Serveur d'exploration sur le patient édenté (maquette)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0006920 ( Pmc/Corpus ); précédent : 0006919; suivant : 0006921 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<italic>In vitro</italic>
Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin</title>
<author>
<name sortKey="Bougas, Kostas" sort="Bougas, Kostas" uniqKey="Bougas K" first="Kostas" last="Bougas">Kostas Bougas</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Prosthodontics, Faculty of Odontology, Malmö University</institution>
<addr-line>Malmö</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stenport, Victoria Franke" sort="Stenport, Victoria Franke" uniqKey="Stenport V" first="Victoria Franke" last="Stenport">Victoria Franke Stenport</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Prosthodontics, Faculty of Odontology, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Currie, Fredrik" sort="Currie, Fredrik" uniqKey="Currie F" first="Fredrik" last="Currie">Fredrik Currie</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Promimic AB</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Prosthodontics, Faculty of Odontology, Malmö University</institution>
<addr-line>Malmö</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24421995</idno>
<idno type="pmc">3886075</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886075</idno>
<idno type="RBID">PMC:3886075</idno>
<idno type="doi">10.5037/jomr.2011.2303</idno>
<date when="2011">2011</date>
<idno type="wicri:Area/Pmc/Corpus">000692</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000692</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">
<italic>In vitro</italic>
Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin</title>
<author>
<name sortKey="Bougas, Kostas" sort="Bougas, Kostas" uniqKey="Bougas K" first="Kostas" last="Bougas">Kostas Bougas</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Prosthodontics, Faculty of Odontology, Malmö University</institution>
<addr-line>Malmö</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Stenport, Victoria Franke" sort="Stenport, Victoria Franke" uniqKey="Stenport V" first="Victoria Franke" last="Stenport">Victoria Franke Stenport</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Department of Prosthodontics, Faculty of Odontology, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Currie, Fredrik" sort="Currie, Fredrik" uniqKey="Currie F" first="Fredrik" last="Currie">Fredrik Currie</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Promimic AB</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Prosthodontics, Faculty of Odontology, Malmö University</institution>
<addr-line>Malmö</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Oral & Maxillofacial Research</title>
<idno type="eISSN">2029-283X</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>ABSTRACT</title>
<sec sec-type="objectives">
<title>Objectives</title>
<p>The aim of the present study was to evaluate calcium phosphate precipitation and the amount of precipitated protein on three potentially bioactive surfaces when adding laminin in simulated body fluid.</p>
</sec>
<sec sec-type="material and methods">
<title>Material and Methods</title>
<p>Blasted titanium discs were prepared by three different techniques claimed to provide bioactivity: alkali and heat treatment (AH), anodic oxidation (AO) or hydroxyapatite coating (HA). A blasted surface incubated in laminin-containing simulated body fuid served as a positive control (B) while a blasted surface incubated in non laminin-containing simulated body fuid served as a negative control (B-). The immersion time was 1 hour, 24 hours, 72 hours and 1 week. Surface topography was investigated by interferometry and morphology by Scanning Electron Microscopy (SEM). Analysis of the precipitated calcium and phosphorous was performed by Energy Dispersive X-ray Spectroscopy (EDX) and the adsorbed laminin was quantified by iodine (
<sup>125</sup>
I) labeling.</p>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>SEM demonstrated that all specimens except for the negative control were totally covered with calcium phosphate (CaP) after 1 week. EDX revealed that B- demonstrated lower sum of Ca and P levels compared to the other groups after 1 week. Iodine labeling demonstrated that laminin precipitated in a similar manner on the possibly bioactive surfaces as on the positive control surface.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Our results indicate that laminin precipitates equally on all tested titanium surfaces and may function as a nucleation center thus locally elevating the calcium concentration. Nevertheless further studies are required to clarify the role of laminin in the interaction of biomaterials with the host bone tissue.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Hench, L" uniqKey="Hench L">L Hench</name>
</author>
<author>
<name sortKey="Yamamuro, T" uniqKey="Yamamuro T">T Yamamuro</name>
</author>
<author>
<name sortKey="Wilson, J" uniqKey="Wilson J">J Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, Df" uniqKey="Williams D">DF Williams</name>
</author>
<author>
<name sortKey="Editor" uniqKey="Editor">editor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellingsen, Je" uniqKey="Ellingsen J">JE Ellingsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Hm" uniqKey="Kim H">HM Kim</name>
</author>
<author>
<name sortKey="Miyaji, F" uniqKey="Miyaji F">F Miyaji</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ishizawa, H" uniqKey="Ishizawa H">H Ishizawa</name>
</author>
<author>
<name sortKey="Fujino, M" uniqKey="Fujino M">M Fujino</name>
</author>
<author>
<name sortKey="Ogino, M" uniqKey="Ogino M">M Ogino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Blackwood, Dj" uniqKey="Blackwood D">DJ Blackwood</name>
</author>
<author>
<name sortKey="Seah, Kh" uniqKey="Seah K">KH Seah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ramires, Pa" uniqKey="Ramires P">PA Ramires</name>
</author>
<author>
<name sortKey="Romito, A" uniqKey="Romito A">A Romito</name>
</author>
<author>
<name sortKey="Cosentino, F" uniqKey="Cosentino F">F Cosentino</name>
</author>
<author>
<name sortKey="Milella, E" uniqKey="Milella E">E Milella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, Sj" uniqKey="Xiao S">SJ Xiao</name>
</author>
<author>
<name sortKey="Textor, M" uniqKey="Textor M">M Textor</name>
</author>
<author>
<name sortKey="Spencer, Nd" uniqKey="Spencer N">ND Spencer</name>
</author>
<author>
<name sortKey="Wieland, M" uniqKey="Wieland M">M Wieland</name>
</author>
<author>
<name sortKey="Keller, B" uniqKey="Keller B">B Keller</name>
</author>
<author>
<name sortKey="Sigrist, H" uniqKey="Sigrist H">H Sigrist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsiourvas, D" uniqKey="Tsiourvas D">D Tsiourvas</name>
</author>
<author>
<name sortKey="Tsetsekou, A" uniqKey="Tsetsekou A">A Tsetsekou</name>
</author>
<author>
<name sortKey="Arkas, M" uniqKey="Arkas M">M Arkas</name>
</author>
<author>
<name sortKey="Diplas, S" uniqKey="Diplas S">S Diplas</name>
</author>
<author>
