</term>
<term>Tissue differentiation</term>
<term>Tissue formation</term>
<term>Tissue growth</term>
<term>Tissue repair</term>
<term>Tissue response</term>
<term>Titanium</term>
<term>Titanium implant</term>
<term>Titanium implants</term>
<term>Titanium interface</term>
<term>Total tissue area</term>
<term>Trabecula</term>
<term>Vandamme</term>
<term>Vander sloten</term>
<term>Xator</term>
<term>Xator group</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amin area</term>
<term>Belgium</term>
<term>Biomechanics</term>
<term>Biomedical materials research</term>
<term>Blackwell munksgaard</term>
<term>Blackwell munksgaard vandamme</term>
<term>Blood vessels</term>
<term>Body weight</term>
<term>Bone</term>
<term>Bone area</term>
<term>Bone area fraction</term>
<term>Bone cells</term>
<term>Bone chamber</term>
<term>Bone chamber model</term>
<term>Bone chambers</term>
<term>Bone contact</term>
<term>Bone formation</term>
<term>Bone fraction</term>
<term>Bone marrow</term>
<term>Bone response</term>
<term>Bone tissue</term>
<term>Bone tissue area</term>
<term>Bone tissue formation</term>
<term>Bone trabeculae</term>
<term>Brous</term>
<term>Brous encapsulation</term>
<term>Brous tissue</term>
<term>Brous tissue formation</term>
<term>Clin</term>
<term>Clinical orthopaedics</term>
<term>Cylindrical implants</term>
<term>Dental implants</term>
<term>Different experiments</term>
<term>Different loading conditions</term>
<term>Duyck</term>
<term>Early loading</term>
<term>Experimental literature</term>
<term>Extraction sites</term>
<term>Fracture</term>
<term>Fracture healing</term>
<term>Healing phase</term>
<term>Highest values</term>
<term>Histological</term>
<term>Histological section</term>
<term>Histological sections</term>
<term>Histomorphometric parameters</term>
<term>Immediate implant placement</term>
<term>Immediate loading</term>
<term>Impl</term>
<term>Implant</term>
<term>Implant area</term>
<term>Implant displacement</term>
<term>Implant loading</term>
<term>Implant perimeter</term>
<term>Implant surface</term>
<term>Implants research</term>
<term>Initial vascularization</term>
<term>Inner bone chamber</term>
<term>Inner bone chamber area</term>
<term>Interface</term>
<term>Interfragmentary movements</term>
<term>International journal</term>
<term>Joke duyck</term>
<term>Journal compilation</term>
<term>Knothe tate</term>
<term>Leuven</term>
<term>Load cycles</term>
<term>Loading</term>
<term>Loading condition</term>
<term>Loading conditions</term>
<term>Loading experiment</term>
<term>Loading experiments</term>
<term>Loading implants</term>
<term>Loading session</term>
<term>Loading state</term>
<term>Loading state table</term>
<term>Locomotor apparatus</term>
<term>Maxillofacial implants</term>
<term>Mechanical conditions</term>
<term>Mechanical loading history</term>
<term>Mechanical stability</term>
<term>Mechanical stimulation</term>
<term>Mechanical stimuli</term>
<term>Medial side</term>
<term>Mineral research</term>
<term>Mineralized</term>
<term>Mineralized bone</term>
<term>Mineralized bone area</term>
<term>Mineralized bone fraction</term>
<term>Mineralized bone trabecula</term>
<term>Mineralized bone trabeculae</term>
<term>Munksgaard</term>
<term>Oral impl</term>
<term>Oral implantology</term>
<term>Oral implants</term>
<term>Orthopaedic research</term>
<term>Osseointegrated implants</term>
<term>Osseointegration</term>
<term>Outer bone chamber</term>
<term>Parent bone</term>
<term>Percentage area</term>
<term>Perforation</term>
<term>Positive effect</term>
<term>Present study</term>
<term>Proximal tibia</term>
<term>Research flanders</term>
<term>Scar formation</term>
<term>Shear stresses</term>
<term>Skeletal tissue regeneration</term>
<term>Space maintainer</term>
<term>Surgical procedure</term>
<term>Tibia</term>
<term>Tissue area fraction</term>
<term>Tissue differentiation</term>
<term>Tissue formation</term>
<term>Tissue growth</term>
<term>Tissue repair</term>
<term>Tissue response</term>
<term>Titanium</term>
<term>Titanium implant</term>
<term>Titanium implants</term>
<term>Titanium interface</term>
<term>Total tissue area</term>
<term>Trabecula</term>
<term>Vandamme</term>
<term>Vander sloten</term>
<term>Xator</term>
<term>Xator group</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Objectives: The local mechanical environment influences early peri‐implant tissue formation. It is still unclear whether immediate loading limits or promotes peri‐implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well‐controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>implant</json:string>
