Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of cranial kinesis in birds

Identifieur interne : 003A59 ( Istex/Checkpoint ); précédent : 003A58; suivant : 003A60

The role of cranial kinesis in birds

Auteurs : Ron G. Bout [Pays-Bas] ; Gart A. Zweers [Pays-Bas]

Source :

RBID : ISTEX:00AB7A351166C7CE48A265D5CBF660C621F66C6F

Descripteurs français

English descriptors

Abstract

Abstract: In birds, the ability to move the upper beak relative to the braincase has been the subject of many functional morphological investigations, but in many instances the adaptive significance of cranial kinesis remains unclear. Alternatively, cranial kinesis may be considered a consequence of the general design of the skull, rather than an adaptive trait as such. The present study reviews some results related to the mechanism and functional significance of cranial kinesis in birds. Quantitative three-dimensional X-ray has shown that in skulls morphologically as divers as paleognaths and neognaths the mechanism for elevation of the upper beak is very similar. One of the mechanisms proposed for avian jaw movement is a mechanical coupling of the upper and the lower jaw movement by the postorbital ligament. Such a mechanical coupling would necessitate upper beak elevation. However, independent control of upper and lower jaw has been shown to occur during beak movements in birds. Moreover, kinematic modeling and force measurements suggests that the maximum extensibility of collagen, in combination with the short distance of the insertion of the postorbital ligament to the quadrato-mandibular articulation do not constitute a block to lower jaw depression. The lower jaw ligaments serve to limit the maximal extension of the mandibula. It is suggested here that cranial kinesis in avian feeding may have evolved as a consequence of an increase in eye size. This increase in size led to a reduction of bony bars in the lateral aspect of the skull enabling the transfer of quadrate movement to the upper jaw. The selective forces favoring the development of a kinetic upper beak in birds may be subtle and act in different ecological contexts. Simultaneous movement of the upper and lower jaw not only increases the velocity of beak movements, but with elevated upper beak also less force is required to open the lower jaw. However, the penalty of increased mobility of elements in a lightweight skull and a large eye is potential instability of skull elements during biting, smaller bite forces and limitations on joint reaction forces. Such a lightly built, kinetic skull may have evolved in animals that feed on small plant material or insects. This type of food does not require the resistance of large external forces on the jaws as in carnivores eating large prey.