<name sortKey="Mastrogianni, E" uniqKey="Mastrogianni E">E Mastrogianni</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhakta, S" uniqKey="Bhakta S">S Bhakta</name>
</author>
<author>
<name sortKey="Pattanayak, Dk" uniqKey="Pattanayak D">DK Pattanayak</name>
</author>
<author>
<name sortKey="Takadama, H" uniqKey="Takadama H">H Takadama</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Miller, Ca" uniqKey="Miller C">CA Miller</name>
</author>
<author>
<name sortKey="Mirsaneh, M" uniqKey="Mirsaneh M">M Mirsaneh</name>
</author>
<author>
<name sortKey="Reaney, Im" uniqKey="Reaney I">IM Reaney</name>
</author>
<author>
<name sortKey="Brook, I" uniqKey="Brook I">I Brook</name>
</author>
<author>
<name sortKey="Van, Noort R" uniqKey="Van N">Noort R van</name>
</author>
<author>
<name sortKey="Hatton, Pv" uniqKey="Hatton P">PV Hatton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Will, J" uniqKey="Will J">J Will</name>
</author>
<author>
<name sortKey="Hoppe, A" uniqKey="Hoppe A">A Hoppe</name>
</author>
<author>
<name sortKey="Muller, Fa" uniqKey="Muller F">FA Müller</name>
</author>
<author>
<name sortKey="Raya, Ct" uniqKey="Raya C">CT Raya</name>
</author>
<author>
<name sortKey="Fernandez, Jm" uniqKey="Fernandez J">JM Fernández</name>
</author>
<author>
<name sortKey="Greil, P" uniqKey="Greil P">P Greil</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yada, M" uniqKey="Yada M">M Yada</name>
</author>
<author>
<name sortKey="Inoue, Y" uniqKey="Inoue Y">Y Inoue</name>
</author>
<author>
<name sortKey="Akihito, G" uniqKey="Akihito G">G Akihito</name>
</author>
<author>
<name sortKey="Noda, I" uniqKey="Noda I">I Noda</name>
</author>
<author>
<name sortKey="Torikai, T" uniqKey="Torikai T">T Torikai</name>
</author>
<author>
<name sortKey="Watari, T" uniqKey="Watari T">T Watari</name>
</author>
<author>
<name sortKey="Hotokebuchi, T" uniqKey="Hotokebuchi T">T Hotokebuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Kushitani, H" uniqKey="Kushitani H">H Kushitani</name>
</author>
<author>
<name sortKey="Sakka, S" uniqKey="Sakka S">S Sakka</name>
</author>
<author>
<name sortKey="Kitsugi, T" uniqKey="Kitsugi T">T Kitsugi</name>
</author>
<author>
<name sortKey="Yamamuro, T" uniqKey="Yamamuro T">T Yamamuro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peltola, T" uniqKey="Peltola T">T Peltola</name>
</author>
<author>
<name sortKey="P Tsi, M" uniqKey="P Tsi M">M Pätsi</name>
</author>
<author>
<name sortKey="Rahiala, H" uniqKey="Rahiala H">H Rahiala</name>
</author>
<author>
<name sortKey="Kangasniemi, I" uniqKey="Kangasniemi I">I Kangasniemi</name>
</author>
<author>
<name sortKey="Yli Urpo, A" uniqKey="Yli Urpo A">A Yli-Urpo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takadama, H" uniqKey="Takadama H">H Takadama</name>
</author>
<author>
<name sortKey="Kim, Hm" uniqKey="Kim H">HM Kim</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrere, F" uniqKey="Barrere F">F Barrere</name>
</author>
<author>
<name sortKey="Snel, Mm" uniqKey="Snel M">MM Snel</name>
</author>
<author>
<name sortKey="Van, Blitterswijk Ca" uniqKey="Van B">Blitterswijk CA van</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K de Groot</name>
</author>
<author>
<name sortKey="Layrolle, P" uniqKey="Layrolle P">P Layrolle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Takadama, H" uniqKey="Takadama H">H Takadama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Layrolle, P" uniqKey="Layrolle P">P Layrolle</name>
</author>
<author>
<name sortKey="De Bruijn, J" uniqKey="De Bruijn J">J de Bruijn</name>
</author>
<author>
<name sortKey="Van, Blitterswijk C" uniqKey="Van B">Blitterswijk C van</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Combes, C" uniqKey="Combes C">C Combes</name>
</author>
<author>
<name sortKey="Rey, C" uniqKey="Rey C">C Rey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wen, Hb" uniqKey="Wen H">HB Wen</name>
</author>
<author>
<name sortKey="De Wijn, Jr" uniqKey="De Wijn J">JR de Wijn</name>
</author>
<author>
<name sortKey="Van, Blitterswijk Ca" uniqKey="Van B">Blitterswijk CA van</name>
</author>
<author>
<name sortKey="De Groot, K" uniqKey="De Groot K">K de Groot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
<author>
<name sortKey="Chittur, Kk" uniqKey="Chittur K">KK Chittur</name>
</author>
<author>
<name sortKey="Lacefield, Wr" uniqKey="Lacefield W">WR Lacefield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anselme, K" uniqKey="Anselme K">K Anselme</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colognato, H" uniqKey="Colognato H">H Colognato</name>
</author>
<author>
<name sortKey="Yurchenco, Pd" uniqKey="Yurchenco P">PD Yurchenco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hynes, Ro" uniqKey="Hynes R">RO Hynes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roche, P" uniqKey="Roche P">P Roche</name>
</author>
<author>
<name sortKey="Goldberg, Ha" uniqKey="Goldberg H">HA Goldberg</name>
</author>
<author>
<name sortKey="Delmas, Pd" uniqKey="Delmas P">PD Delmas</name>
</author>
<author>
<name sortKey="Malaval, L" uniqKey="Malaval L">L Malaval</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roche, P" uniqKey="Roche P">P Roche</name>
</author>
<author>
<name sortKey="Rousselle, P" uniqKey="Rousselle P">P Rousselle</name>
</author>
<author>
<name sortKey="Lissitzky, Jc" uniqKey="Lissitzky J">JC Lissitzky</name>
</author>
<author>
<name sortKey="Delmas, Pd" uniqKey="Delmas P">PD Delmas</name>
</author>
<author>
<name sortKey="Malaval, L" uniqKey="Malaval L">L Malaval</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gronthos, S" uniqKey="Gronthos S">S Gronthos</name>
</author>
<author>
<name sortKey="Stewart, K" uniqKey="Stewart K">K Stewart</name>
</author>
<author>
<name sortKey="Graves, Se" uniqKey="Graves S">SE Graves</name>
</author>
<author>
<name sortKey="Hay, S" uniqKey="Hay S">S Hay</name>
</author>
<author>
<name sortKey="Simmons, Pj" uniqKey="Simmons P">PJ Simmons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Hm" uniqKey="Kim H">HM Kim</name>
</author>
<author>
<name sortKey="Miyaji, F" uniqKey="Miyaji F">F Miyaji</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Hm" uniqKey="Kim H">HM Kim</name>
</author>
<author>
<name sortKey="Miyaji, F" uniqKey="Miyaji F">F Miyaji</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Nishiguchi, S" uniqKey="Nishiguchi S">S Nishiguchi</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sul, Yt" uniqKey="Sul Y">YT Sul</name>
</author>
<author>
<name sortKey="Johansson, C" uniqKey="Johansson C">C Johansson</name>
</author>
<author>
<name sortKey="Byon, E" uniqKey="Byon E">E Byon</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sul, Yt" uniqKey="Sul Y">YT Sul</name>
</author>
<author>
<name sortKey="Johansson, Cb" uniqKey="Johansson C">CB Johansson</name>
</author>
<author>
<name sortKey="Jeong, Y" uniqKey="Jeong Y">Y Jeong</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sul, Yt" uniqKey="Sul Y">YT Sul</name>
</author>
<author>
<name sortKey="Johansson, Cb" uniqKey="Johansson C">CB Johansson</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sul, Yt" uniqKey="Sul Y">YT Sul</name>
</author>
<author>
<name sortKey="Johansson, Cb" uniqKey="Johansson C">CB Johansson</name>
</author>
<author>