<json:string>bone chamber</json:string>
<json:string>tissue differentiation</json:string>
<json:string>duyck</json:string>
<json:string>bone formation</json:string>
<json:string>vandamme</json:string>
<json:string>leuven</json:string>
<json:string>histological</json:string>
<json:string>loading conditions</json:string>
<json:string>trabecula</json:string>
<json:string>impl</json:string>
<json:string>munksgaard</json:string>
<json:string>journal compilation</json:string>
<json:string>osseointegration</json:string>
<json:string>oral impl</json:string>
<json:string>clin</json:string>
<json:string>brous</json:string>
<json:string>inner bone chamber</json:string>
<json:string>biomechanics</json:string>
<json:string>titanium implants</json:string>
<json:string>loading condition</json:string>
<json:string>xator</json:string>
<json:string>outer bone chamber</json:string>
<json:string>tissue response</json:string>
<json:string>perforation</json:string>
<json:string>immediate loading</json:string>
<json:string>tibia</json:string>
<json:string>xator group</json:string>
<json:string>mineralized</json:string>
<json:string>positive effect</json:string>
<json:string>bone chamber model</json:string>
<json:string>bone tissue</json:string>
<json:string>bone tissue area</json:string>
<json:string>bone fraction</json:string>
<json:string>implants research</json:string>
<json:string>mechanical conditions</json:string>
<json:string>fracture healing</json:string>
<json:string>loading</json:string>
<json:string>histological sections</json:string>
<json:string>implant displacement</json:string>
<json:string>vander sloten</json:string>
<json:string>mechanical stimuli</json:string>
<json:string>blackwell munksgaard vandamme</json:string>
<json:string>histological section</json:string>
<json:string>bone area fraction</json:string>
<json:string>implant loading</json:string>
<json:string>titanium</json:string>
<json:string>fracture</json:string>
<json:string>belgium</json:string>
<json:string>implant surface</json:string>
<json:string>bone marrow</json:string>
<json:string>bone cells</json:string>
<json:string>loading experiment</json:string>
<json:string>different experiments</json:string>
<json:string>international journal</json:string>
<json:string>biomedical materials research</json:string>
<json:string>titanium implant</json:string>
<json:string>tissue formation</json:string>
<json:string>brous tissue</json:string>
<json:string>mineralized bone fraction</json:string>
<json:string>bone trabeculae</json:string>
<json:string>present study</json:string>
<json:string>loading session</json:string>
<json:string>tissue area fraction</json:string>
<json:string>early loading</json:string>
<json:string>loading implants</json:string>
<json:string>bone area</json:string>
<json:string>oral implants</json:string>
<json:string>cylindrical implants</json:string>
<json:string>total tissue area</json:string>
<json:string>blackwell munksgaard</json:string>
<json:string>implant area</json:string>
<json:string>orthopaedic research</json:string>
<json:string>bone</json:string>
<json:string>interface</json:string>
<json:string>loading state</json:string>
<json:string>inner bone chamber area</json:string>
<json:string>loading experiments</json:string>
<json:string>body weight</json:string>
<json:string>load cycles</json:string>
<json:string>tissue growth</json:string>
<json:string>percentage area</json:string>
<json:string>proximal tibia</json:string>
<json:string>medial side</json:string>
<json:string>mineralized bone trabeculae</json:string>
<json:string>amin area</json:string>
<json:string>mineralized bone trabecula</json:string>
<json:string>space maintainer</json:string>
<json:string>implant perimeter</json:string>
<json:string>brous tissue formation</json:string>
<json:string>histomorphometric parameters</json:string>
<json:string>different loading conditions</json:string>
<json:string>knothe tate</json:string>
<json:string>mineralized bone</json:string>
<json:string>shear stresses</json:string>
<json:string>blood vessels</json:string>
<json:string>bone contact</json:string>
<json:string>scar formation</json:string>
<json:string>brous encapsulation</json:string>
<json:string>titanium interface</json:string>
<json:string>loading state table</json:string>