Url:
DOI: 10.1016/S1095-6433(01)00470-6


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:00AB7A351166C7CE48A265D5CBF660C621F66C6F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of cranial kinesis in birds</title>
<author>
<name sortKey="Bout, Ron G" sort="Bout, Ron G" uniqKey="Bout R" first="Ron G" last="Bout">Ron G. Bout</name>
</author>
<author>
<name sortKey="Zweers, Gart A" sort="Zweers, Gart A" uniqKey="Zweers G" first="Gart A" last="Zweers">Gart A. Zweers</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:00AB7A351166C7CE48A265D5CBF660C621F66C6F</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S1095-6433(01)00470-6</idno>
<idno type="url">https://api.istex.fr/document/00AB7A351166C7CE48A265D5CBF660C621F66C6F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000039</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000039</idno>
<idno type="wicri:Area/Istex/Curation">000039</idno>
<idno type="wicri:Area/Istex/Checkpoint">003A59</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">003A59</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">The role of cranial kinesis in birds</title>
<author>
<name sortKey="Bout, Ron G" sort="Bout, Ron G" uniqKey="Bout R" first="Ron G" last="Bout">Ron G. Bout</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary Morphology, Institute of Evolutionary and Ecological Sciences, P.O. Box 9516, 2300 RA Leiden</wicri:regionArea>
<wicri:noRegion>2300 RA Leiden</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Pays-Bas</country>
</affiliation>
</author>
<author>
<name sortKey="Zweers, Gart A" sort="Zweers, Gart A" uniqKey="Zweers G" first="Gart A" last="Zweers">Gart A. Zweers</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Evolutionary Morphology, Institute of Evolutionary and Ecological Sciences, P.O. Box 9516, 2300 RA Leiden</wicri:regionArea>
<wicri:noRegion>2300 RA Leiden</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Comparative Biochemistry and Physiology, Part A: Physiology</title>
<title level="j" type="abbrev">CBA</title>
<idno type="ISSN">1095-6433</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">131</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="197">197</biblScope>
<biblScope unit="page" to="205">205</biblScope>
</imprint>
<idno type="ISSN">1095-6433</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1095-6433</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Akinetic skull</term>
<term>Articulation</term>
<term>Articulation groove</term>
<term>Avian</term>
<term>Beak</term>
<term>Beak movements</term>
<term>Biochemistry</term>
<term>Birds</term>
<term>Biting force</term>
<term>Bock</term>
<term>Bony bars</term>
<term>Caudal</term>
<term>Caudal position</term>
<term>Comparati</term>
<term>Cranial</term>
<term>Cranial kinesis</term>
<term>Elevation</term>
<term>Eye</term>
<term>Finch</term>
<term>Gape</term>
<term>Groove</term>
<term>Gussekloo</term>
<term>Insertion</term>
<term>Jaw</term>
<term>Joint reaction forces</term>
<term>Jugal</term>
<term>Kinematic</term>
<term>Kinematic model</term>
<term>Kinesis</term>
<term>Kinetic skull</term>
<term>Ligament</term>
<term>Lower beak</term>
<term>Mallard</term>
<term>Mandible</term>
<term>Maximal strain</term>
<term>Mechanical necessity</term>
<term>Muscle forces</term>
<term>Nuijens</term>
<term>Opening force</term>
<term>Pecking</term>
<term>Physiology part</term>
<term>Postorbital</term>
<term>Postorbital ligament</term>
<term>Pterygoid</term>
<term>Quadrate</term>
<term>Quadrate moves</term>
<term>Quadratomandibular</term>
<term>Quadratomandibular articulation</term>
<term>Reptile</term>
<term>Rostral</term>
<term>Same gape</term>
<term>Skull</term>
<term>Skull elements</term>
<term>Upper beak</term>
<term>Upper beak elevation</term>
<term>Vanden berge</term>
<term>Zebra</term>
<term>Zebra finch</term>
<term>Zool</term>
<term>Zusi</term>
<term>Zweers</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Akinetic skull</term>
<term>Articulation</term>
<term>Articulation groove</term>
<term>Avian</term>
<term>Beak</term>
<term>Beak movements</term>
<term>Biochemistry</term>
<term>Bock</term>
<term>Bony bars</term>
<term>Caudal</term>
<term>Caudal position</term>
<term>Comparati</term>
<term>Cranial</term>
<term>Cranial kinesis</term>
<term>Elevation</term>
<term>Finch</term>
<term>Gape</term>
<term>Groove</term>
<term>Gussekloo</term>
<term>Insertion</term>
<term>Joint reaction forces</term>
<term>Jugal</term>
<term>Kinematic</term>
<term>Kinematic model</term>
<term>Kinesis</term>
<term>Kinetic skull</term>
<term>Ligament</term>
<term>Lower beak</term>
<term>Mallard</term>
<term>Mandible</term>
<term>Maximal strain</term>
<term>Mechanical necessity</term>
<term>Muscle forces</term>
<term>Nuijens</term>
<term>Opening force</term>
<term>Pecking</term>
<term>Physiology part</term>
<term>Postorbital</term>
<term>Postorbital ligament</term>
<term>Pterygoid</term>
<term>Quadrate</term>
<term>Quadrate moves</term>
<term>Quadratomandibular</term>
<term>Quadratomandibular articulation</term>
<term>Reptile</term>
<term>Rostral</term>
<term>Same gape</term>
<term>Skull</term>
<term>Skull elements</term>
<term>Upper beak</term>
<term>Upper beak elevation</term>
<term>Vanden berge</term>
<term>Zebra</term>
<term>Zebra finch</term>
<term>Zool</term>
<term>Zusi</term>
<term>Zweers</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biochimie</term>
<term>Reptile</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: In birds, the ability to move the upper beak relative to the braincase has been the subject of many functional morphological investigations, but in many instances the adaptive significance of cranial kinesis remains unclear. Alternatively, cranial kinesis may be considered a consequence of the general design of the skull, rather than an adaptive trait as such. The present study reviews some results related to the mechanism and functional significance of cranial kinesis in birds. Quantitative three-dimensional X-ray has shown that in skulls morphologically as divers as paleognaths and neognaths the mechanism for elevation of the upper beak is very similar. One of the mechanisms proposed for avian jaw movement is a mechanical coupling of the upper and the lower jaw movement by the postorbital ligament. Such a mechanical coupling would necessitate upper beak elevation. However, independent control of upper and lower jaw has been shown to occur during beak movements in birds. Moreover, kinematic modeling and force measurements suggests that the maximum extensibility of collagen, in combination with the short distance of the insertion of the postorbital ligament to the quadrato-mandibular articulation do not constitute a block to lower jaw depression. The lower jaw ligaments serve to limit the maximal extension of the mandibula. It is suggested here that cranial kinesis in avian feeding may have evolved as a consequence of an increase in eye size. This increase in size led to a reduction of bony bars in the lateral aspect of the skull enabling the transfer of quadrate movement to the upper jaw. The selective forces favoring the development of a kinetic upper beak in birds may be subtle and act in different ecological contexts. Simultaneous movement of the upper and lower jaw not only increases the velocity of beak movements, but with elevated upper beak also less force is required to open the lower jaw. However, the penalty of increased mobility of elements in a lightweight skull and a large eye is potential instability of skull elements during biting, smaller bite forces and limitations on joint reaction forces. Such a lightly built, kinetic skull may have evolved in animals that feed on small plant material or insects. This type of food does not require the resistance of large external forces on the jaws as in carnivores eating large prey.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Bout, Ron G" sort="Bout, Ron G" uniqKey="Bout R" first="Ron G" last="Bout">Ron G. Bout</name>
</noRegion>
<name sortKey="Bout, Ron G" sort="Bout, Ron G" uniqKey="Bout R" first="Ron G" last="Bout">Ron G. Bout</name>
<name sortKey="Zweers, Gart A" sort="Zweers, Gart A" uniqKey="Zweers G" first="Gart A" last="Zweers">Gart A. Zweers</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Istex/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Checkpoint/biblio.hfd -nk 003A59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Istex
   |étape=   Checkpoint
   |type=    RBID
   |clé=     ISTEX:00AB7A351166C7CE48A265D5CBF660C621F66C6F
   |texte=   The role of cranial kinesis in birds
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022