<name sortKey="Petronis, S" uniqKey="Petronis S">S Petronis</name>
</author>
<author>
<name sortKey="Krozer, A" uniqKey="Krozer A">A Krozer</name>
</author>
<author>
<name sortKey="Jeong, Y" uniqKey="Jeong Y">Y Jeong</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kjellin, P" uniqKey="Kjellin P">P Kjellin</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oyane, A" uniqKey="Oyane A">A Oyane</name>
</author>
<author>
<name sortKey="Kim, Hm" uniqKey="Kim H">HM Kim</name>
</author>
<author>
<name sortKey="Furuya, T" uniqKey="Furuya T">T Furuya</name>
</author>
<author>
<name sortKey="Kokubo, T" uniqKey="Kokubo T">T Kokubo</name>
</author>
<author>
<name sortKey="Miyazaki, T" uniqKey="Miyazaki T">T Miyazaki</name>
</author>
<author>
<name sortKey="Nakamura, T" uniqKey="Nakamura T">T Nakamura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Werle, E" uniqKey="Werle E">E Werle</name>
</author>
<author>
<name sortKey="Diehl, E" uniqKey="Diehl E">E Diehl</name>
</author>
<author>
<name sortKey="Hasslacher, C" uniqKey="Hasslacher C">C Hasslacher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benesch, J" uniqKey="Benesch J">J Benesch</name>
</author>
<author>
<name sortKey="Askendal, A" uniqKey="Askendal A">A Askendal</name>
</author>
<author>
<name sortKey="Tengvall, P" uniqKey="Tengvall P">P Tengvall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jimbo, R" uniqKey="Jimbo R">R Jimbo</name>
</author>
<author>
<name sortKey="Mikaelsson, I" uniqKey="Mikaelsson I">I Mikaelsson</name>
</author>
<author>
<name sortKey="Koskela, A" uniqKey="Koskela A">A Koskela</name>
</author>
<author>
<name sortKey="Sul, Yt" uniqKey="Sul Y">YT Sul</name>
</author>
<author>
<name sortKey="Johansson, Cb" uniqKey="Johansson C">CB Johansson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stenport, V" uniqKey="Stenport V">V Stenport</name>
</author>
<author>
<name sortKey="Kjellin, P" uniqKey="Kjellin P">P Kjellin</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
<author>
<name sortKey="Currie, F" uniqKey="Currie F">F Currie</name>
</author>
<author>
<name sortKey="Sul, Yt" uniqKey="Sul Y">YT Sul</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
<author>
<name sortKey="Arvidsson, A" uniqKey="Arvidsson A">A Arvidsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Combes, C" uniqKey="Combes C">C Combes</name>
</author>
<author>
<name sortKey="Rey, C" uniqKey="Rey C">C Rey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez, Hernandez Jc" uniqKey="Rodriguez H">Hernández JC Rodríguez</name>
</author>
<author>
<name sortKey="Salmer N, Sanchez M" uniqKey="Salmer N S">Sánchez M Salmerón</name>
</author>
<author>
<name sortKey="Soria, Jm" uniqKey="Soria J">JM Soria</name>
</author>
<author>
<name sortKey="G Mez, Ribelles Jl" uniqKey="G Mez R">Ribelles JL Gómez</name>
</author>
<author>
<name sortKey="Monle N, Pradas M" uniqKey="Monle N P">Pradas M Monleón</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Hl" uniqKey="Lee H">HL Lee</name>
</author>
<author>
<name sortKey="Bae, Oy" uniqKey="Bae O">OY Bae</name>
</author>
<author>
<name sortKey="Baek, Kh" uniqKey="Baek K">KH Baek</name>
</author>
<author>
<name sortKey="Kwon, A" uniqKey="Kwon A">A Kwon</name>
</author>
<author>
<name sortKey="Hwang, Hr" uniqKey="Hwang H">HR Hwang</name>
</author>
<author>
<name sortKey="Qadir, As" uniqKey="Qadir A">AS Qadir</name>
</author>
<author>
<name sortKey="Park, Hj" uniqKey="Park H">HJ Park</name>
</author>
<author>
<name sortKey="Woo, Km" uniqKey="Woo K">KM Woo</name>
</author>
<author>
<name sortKey="Ryoo, Hm" uniqKey="Ryoo H">HM Ryoo</name>
</author>
<author>
<name sortKey="Baek, Jh" uniqKey="Baek J">JH Baek</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Oral Maxillofac Res</journal-id>
<journal-id journal-id-type="iso-abbrev">J Oral Maxillofac Res</journal-id>
<journal-id journal-id-type="publisher-id">JORM</journal-id>
<journal-title-group>
<journal-title>Journal of Oral & Maxillofacial Research</journal-title>
</journal-title-group>
<issn pub-type="epub">2029-283X</issn>
<publisher>
<publisher-name>Stilus Optimus</publisher-name>
<publisher-loc>Kaunas, Lithuania</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24421995</article-id>
<article-id pub-id-type="pmc">3886075</article-id>
<article-id pub-id-type="publisher-id">v2n3e3ht</article-id>
<article-id pub-id-type="doi">10.5037/jomr.2011.2303</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Paper</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>
<italic>In vitro</italic>
Evaluation of Calcium Phosphate Precipitation on Possibly Bioactive Titanium Surfaces in the Presence of Laminin</article-title>
</title-group>
<contrib-group>
<contrib id="contrib1" contrib-type="author" corresp="yes">
<name>
<surname>Bougas</surname>
<given-names>Kostas</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib id="contrib2" contrib-type="author">
<name>
<surname>Stenport</surname>
<given-names>Victoria Franke</given-names>
</name>
<xref ref-type="aff" rid="aff2">2</xref>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
<contrib id="contrib3" contrib-type="author">
<name>
<surname>Currie</surname>
<given-names>Fredrik</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib id="contrib4" contrib-type="author">
<name>
<surname>Wennerberg</surname>
<given-names>Ann</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff4">4</xref>
</contrib>
</contrib-group>
<aff id="aff1" rid="aff1">
<sup>1</sup>
<institution>Department of Prosthodontics, Faculty of Odontology, Malmö University</institution>
<addr-line>Malmö</addr-line>
<country>Sweden.</country>
</aff>
<aff id="aff2" rid="aff2">
<sup>2</sup>
<institution>Department of Prosthodontics, Faculty of Odontology, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</aff>
<aff id="aff3" rid="aff3">
<sup>3</sup>
<institution>Promimic AB</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</aff>
<aff id="aff4" rid="aff4">
<sup>4</sup>
<institution>Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg</institution>
<addr-line>Gothenburg</addr-line>
<country>Sweden.</country>
</aff>
<author-notes>
<corresp>Kostas Bougas,
<institution>Department of Prosthodontics, Faculty of Odontology, Malmö University</institution>
<addr-line>205 06 Malmö</addr-line>
<country>Sweden</country>
<phone>+46 40 6658520</phone>
Fax: +46 40 6658503
<email>kostas.bougas@mah.se</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<season>Jul-Sep</season>
<year>2011</year>
</pub-date>
<pub-date pub-type="epub">
<day>1</day>
<month>10</month>
<year>2011</year>
</pub-date>
<volume>2</volume>
<issue>3</issue>
<elocation-id>e3</elocation-id>
<history>
<date date-type="received">
<day>2</day>
<month>7</month>
<year>2011</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>7</month>
<year>2011</year>
</date>
</history>
<permissions>
<copyright-statement> Copyright © Bougas K, Stenport VF, Currie F, Wennerberg A. Published in the JOURNAL OF ORAL & MAXILLOFACIAL RESEARCH (http://www.ejomr.org), 1 October 2011.</copyright-statement>
<copyright-year>2011</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">