<json:string>mechanical stability</json:string>
<json:string>initial vascularization</json:string>
<json:string>tissue repair</json:string>
<json:string>skeletal tissue regeneration</json:string>
<json:string>mineralized bone area</json:string>
<json:string>interfragmentary movements</json:string>
<json:string>parent bone</json:string>
<json:string>experimental literature</json:string>
<json:string>healing phase</json:string>
<json:string>bone response</json:string>
<json:string>highest values</json:string>
<json:string>immediate implant placement</json:string>
<json:string>extraction sites</json:string>
<json:string>mechanical loading history</json:string>
<json:string>research flanders</json:string>
<json:string>osseointegrated implants</json:string>
<json:string>bone tissue formation</json:string>
<json:string>clinical orthopaedics</json:string>
<json:string>bone chambers</json:string>
<json:string>mechanical stimulation</json:string>
<json:string>mineral research</json:string>
<json:string>joke duyck</json:string>
<json:string>dental implants</json:string>
<json:string>maxillofacial implants</json:string>
<json:string>locomotor apparatus</json:string>
<json:string>oral implantology</json:string>
<json:string>surgical procedure</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Katleen Vandamme</name>
<affiliations>
<json:string>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ignace Naert</name>
<affiliations>
<json:string>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Liesbet Geris</name>
<affiliations>
<json:string>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jozef Vander Sloten</name>
<affiliations>
<json:string>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert Puers</name>
<affiliations>
<json:string>Department ESAT‐MICAS, Faculty of Electrotechnics, K. U. Leuven, Leuven, Belgium</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joke Duyck</name>
<affiliations>
<json:string>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>animal</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>bone chamber</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>immediate loading</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>peri‐implant healing</value>
</json:item>
</subject>
<articleId>
<json:string>CLR1339</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-VZ3F16DQ-8</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Objectives: The local mechanical environment influences early peri‐implant tissue formation. It is still unclear whether immediate loading limits or promotes peri‐implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well‐controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.</abstract>
<qualityIndicators>
<score>7.66</score>
<pdfWordCount>6145</pdfWordCount>
<pdfCharCount>39824</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>595.276 x 782.362 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>55</abstractWordCount>
<abstractCharCount>441</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
<pmid>
<json:string>17517061</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Clinical Oral Implants Research</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1111/(ISSN)1600-0501</json:string>
</doi>
<issn>
<json:string>0905-7161</json:string>
</issn>
<eissn>
<json:string>1600-0501</json:string>
</eissn>
<publisherId>
<json:string>CLR</json:string>
</publisherId>
<volume>18</volume>
<issue>4</issue>
<pages>
<first>471</first>
<last>480</last>
<total>10</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2007</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Joke Duyck Department of Prosthetic Dentistry/BIOMAT Research Group School of Dentistry Oral Pathology and Maxillofacial Surgery</json:string>
<json:string>Belgium Robert Puers, Department ESAT</json:string>
<json:string>Department of Electrical Engineering</json:string>
<json:string>SAS Institute Inc</json:string>
<json:string>Department of Biomechanics and Engineering</json:string>
<json:string>Research Flanders</json:string>
<json:string>Belgium Liesbet Geris, Jozef Vander Sloten, Division of Biomechanics and Engineering</json:string>
<json:string>Leuven Belgium Tel</json:string>
<json:string>Belgium Histodynamics</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Jozef Vander</json:string>
<json:string>Von Gieson</json:string>
<json:string>Michel De Cooman</json:string>
<json:string>Oosterwyck</json:string>
<json:string>Hans Van</json:string>
<json:string>The</json:string>
<json:string>J. Histodynamics</json:string>
<json:string>Ignace Naert</json:string>
<json:string>Katleen Vandamme</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Japan</json:string>
<json:string>Brussels</json:string>
<json:string>Wetzlar</json:string>
<json:string>Leuven</json:string>
<json:string>Mechelen</json:string>
<json:string>France</json:string>
<json:string>Belgium</json:string>
<json:string>Netherlands</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Botticelli et al. 2004</json:string>
<json:string>Benjamin & Hillen 2003</json:string>
<json:string>Tagil & Aspenberg 1999</json:string>
<json:string>Duyck et al. (2006)</json:string>
<json:string>Szmukler-Moncler et al.</json:string>
<json:string>Knothe Tate et al. 2000</json:string>
<json:string>Moalli et al. 2000</json:string>
<json:string>Szmukler-Moncler et al. 1996</json:string>
<json:string>Pauwels 1980</json:string>
<json:string>Guldberg et al. 1997</json:string>
<json:string>Pilliar 1991</json:string>
<json:string>Burr et al. 1996</json:string>
<json:string>Simmons et al. 1999, 2001</json:string>
<json:string>Carter 1987</json:string>
<json:string>Meyer et al. 2004</json:string>
<json:string>Duyck et al. 2006</json:string>
<json:string>Carter et al. 1998</json:string>
<json:string>Duda et al. 1998</json:string>
<json:string>Vandamme et al</json:string>
<json:string>Sballe et al. 1993</json:string>
<json:string>Parlar et al. (2005)</json:string>
<json:string>Klein et al. 2003</json:string>
<json:string>Burr et al. 2002</json:string>
<json:string>Graf 1969</json:string>
<json:string>Kaspar et al. 2002</json:string>
<json:string>Adell et al. 1981</json:string>
<json:string>Romanos 2004</json:string>
<json:string>Piattelli et al. 1993</json:string>
<json:string>Duyck et al. 2004</json:string>
<json:string>Pilliar et al. 1986, 1991</json:string>
<json:string>Szmukler-Moncler et al. 1998</json:string>
<json:string>Lienau et al. (2005)</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-VZ3F16DQ-8</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - engineering, biomedical</json:string>
<json:string>2 - dentistry, oral surgery & medicine</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - dentistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Dentistry</json:string>
<json:string>3 - Oral Surgery</json:string>
</scopus>
</categories>
<publicationDate>2007</publicationDate>
<copyrightDate>2007</copyrightDate>
<doi>
<json:string>10.1111/j.1600-0501.2007.01339.x</json:string>
</doi>
<id>073EDC74706E6CF8CA2184195A651D7C7EE37430</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/073EDC74706E6CF8CA2184195A651D7C7EE37430/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/073EDC74706E6CF8CA2184195A651D7C7EE37430/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/073EDC74706E6CF8CA2184195A651D7C7EE37430/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2007-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
<title level="a" type="short">Peri‐implant bone formation under loading state</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Katleen</forename>
<surname>Vandamme</surname>
</persName>
<affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Ignace</forename>
<surname>Naert</surname>
</persName>
<affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Liesbet</forename>
<surname>Geris</surname>
</persName>
<affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Jozef Vander</forename>
<surname>Sloten</surname>
</persName>
<affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Robert</forename>
<surname>Puers</surname>
</persName>
<affiliation>Department ESAT‐MICAS, Faculty of Electrotechnics, K. U. Leuven, Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Joke</forename>
<surname>Duyck</surname>
</persName>
<affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium
<address>
<country key="BE"></country>
</address>
</affiliation>
</author>
<idno type="istex">073EDC74706E6CF8CA2184195A651D7C7EE37430</idno>
<idno type="ark">ark:/67375/WNG-VZ3F16DQ-8</idno>
<idno type="DOI">10.1111/j.1600-0501.2007.01339.x</idno>
<idno type="unit">CLR1339</idno>
<idno type="supplier">1339</idno>
<idno type="toTypesetVersion">file:CLR.CLR1339.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Clinical Oral Implants Research</title>
<title level="j" type="alt">CLINICAL ORAL IMPLANTS RESEARCH</title>
<idno type="pISSN">0905-7161</idno>
<idno type="eISSN">1600-0501</idno>