<license-p>This is an open-access article, first published in the JOURNAL OF ORAL & MAXILLOFACIAL RESEARCH, distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc-nd/3.0/">http://creativecommons.org/licenses/by-nc-nd/3.0/</ext-link>
), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work and is properly cited. The copyright, license information and link to the original publication on
<ext-link ext-link-type="uri" xlink:href="http://www.ejomr.org">http://www.ejomr.org</ext-link>
must be included.</license-p>
</license>
</permissions>
<self-uri xlink:type="simple" xlink:href="http://www.ejomr.org/JOMR/archives/2011/3/e3/v2n3e3ht.htm"></self-uri>
<abstract>
<title>ABSTRACT</title>
<sec sec-type="objectives">
<title>Objectives</title>
<p>The aim of the present study was to evaluate calcium phosphate precipitation and the amount of precipitated protein on three potentially bioactive surfaces when adding laminin in simulated body fluid.</p>
</sec>
<sec sec-type="material and methods">
<title>Material and Methods</title>
<p>Blasted titanium discs were prepared by three different techniques claimed to provide bioactivity: alkali and heat treatment (AH), anodic oxidation (AO) or hydroxyapatite coating (HA). A blasted surface incubated in laminin-containing simulated body fuid served as a positive control (B) while a blasted surface incubated in non laminin-containing simulated body fuid served as a negative control (B-). The immersion time was 1 hour, 24 hours, 72 hours and 1 week. Surface topography was investigated by interferometry and morphology by Scanning Electron Microscopy (SEM). Analysis of the precipitated calcium and phosphorous was performed by Energy Dispersive X-ray Spectroscopy (EDX) and the adsorbed laminin was quantified by iodine (
<sup>125</sup>
I) labeling.</p>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>SEM demonstrated that all specimens except for the negative control were totally covered with calcium phosphate (CaP) after 1 week. EDX revealed that B- demonstrated lower sum of Ca and P levels compared to the other groups after 1 week. Iodine labeling demonstrated that laminin precipitated in a similar manner on the possibly bioactive surfaces as on the positive control surface.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Our results indicate that laminin precipitates equally on all tested titanium surfaces and may function as a nucleation center thus locally elevating the calcium concentration. Nevertheless further studies are required to clarify the role of laminin in the interaction of biomaterials with the host bone tissue.</p>
</sec>
</abstract>
<kwd-group>
<kwd>laminin</kwd>
<kwd>titanium</kwd>
<kwd>body fluid</kwd>
<kwd>calcium phosphates</kwd>
<kwd>biomaterials.</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>INTRODUCTION</title>
<p>Bone anchored titanium implants are used in the rehabilitation of edentulism. The bone formation around titanium implants has been extensively investigated, however despite this the biological phenomenon is yet to be understood to the full extend. It has been suggested that a biochemical bonding between bone tissue and titanium surfaces can be obtained by using bioactive implants. Bioactivity has been defined as "the characteristics of an implant material which allows it to form a bond with living tissues" [
<xref ref-type="bibr" rid="B1">1</xref>
]. However, bioactivity is today defined in more general terms implying a chemical influence on bone tissue [
<xref ref-type="bibr" rid="B2">2</xref>
]. Theoretically, the advantages with bioactive implants could be rapid biochemical stimulation, and that the interaction between implant and bone may enhance early bone formation.</p>
<p>Chemical modification methods of titanium implant surfaces have been proposed to enhance bone growth. Some of these techniques are fluoride etching [
<xref ref-type="bibr" rid="B3">3</xref>
], alkali-heat treatment [
<xref ref-type="bibr" rid="B4">4</xref>
], anodic oxidation [
<xref ref-type="bibr" rid="B5">5</xref>
,
<xref ref-type="bibr" rid="B6">6</xref>
], coatings of calcium phosphates in sol-gels [
<xref ref-type="bibr" rid="B7">7</xref>
], and immobilization of organic bio-molecules or polymers on the surface [
<xref ref-type="bibr" rid="B8">8</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
]. These techniques alter not only the surface chemistry but also the topography, which both may contribute to an increased attachment to the bone. However, the exact mechanism of bone formation on the different surfaces has not been fully clarified.</p>
<p>A variety of materials and surface modifications have been evaluated
<italic>in vitro</italic>
by using the simulated body fluid (SBF) model [
<xref ref-type="bibr" rid="B10">10</xref>
-
<xref ref-type="bibr" rid="B12">12</xref>
]. SBF is defined as an acellular, protein-free solution with ion concentrations approximately equal to those of human blood plasma [
<xref ref-type="bibr" rid="B13">13</xref>
,
<xref ref-type="bibr" rid="B15">15</xref>
]. The nucleating capacity of a biomaterial can be observed by immersing it in SBF [
<xref ref-type="bibr" rid="B16">16</xref>
]. It has been suggested that the nucleation of calcium/phosphates mimics the initial mineralization of bone on the implant surface. In a review on the usefulness of SBF in predicting the
<italic>in vivo</italic>
bone bioactivity, a correlation has been described between apatite formation in SBF models and bone bioactivity
<italic>in vivo</italic>
[
<xref ref-type="bibr" rid="B17">17</xref>
].</p>
<p>However, compared to the SBF model, the
<italic>in vivo</italic>
process is much more complex and numerous proteins, enzymes and biological factors play an important role in this process [
<xref ref-type="bibr" rid="B18">18</xref>
]. Some studies applied bovine serum albumine (BSA) in various concentrations in SBF-solutions. The results indicated that the BSA alters the nucleation rate, morphology, composition and crystallinity of the Ca/P precipitates [
<xref ref-type="bibr" rid="B18">18</xref>
-
<xref ref-type="bibr" rid="B20">20</xref>
]. This is of interest, since it has been discussed if protein adsorption may contribute to cell behaviour, and thus can be regarded as a fundamental reaction [
<xref ref-type="bibr" rid="B21">21</xref>
]. Thereby, it has been speculated that the protein adsorption could play a role in the bioactivity of specific materials.</p>
<p>Laminins are heterotrimeric glycoprotein molecules included in the proteins that are involved in cell adhesion on biomaterials [
<xref ref-type="bibr" rid="B22">22</xref>
] possessing the ability to bind to a protein family known as integrins, especially β1 and β2 integrins [
<xref ref-type="bibr" rid="B23">23</xref>
]. Integrins are integral membrane glycoproteins which mediate cell-to-cell and cell-to-matrix interactions. Integrins have not only the ability to mediate cell adhesion to extracellular matrix, but they also facilitate the cell communication [
<xref ref-type="bibr" rid="B24">24</xref>
]. By their cytoplasmic domains, they participate in the assembly of the cytoskeleton and thereby influencing cell migration, adhesion of epithelial cells and hemidesmosome formation [
<xref ref-type="bibr" rid="B23">23</xref>
].