<idno type="book-DOI">10.1111/(ISSN)1600-0501</idno>
<idno type="book-part-DOI">10.1111/clr.2007.18.issue-4</idno>
<idno type="product">CLR</idno>
<idno type="publisherDivision">ST</idno>
<imprint>
<biblScope unit="vol">18</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="471">471</biblScope>
<biblScope unit="page" to="480">480</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2007-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>
<hi rend="bold">Objectives: </hi>
The local mechanical environment influences early peri‐implant tissue formation. It is still unclear whether immediate loading limits or promotes peri‐implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well‐controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.</p>
<p>
<hi rend="bold">Material and methods: </hi>
A repeated sampling bone chamber, consisting of dual‐structure perforated hollow cylinders with a cylindrical implant, was installed in the tibia of 14 rabbits and used to conduct three displacement‐controlled immediate loading experiments: (i) 30 μm – 400 cycles/day – 1 Hz frequency – 2 ×/week – 6 weeks; (ii) 30 μm – 400 cycles/day – 1 Hz – 2 ×/week – 6 weeks, followed by another 6 weeks with a 50 μm – 800 cycles/day – 1 Hz – 2 ×/week loading protocol; and (iii) 0 μm implant displacement for 12 weeks. A linear mixed model and logistic mixed model with α=5% were conducted on the data set.</p>
<p>
<hi rend="bold">Results: </hi>
The tissue area fraction was significantly the highest after 12 weeks of loading. The bone area fraction was significantly different between all three loading conditions, with the highest values for the 12‐week loading experiment. Twelve‐week stimulation resulted in a significantly higher mineralized bone fraction than 6 weeks. Loading did have a significantly positive effect on the mineralized bone fraction. The incidence of osteoid‐to‐implant and bone‐to‐implant contact increased significantly when loading the implant for 12 weeks.</p>
<p>
<hi rend="bold">Conclusion: </hi>
Immediate loading had a positive effect on the tissue differentiation and bone formation around cylindrical turned titanium implants. Controlled implant micro‐motion up to 50 μm had a positive effect on the bone formation at its interface.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="k1">animal</term>
<term xml:id="k2">bone chamber</term>
<term xml:id="k3">immediate loading</term>
<term xml:id="k4">peri‐implant healing</term>
</keywords>
<keywords rend="tocHeading1">
<term>Original articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/073EDC74706E6CF8CA2184195A651D7C7EE37430/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Blackwell Publishing Ltd</publisherName>
<publisherLoc>Oxford, UK</publisherLoc>
</publisherInfo>
<doi origin="wiley" registered="yes">10.1111/(ISSN)1600-0501</doi>
<issn type="print">0905-7161</issn>
<issn type="electronic">1600-0501</issn>
<idGroup>
<id type="product" value="CLR"></id>
<id type="publisherDivision" value="ST"></id>
</idGroup>
<titleGroup>
<title type="main" sort="CLINICAL ORAL IMPLANTS RESEARCH">Clinical Oral Implants Research</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="08004">
<doi origin="wiley">10.1111/clr.2007.18.issue-4</doi>
<numberingGroup>
<numbering type="journalVolume" number="18">18</numbering>
<numbering type="journalIssue" number="4">4</numbering>
</numberingGroup>
<coverDate startDate="2007-08">August 2007</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="9" status="forIssue">
<doi origin="wiley">10.1111/j.1600-0501.2007.01339.x</doi>
<idGroup>
<id type="unit" value="CLR1339"></id>
<id type="supplier" value="1339"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="tocHeading1">Original articles</title>
</titleGroup>
<eventGroup>
<event type="firstOnline" date="2007-05-21"></event>
<event type="publishedOnlineFinalForm" date="2007-05-21"></event>
<event type="xmlConverted" agent="Converter:BPG_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-15"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-12"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-16"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst" number="471">471</numbering>
<numbering type="pageLast" number="480">480</numbering>
</numberingGroup>
<correspondenceTo>
<b>Correspondence to:</b>
<i>Joke Duyck</i>

Department of Prosthetic Dentistry/BIOMAT
Research Group
School of Dentistry
Oral Pathology and Maxillofacial Surgery