<italic>In vitro</italic>
studies suggest that laminin-1 recruits osteoprogenitors cells through an attachment effect [
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
], and to human osteoblast-like cells through the β1 integrin subunit [
<xref ref-type="bibr" rid="B27">27</xref>
].</p>
<p>The aim with the present study was to evaluate the nucleating behaviour of three different surfaces, claimed to be bioactive and to compare them with a blasted control surface in the presence of laminin in a simulated body fuid model since laminin seems to act as a promising osteoprogenitor recruiting protein.</p>
</sec>
<sec sec-type="materials|methods">
<title>MATERIAL AND METHODS</title>
<p>
<bold>Surface preparations</bold>
</p>
<p>In total, 75 discs (diameter = 8 mm, thickness = 1 mm) of titanium grade 4 were used in the study. The samples were blasted with Al
<sub>2</sub>
O
<sub>3</sub>
powder with an average particle size of 120 µm with a force of 3.5 kg and from a distance of 15 mm, and were subsequently cleaned ultrasonically in diluted Extran MA01 and absolute ethanol, and were dried at 60 °C for 24 h. The specimens were then divided into five equally sized groups (n = 15). A group of blasted discs incubated in laminin-containing SBF served as a positive control (B), while a group of blasted specimens incubated in non laminin-containing SBF served as a negative control (B-). The other three groups were treated as following.</p>
<p>Alkali and heat treatment (AH)</p>
<p>Alkali and heat treatment was performed as described in the literature [
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B28">28</xref>
,
<xref ref-type="bibr" rid="B29">29</xref>
]. In brief, the discs were soaked in 5 M aqueous NaOH for 24 h at 60 °C, rinsed with distilled water and dried at 40 °C for 24 h. Subsequently, the discs were heated until reaching 600 °C by increasing the temperature by 5 °C/min in an electrical furnace (Bitatherm, Bita Laboratory Furnaces, Israel) and were kept at 600 °C for 2 h. The discs were left in the furnace until they cooled down to room temperature.</p>
<p>Anodic oxidation (AO)</p>
<p>The samples were prepared in a mixed electrolyte containing calcium ions by using the Micro Arc Oxidation (MAO) method in galvanostatic mode as described by Sul et al. [
<xref ref-type="bibr" rid="B30">30</xref>
]. More specifically, the electrochemical cell was composed of platinum plates as cathodes, and a titanium anode at the centre. A computer interfaced with a DC power supply was used to record currents and voltages at milliseconds intervals. The content of ripple was controlled to less than 0.1 % [
<xref ref-type="bibr" rid="B31">31</xref>
]. Surface analysis of the oxidizedgroup demonstrated the following properties: a calcium content of 11 atomic percent in the newly formed oxide with a 1.2 µm thickness, 24 % porosity of porous structure and anatase and rutile crystal structure [
<xref ref-type="bibr" rid="B32">32</xref>
,
<xref ref-type="bibr" rid="B33">33</xref>
].</p>
<p>Hydroxyapatite coating (HA)</p>
<p>A thin hydroxyapatite layer (< 50 nm) was obtained by dipping the titanium discs into a solution containing surfactants, water, organic solvent and crystalline nanoparticles of hydroxyapatite with a Ca/P ratio of 1.67. The diameter of the hydroxyapatite particles was approximately 10 nm. After the dipping procedure the discs were let to dry in open air for 30 min, allowing the organic solvent to evaporate. To remove all dispersing agents, the discs were subjected to heat treatment at 550 °C for 5 min [
<xref ref-type="bibr" rid="B34">34</xref>
].</p>
<p>
<bold>Radio Labelling of Laminin</bold>
</p>
<p>Laminin (Sigma-Aldrich, Stockholm, Sweden) was labelled with iodine-125 (
<sup>125</sup>
I) (Amersham Pharmacia Biotech, Uppsala, Sweden) using the Iodo-Bead iodination method (Pierce, USA). The beads were rinsed in phosphate buffered saline (PBS) at pH 6.5 with 0.25 mM sodium azide. The sodium iodide-125 was mixed in PBS, and equilibrated for 5 min. Subsequently, laminin in PBS was added, and incubated for 7 min under gentle stirring. The solution with the labeled protein was dialyzed with 50 mM KI added against PBS using dialysis tubings (Spectrapor, Rancho Dominguez, CA, USA) with a pore size of 3500 Da. Small volumes were taken at different times from the dialysate, and the activity was checked throughout the procedure. The labelled protein solution was dialyzed in several steps until the activity fell below 5000 CPM/ml. The protein concentration was determined by spectrophotometry (Shimadzu UV-1601PC, Columbia, MD, USA) at 280 nm. A series of solutions with known concentrations of respective unlabeled protein was used for the calibration.</p>
<p>
<bold>SBF immersion</bold>
</p>
<p>The revised SBF (r-SBF) used in this study was prepared according to the literature [
<xref ref-type="bibr" rid="B35">35</xref>
]. In brief, 5.403 g NaCl (Merck, Darmstadt, Germany), 0.740 g NaHCO
<sub>3</sub>
(Merck, Darmstadt, Germany), 2.046 g Na
<sub>2</sub>
CO
<sub>3</sub>
(Merck, Darmstadt, Germany), 0.225 g KCl (Merck, Darmstadt, Germany), 0.230 g K
<sub>2</sub>
HPO
<sub>4</sub>
·3H
<sub>2</sub>
O (Merck, Darmstadt, Germany), 0.311 g MgCl2·6H
<sub>2</sub>
O (Merck, Darmstadt, Germany), 11.928 g 2-(4-(2-hydroxyethyl)-1-piperazinyl) ethanesulfonic acid (HEPES) (Reach Organics Inc., Cleveland, Ohio, USA), 0.293 g CaCl
<sub>2</sub>
(KEBO Lab AB, Spånga, Sweden) and 0.072 g Na
<sub>2</sub>
SO
<sub>4</sub>
(Merck, Darmstadt, Germany) were dissolved in 1,000 ml distilled water. HEPES was dissolved in 100 ml distilled water before being added to the solution and the final pH was adjusted to 7.4 at 37 °C. Laminin marked with
<sup>125</sup>
I was added to adjust to a final concentration of 300 ng/ml, which corresponds to the concentration of laminin included in the human blood plasma [
<xref ref-type="bibr" rid="B36">36</xref>
].</p>
<p>The discs were immersed in 25 ml r-SBF/laminin in separate sealed polystyrene vials, and incubated at 37 °C. After immersion for 1 h, 1 day, 3 days and 1 week the r-SBF/laminin immersion was interrupted, and the specimens were rinsed with distilled water, in order to remove any loosely attached calcium phosphates. Thereafter, the specimens were left to dry at room temperature, and ultimately sealed in dry vials. Three samples for each type of surface were not immersed in r-SBF/laminin (0 h).</p>
<p>
<bold>Laminin quantification</bold>
</p>
<p>After immersion in r-SBF/laminin, the specimens were transferred to a gamma counter (Packard Cobra II, Canberra, USA), and the activity was measured for 10 min. To correlate the gamma counter values to the adsorbed amounts, known volumes with known labelled protein concentrations were measured in the gamma counter. The surfaces and proteins did not adsorb free
<sup>125</sup>
I from the solutions, and the proteins were not noticeably affected by the labelling procedure [
<xref ref-type="bibr" rid="B37">37</xref>
].</p>
<p>
<bold>Topographic characterization</bold>
</p>
<p>The specimens were topographically analyzed after immersion in r-SBF/laminin with an interferometer (MicroXam, Phase-Shift, Tucson, Arizona, USA) operating in a wave length of λ = 550 nm.</p>
<p>A Gaussian filter with size 50 × 50 µm
<sup>2</sup>
was applied to separate roughness from form and waviness. Thereafter, the surface roughness was calculated using the following topographical parameters defined as essential for describing the topography of biomaterial surfaces [
<xref ref-type="bibr" rid="B38">38</xref>
].</p>
<p>S
<sub>a</sub>
= Arithmetic mean height deviation from a mean plane (µm).</p>
<p>S
<sub>ds</sub>
= Density of summits, i.e. the number of summits of a unit sampling area (µm
<sup>-2</sup>
).</p>
<p>S
<sub>dr</sub>
= Developed interfacial area ratio, i.e. the ratio of the increment of the interfacial area of a surface over the sampling area (%).</p>
<p>Calculations of group means and standard deviations for each surface preparation and time point were performed.</p>