Faculty of Medicine
Katholieke Universiteit Leuven
Kapucijnenvoer 7, B‐3000 Leuven
Belgium
Tel.: +32 16 33 24 68
Fax:+32 16 33 23 09
e‐mail:
<email normalForm="Joke.Duyck@uz.kuleuven.ac.be">Joke.Duyck@uz.kuleuven.ac.be</email>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:CLR.CLR1339.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<unparsedEditorialHistory>
<b>Date:</b>
Accepted 27 May 2006</unparsedEditorialHistory>
<countGroup>
<count type="figureTotal" number="12"></count>
<count type="tableTotal" number="2"></count>
<count type="formulaTotal" number="0"></count>
<count type="referenceTotal" number="42"></count>
<count type="wordTotal" number="7868"></count>
<count type="linksCrossRef" number="45"></count>
</countGroup>
<titleGroup>
<title type="main">Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
<title type="shortAuthors">Vandamme et al.</title>
<title type="short">Peri‐implant bone formation under loading state</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="cr1" affiliationRef="#a1">
<personName>
<givenNames>Katleen</givenNames>
<familyName>Vandamme</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr2" affiliationRef="#a1">
<personName>
<givenNames>Ignace</givenNames>
<familyName>Naert</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr3" affiliationRef="#a2">
<personName>
<givenNames>Liesbet</givenNames>
<familyName>Geris</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr4" affiliationRef="#a2">
<personName>
<givenNames>Jozef Vander</givenNames>
<familyName>Sloten</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr5" affiliationRef="#a3">
<personName>
<givenNames>Robert</givenNames>
<familyName>Puers</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="cr6" affiliationRef="#a1">
<personName>
<givenNames>Joke</givenNames>
<familyName>Duyck</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="a1" countryCode="BE">
<unparsedAffiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a2" countryCode="BE">
<unparsedAffiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</unparsedAffiliation>
</affiliation>
<affiliation xml:id="a3" countryCode="BE">
<unparsedAffiliation>Department ESAT‐MICAS, Faculty of Electrotechnics, K. U. Leuven, Leuven, Belgium</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en">
<keyword xml:id="k1">animal</keyword>
<keyword xml:id="k2">bone chamber</keyword>
<keyword xml:id="k3">immediate loading</keyword>
<keyword xml:id="k4">peri‐implant healing</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>
<b>Objectives: </b>
The local mechanical environment influences early peri‐implant tissue formation. It is still unclear whether immediate loading limits or promotes peri‐implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well‐controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.</p>
<p>
<b>Material and methods: </b>
A repeated sampling bone chamber, consisting of dual‐structure perforated hollow cylinders with a cylindrical implant, was installed in the tibia of 14 rabbits and used to conduct three displacement‐controlled immediate loading experiments: (i) 30 μm – 400 cycles/day – 1 Hz frequency – 2 ×/week – 6 weeks; (ii) 30 μm – 400 cycles/day – 1 Hz – 2 ×/week – 6 weeks, followed by another 6 weeks with a 50 μm – 800 cycles/day – 1 Hz – 2 ×/week loading protocol; and (iii) 0 μm implant displacement for 12 weeks. A linear mixed model and logistic mixed model with α=5% were conducted on the data set.</p>
<p>
<b>Results: </b>
The tissue area fraction was significantly the highest after 12 weeks of loading. The bone area fraction was significantly different between all three loading conditions, with the highest values for the 12‐week loading experiment. Twelve‐week stimulation resulted in a significantly higher mineralized bone fraction than 6 weeks. Loading did have a significantly positive effect on the mineralized bone fraction. The incidence of osteoid‐to‐implant and bone‐to‐implant contact increased significantly when loading the implant for 12 weeks.</p>
<p>
<b>Conclusion: </b>
Immediate loading had a positive effect on the tissue differentiation and bone formation around cylindrical turned titanium implants. Controlled implant micro‐motion up to 50 μm had a positive effect on the bone formation at its interface.</p>
<!--

To cite this article:

Vandamme K, Naert I, Geris L, Vander Sloten J, Puers R, Duyck J. Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit.