<p>
<bold>Scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX)</bold>
</p>
<p>For the SEM analysis, a LEO Ultra 55 FEG SEM equipped with an Oxford Inca EDX system, operating at 8 and 10 kV was used. The samples were examined without surface sputtering. Micrographs were recorded at different magnifications to investigate both the surface coverage and the morphology of the crystals. EDX analysis at a magnification of 150 times was performed to describe the atomic composition. Two discs for each preparation and incubation time were analyzed, and mean value was calculated.</p>
<p>
<bold>Statistical analysis</bold>
</p>
<p>The normal distribution of the variables was controlled by Kolmogorov-Smirnov normality test. Statistical analysis was performed with Statistical Package for the Social Sciences for Windows, version 18 (SPSS
<sup>®</sup>
, Chicago, Illinois, USA) using One-way ANOVA (Analysis of Variance). The statistical significance level was set at 0.05. Multiple paired comparisons were performed by Bonferroni Post-Hoc test with the statistical significance level defined at 0.05.</p>
</sec>
<sec sec-type="results">
<title>RESULTS</title>
<p>
<bold>Topographical characterization</bold>
</p>
<p>The AH surface demonstrated small height deviation and large density of irregularities. The surface enlargement is explained by the large S
<sub>ds</sub>
value. After 1 week of incubation, no differences with respect to surface roughness was possible to detect among the surface groups incubated in laminin-containing SBF. Regarding the negative control B-, S
<sub>ds</sub>
and S
<sub>dr</sub>
remained stable throughout the incubation, and were significantly lower when compared to the specimens incubated in presence of laminin.</p>
<p>S
<sub>a</sub>
mean values</p>
<p>The AH surface and the negative control had a lower mean S
<sub>a</sub>
than the other surfaces prior to immersion. The AH surface and the negative control B- still had the lowest S
<sub>a</sub>
of all surface groups after 72 h while no significant differences in mean S
<sub>a</sub>
could be detected among the surface groups after 1 week of incubation (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
).</p>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Mean values and standard errors of S
<sub>a</sub>
for the four different surface groups. B = blasted titanium; AH = alkali and heat treated; AO = anodically oxidized; HA = hydroxyapatite coated; B- = blasted titanium incubated in non laminin containing SBF. Mean values and standard errors are presented.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g001"></graphic>
</fig>
<p>S
<sub>ds</sub>
mean values</p>
<p>The AH surface had at all time points, the highest surface density of all the surface groups except for the AH surface after 72 h of incubation. Group B had throughout the incubation period the lowest density of summits. After having incubated the samples for 1 week, the negative control B- still demonstrated the lowest S
<sub>ds</sub>
value (
<xref ref-type="fig" rid="fig2">Figure 2</xref>
).</p>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>Mean values and standard errors of S
<sub>ds</sub>
for the four different surface groups. B = blasted titanium; AH = alkali and heat treated; AO = anodically oxidized; HA = hydroxyapatite coated; B- = blasted titanium incubated in non laminin containing SBF. Mean values and standard errors are presented.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g002"></graphic>
</fig>
<p>S
<sub>dr</sub>
mean values</p>
<p>The blasted surface (B) had the highest S
<sub>dr</sub>
mean value of all the other surface groups prior to immersion in SBF and the negative control the lowest (B-). After 1 week, no significant differences could be detected among the groups except for the negative control B- being the only surface with significantly lower S
<sub>dr</sub>
throughout the incubation period (
<xref ref-type="fig" rid="fig3">Figure 3</xref>
).</p>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>S
<sub>dr</sub>
of the four different surface groups. B = blasted titanium; AH = alkali and heat treated; AO = anodically oxidized; HA = hydroxyapatite coated; B- = blasted titanium incubated in non laminin containing SBF. Mean values and standard errors are presented.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g003"></graphic>
</fig>
<p>
<bold>SEM/EDX</bold>
</p>
<p>SEM images with a × 5,000 magnification acquired prior to incubation in SBF, demonstrated differences in surface morphology when comparing the control blasted surface (
<xref ref-type="fig" rid="fig4">Figures 4 a and 4 e</xref>
) to the alkali and heat treated, which possessed a smooth surface, covered with microscopic spike-like structures (
<xref ref-type="fig" rid="fig4">Figure 4b</xref>
) and to anodic oxidated ones which had a porous appearance (
<xref ref-type="fig" rid="fig4">Figure 4c</xref>
). However, no differences were observed in surface morphology when comparing the nano-sized hydroxyapatite coated surface (
<xref ref-type="fig" rid="fig4">Figure 4d</xref>
) to the control surface B. Both surfaces had sharp-edged appearances, which probably depended on the blasting procedure, and included some Al
<sub>2</sub>
O
<sub>3</sub>
crystals. Nano-sized hydroxyapatite crystals could not be observed in this magnification. After 1 week, no differences in surface morphology could be observed when comparing the SEM images, since all the samples were totally covered with a homogenous layer of crystals (
<xref ref-type="fig" rid="fig5">Figures 5 a - d</xref>
). Nevertheless, the blasted surface incubated solely in SBF appeared to be only partially covered by crystals (
<xref ref-type="fig" rid="fig5">Figure 5 e</xref>
).</p>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>SEM images of Ti-discs prior to incubation in SBF (x 5,000) (a) B = blasted; (b) AH = alkali and heat treated; (c) AO = anodically oxidized; (d) HA = hydroxyapatite coated; (e) B- = blasted titanium incubated in non laminin containing SBF. The bar presents 10 µm.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>SEM image of a Ti-discs after incubation in SBF for 1 week (x 5,000) (a) B = blasted; (b) AH = alkali and heat treated; (c) AO = anodically oxidized; (d) HA = hydroxyapatite coated; (e) B- = blasted titanium incubated in non laminin containing SBF. The size of the bar is 10 µm.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g005"></graphic>
</fig>
<p>
<bold>EDX</bold>
</p>
<p>Calcium phosphate (CaP)</p>
<p>The total amount of calcium phosphate (CaP) crystals on the surface of the titanium discs was measured with EDX by measuring and adding the relative elemental amount of calcium (Ca) and phosphorous (P) present on the surface. The mean sum of Ca and P was statistically significant higher (p < 0.05) for the AH surface throughout the incubation time with a greater difference at 24 h and 72 h, and the differences were statistically significant (p < 0.05). After 1 week no significant differences could be detected among the groups incubated in laminin containing SBF. The negative control B- failed to follow the same CaP precipitation pattern as the surfaces incubated in laminin containing SBF and after 24 h it demonstrated lower levels of total CaP, despite showing an ascending trend (
<xref ref-type="fig" rid="fig6">Figure 6</xref>
).</p>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Total amount of precipitated calcium and phosphorous calculated from EDX measurements. B = blasted titanium; AH = alkali and heat treated; AO = anodically oxidized; HA = hydroxyapatite coated; B- = blasted titanium incubated in non laminin containing SBF. Mean values and standard errors are presented.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g006"></graphic>
</fig>
<p>Calcium/Phosphorous ratio (Ca/P Ratio)</p>
<p>The proposed bioactive surfaces, i.e. AH, AO and HA treated samples, demonstrated a higher Ca/P ratio than both the blasted control samples prior to incubation in SBF. Furthermore, calcium and phosphorous signals were recorded at an earlier stage on the bioactive surfaces compared to the blasted group. At the non-incubated samples, no phosphorous (P) was detected on the AH surface, which in
<xref ref-type="fig" rid="fig7">Figure 7</xref>
is reported as missing value. The high initial Ca content on the surface, contributed to a high Ca/P ratio where after 1 h of incubation we could also detect P. After 1 h, all the possibly bioactive surfaces had still higher Ca/P ratio than the blasted groups with the AH treated group showing the highest ratio, and after 24 h the blasted group incubated in laminin containing SBF had a significantly higher Ca/P ratio than the negative control B-. After 72 h, all the groups had a Ca/P ratio around 1.67, corresponding to hydroxyapatite crystalline formation. When the Ca/P ratio was examined after 1 week of incubation, no statistically significant differences were detected among the different surface groups (
<xref ref-type="fig" rid="fig7">Figure 7</xref>
).</p>
<fig id="fig7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Calcium/phosphate ratio calculated from EDX measurements. B = blasted titanium; AH = alkali and heat treated; AO = anodically oxidized; HA = hydroxyapatite coated; B- = blasted titanium incubated in non laminin containing SBF. Mean values and standard errors are presented.</p>
</caption>
<graphic xlink:href="jomr-02-e3-g007"></graphic>
</fig>
<p>
<bold>Amount precipitated laminin</bold>
</p>
<p>The mean values for the amount precipitated laminin from the SBF on different surfaces and time points are presented in
<xref ref-type="table" rid="T1">Table 1</xref>
. The groups B, AH and AO reached their maximum laminin precipitation levels already after 1 h while the HA group reached its top level after 24 h of incubation. However, no significant differences of laminin levels could be detected among the different surface groups after equally long incubation time.</p>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Adsorbed laminin on the four different surface groups. The table presents mean values. Standard deviations are presented within parenthesis</p>
</caption>
<table frame="hsides" rules="groups" width="385">
<thead>
<tr>
<td align="center" rowspan="1" colspan="1">
<bold>SBF immersion time</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Surface type</bold>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>Laminin (ng) (SD)</bold>
</td>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="4" align="center" colspan="1">
<bold>0 hours</bold>
</td>
<td align="center" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1"> 94.00 (1.16) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AH </td>
<td align="center" rowspan="1" colspan="1"> 94.33 (1.86) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AO </td>
<td align="center" rowspan="1" colspan="1"> 100.00 (1.16) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> HA </td>
<td align="center" rowspan="1" colspan="1"> 95.33 (2.40) </td>
</tr>
<tr>
<td colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td rowspan="4" align="center" colspan="1">
<bold>1 hour</bold>
</td>
<td align="center" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1"> 767.33 (107.16) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AH </td>
<td align="center" rowspan="1" colspan="1"> 805.67 (129.97) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AO </td>
<td align="center" rowspan="1" colspan="1"> 828.67 (176.62) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> HA </td>
<td align="center" rowspan="1" colspan="1"> 953.67 (24.10) </td>
</tr>
<tr>
<td colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td rowspan="4" align="center" colspan="1">
<bold>24 hours</bold>
</td>
<td align="center" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1"> 619.33 (95.59) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AH </td>
<td align="center" rowspan="1" colspan="1"> 769.33 (120.76) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AO </td>
<td align="center" rowspan="1" colspan="1"> 859.33 (246.07) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> HA </td>
<td align="center" rowspan="1" colspan="1"> 1111.33 (415.43) </td>
</tr>
<tr>
<td colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td rowspan="4" align="center" colspan="1">
<bold>3 days</bold>
</td>
<td align="center" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1"> 501.67 (69.96) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AH </td>
<td align="center" rowspan="1" colspan="1"> 785.67 (182.50) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AO </td>
<td align="center" rowspan="1" colspan="1"> 445.33 (102.00) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> HA </td>
<td align="center" rowspan="1" colspan="1"> 556.67 (50.35) </td>
</tr>
<tr>
<td colspan="3" rowspan="1">
<hr></hr>
</td>
</tr>
<tr>
<td rowspan="4" align="center" colspan="1">
<bold>1 week</bold>
</td>
<td align="center" rowspan="1" colspan="1"> B </td>
<td align="center" rowspan="1" colspan="1"> 601.00 (18.50) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AH </td>
<td align="center" rowspan="1" colspan="1"> 817.67 (133.30) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> AO </td>
<td align="center" rowspan="1" colspan="1"> 1147.33 (470.82) </td>
</tr>
<tr>
<td align="center" rowspan="1" colspan="1"> HA </td>
<td align="center" rowspan="1" colspan="1"> 999.33 (86.11) </td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>B = blasted titanium;</p>
<p>AH = alkali and heat treated;</p>
<p>AO = anodic oxidized;</p>
<p>HA = hydroxyapatite coated.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</sec>
<sec sec-type="discussion">
<title>DISCUSSION</title>
<p>Laminin has been identified as one of the proteins being attached on biomaterial surfaces after the implantation process, and has been proposed to participate in osteoblast adhesion on biomaterials [
<xref ref-type="bibr" rid="B22">22</xref>
]. However, its biological role has not been studied compared to other important bone related proteins [
<xref ref-type="bibr" rid="B39">39</xref>
]. Previous
<italic>in vitro</italic>
studies have identified the integrin subunit β1 as a mechanism involved in human osteoblast adhesion [
<xref ref-type="bibr" rid="B27">27</xref>
], and have suggested that laminin-1 recruits osteoprogenitor cells through an attachment effect [
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
]. Nevertheless, none of those studies has investigated the ability of laminin to precipitate on different titanium surfaces or its potential to precipitate CaP.</p>
<p>The results from this study showed that the Ca/P ratio was higher for the possibly bioactive surfaces after 1 and 24 h as compared to blasted titanium surfaces. The ability of the possibly bioactive surfaces to induce a higher calcium phosphate level at the initial incubation phase declined by time and no difference in the ratio was observed after one week of incubation. These findings are in agreement with the results presented by Stenport et al. [
<xref ref-type="bibr" rid="B40">40</xref>
]. However, it is important to keep in mind that the control blasted group had not been subjected to any surface modification leading to possibly bioactive properties which may explain why neither calcium nor phosphate were detectable prior to incubation or after one hour of incubation. Thus, the more rapid response of the possibly bioactive surfaces could be explained by the ability of initial crystals of calcium and phosphorous to promote further calcium phosphate precipitation, a process known as crystal growth [
<xref ref-type="bibr" rid="B19">19</xref>
]. Hence, the Ca/P ratios illustrated in
<xref ref-type="fig" rid="fig6">Figure 6</xref>