Clin. Oral Impl. Res. 18, 2007; 471–480

doi: 10.1111/j.1600-0501.2007.01339.x

--></abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Peri‐implant bone formation under loading state</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katleen</namePart>
<namePart type="family">Vandamme</namePart>
<affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ignace</namePart>
<namePart type="family">Naert</namePart>
<affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liesbet</namePart>
<namePart type="family">Geris</namePart>
<affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jozef Vander</namePart>
<namePart type="family">Sloten</namePart>
<affiliation>Division of Biomechanics and Engineering Design, Faculty of Engineering, K.U. Leuven, Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Puers</namePart>
<affiliation>Department ESAT‐MICAS, Faculty of Electrotechnics, K. U. Leuven, Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Duyck</namePart>
<affiliation>Department of Prosthetic Dentistry/BIOMAT Research Group, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Faculty of Medicine, K. U. Leuven, Leuven, Belgium</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<place>
<placeTerm type="text">Oxford, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2007-08</dateIssued>
<edition>Date: Accepted 27 May 2006</edition>
<copyrightDate encoding="w3cdtf">2007</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">12</extent>
<extent unit="tables">2</extent>
<extent unit="formulas">0</extent>
<extent unit="references">42</extent>
<extent unit="linksCrossRef">45</extent>
<extent unit="words">7868</extent>
</physicalDescription>
<abstract>Objectives: The local mechanical environment influences early peri‐implant tissue formation. It is still unclear whether immediate loading limits or promotes peri‐implant osteogenesis and which mechanical parameters are important herein. The present study evaluated the influence of well‐controlled mechanical stimuli on the tissue response around immediately loaded cylindrical turned titanium implants at two different observation periods.</abstract>
<abstract>Material and methods: A repeated sampling bone chamber, consisting of dual‐structure perforated hollow cylinders with a cylindrical implant, was installed in the tibia of 14 rabbits and used to conduct three displacement‐controlled immediate loading experiments: (i) 30 μm – 400 cycles/day – 1 Hz frequency – 2 ×/week – 6 weeks; (ii) 30 μm – 400 cycles/day – 1 Hz – 2 ×/week – 6 weeks, followed by another 6 weeks with a 50 μm – 800 cycles/day – 1 Hz – 2 ×/week loading protocol; and (iii) 0 μm implant displacement for 12 weeks. A linear mixed model and logistic mixed model with α=5% were conducted on the data set.</abstract>
<abstract>Results: The tissue area fraction was significantly the highest after 12 weeks of loading. The bone area fraction was significantly different between all three loading conditions, with the highest values for the 12‐week loading experiment. Twelve‐week stimulation resulted in a significantly higher mineralized bone fraction than 6 weeks. Loading did have a significantly positive effect on the mineralized bone fraction. The incidence of osteoid‐to‐implant and bone‐to‐implant contact increased significantly when loading the implant for 12 weeks.</abstract>
<abstract>Conclusion: Immediate loading had a positive effect on the tissue differentiation and bone formation around cylindrical turned titanium implants. Controlled implant micro‐motion up to 50 μm had a positive effect on the bone formation at its interface.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>animal</topic>
<topic>bone chamber</topic>
<topic>immediate loading</topic>
<topic>peri‐implant healing</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Clinical Oral Implants Research</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0905-7161</identifier>
<identifier type="eISSN">1600-0501</identifier>
<identifier type="DOI">10.1111/(ISSN)1600-0501</identifier>
<identifier type="PublisherID">CLR</identifier>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>471</start>
<end>480</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">073EDC74706E6CF8CA2184195A651D7C7EE37430</identifier>
<identifier type="ark">ark:/67375/WNG-VZ3F16DQ-8</identifier>
<identifier type="DOI">10.1111/j.1600-0501.2007.01339.x</identifier>
<identifier type="ArticleID">CLR1339</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Blackwell Publishing Ltd</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/073EDC74706E6CF8CA2184195A651D7C7EE37430/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000355 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000355 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:073EDC74706E6CF8CA2184195A651D7C7EE37430
   |texte=   Histodynamics of bone tissue formation around immediately loaded cylindrical implants in the rabbit
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022