include the sum of the calcium and phosphate originating in the surface treatment, and the crystals having precipitated during the SBF incubation. Interestingly, at 72 h and 1 week the Ca/P ratio was approximately 1.67, which corresponds to hydroxyapatite formation, and indicates that the formed CaP can be identified as hydroxyapatite.</p>
<p>Previously performed studies examining the nucleation rate of calcium phosphate in SBF solution including BSA have not always examined the topography of the tested surfaces [
<xref ref-type="bibr" rid="B18">18</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
,
<xref ref-type="bibr" rid="B41">41</xref>
]. In our study, we have examined three surface roughness parameters of the tested surfaces according to the norms for a complete topographic analysis [
<xref ref-type="bibr" rid="B38">38</xref>
]. All three tested parameters, S
<sub>a</sub>
, S
<sub>ds</sub>
and S
<sub>dr</sub>
, increased for all tested surfaces with incubation time, indicating a rougher surface created by the calcium phosphate precipitation. This finding is in agreement with the SEM observation.</p>
<p>In an earlier SBF study with four titanium surfaces claimed to be bioactive, i.e. fluoride etched, alkali and heat treated, anodically oxidated and hydroxyapatite coated, the evaluation of the BSA precipitation on surfaces was performed by counting the amount of nitrogen on the surfaces as an indirect way of protein detection. It was concluded that modified surfaces possessed a more rapid BSA precipitation compared to the blasted surfaces [
<xref ref-type="bibr" rid="B40">40</xref>
]. In the present study, we have labelled laminin with iodine-125, which detected the amount of protein more directly. Zeng et al. [
<xref ref-type="bibr" rid="B21">21</xref>
] compared BSA precipitation on hydroxyapatite, fluorapatite and pure titanium surfaces, and found that different surface composition and structure influenced the adsorption of BSA. The results of the present study demonstrated the ability of laminin to equally precipitate on various titanium surfaces within the first hour of incubation regardless of the underlying surface topography or chemistry. This finding suggests that laminin possesses the ability to precipitate easily on biomaterial surfaces.</p>
<p>All tested surfaces induced higher CaP precipitation when incubated in SBF containing laminin with a concentration equivalent to the human blood plasma as compared to blasted surfaces solely incubated in SBF [
<xref ref-type="bibr" rid="B36">36</xref>
]. A possible mechanism for laminin promoting CaP precipitation may be its function as a nucleation center. According to a morphological study examining the same laminin molecule that we utilized in the present study, laminin tends to assume a globular form when used for surface coating [
<xref ref-type="bibr" rid="B42">42</xref>
]. Some of the domains exposed from this protein conformation may act as nucleation centers for calcium ions thereby increasing the local calcium phosphate concentration, leading to enhanced nucleation ratio. In a recent study on osteoblasts, the effect of elevated extracellular calcium concentration was proposed to stimulate osteoblasts through the receptor activator of NF-κB ligand [
<xref ref-type="bibr" rid="B43">43</xref>
]. Hence, it is possible that the enhanced calcium phosphate formation observed in this study triggers osteoblast differentiation around laminin coated implants also when applied
<italic>in vivo</italic>
, acting as a complementary mechanism to the osteoblast activation by the integrin β1 subunit. An additional advantage of the possible function of laminin as nucleation center is its possible incorporation within the calcium phosphates. Hence, the proposed model would provide beneficial sustaining of laminin by leading to lower clearance, and higher local concentration for a longer period of time, thereby leading to prolonged stimulation of the surrounding osteoblasts.</p>
<p>Nevertheless, despite the interesting findings from this study one has to keep in mind that
<italic>in vivo</italic>
protein interactions are more complex. Therefore more
<italic>in vitro</italic>
and
<italic>in vivo</italic>
studies are required in order to clarify the role of laminin in the interaction of biomaterials with the host bone tissue.</p>
</sec>
<sec sec-type="conclusions">
<title>CONCLUSIONS</title>
<p>The results of the present study demonstrate the potential of laminin to equally precipitate on titanium surfaces subjected to various surface modifications, and to enhance apatite formation on blasted titanium surfaces when compared to blasted surfaces incubated in simulated body fluid in the absence of laminin. Among the tested surface modifications, alkali and heat treatment seemed to induce more rapid CaP precipitation. The findings of this study are intriguing since laminin may function as a nucleation center, thus locally elevating the calcium concentration, thereby having a positive effect on osteoblast differentiation. Nevertheless, since the
<italic>in vivo</italic>
protein interactions are more complex, further studies are required in order to clarify the role of laminin in the interaction of biomaterials with the host bone tissue.</p>
</sec>
</body>
<back>
<ack>
<sec sec-type="acknowledgments and disclosure statements">
<title>ACKNOWLEDGMENTS AND DISCLOSURE STATEMENTS</title>
<p>The authors thank Agneta Askendal from the department of Applied Physics in Linköping University, Sweden for her help with protein labeling. This study was supported by the Swedish National Graduate School in Odontological Science. The authors also acknowledge the Swedish Research Council (K2009-52X-06533-27-3), Hjalmar Svenson Research Foundation, Sylvan Foundation, Wilhelm and Martina Lundgren Science Foundation, the Royal Society of Arts and Sciences in Göteborg and the Council for Research and Development in Södra Älvsborg, Sweden for funding the project.</p>
</sec>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<label>1</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Hench</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yamamuro</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>J</given-names>
</name>
</person-group>
<source>Bioactive glasses and glass-ceramics. Handbook of Bioactive CeramicsBoca Raton: CRC Press, 1990. p. 7-23.</source>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Williams</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>editor</surname>
<given-names></given-names>
</name>
</person-group>
<source>The williams dictionary of biomaterials. 1st ed. Liverpool: Liverpool University Press, 1999.</source>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Ellingsen</surname>
<given-names>JE</given-names>
</name>
</person-group>
<source>Pre-treatment of titanium implants with fluoride improves their retention in bone J Mater Sci Mater Med 1995;6(12). p. 749-753.</source>
<pub-id pub-id-type="doi">10.1007/BF00134312</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Miyaji</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Preparation of bioactive Ti and its alloys via simple chemical surface treatment J Biomed Mater Res 1996;32:409-417.</source>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Ishizawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fujino</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ogino</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films containing Ca and P. J Biomed Mater Res. 1995 Nov;29(11):1459-68.</source>
<pub-id pub-id-type="doi">10.1002/jbm.820291118</pub-id>
<pub-id pub-id-type="pmid">8582915</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Blackwood</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Seah</surname>
<given-names>KH</given-names>
</name>
</person-group>
<source>Influence of anodization on the adhesion of calcium phosphate coatings on titanium substrates. J Biomed Mater Res A. 2010 Jun 15;93(4):1551-6.</source>
<pub-id pub-id-type="pmid">20014290</pub-id>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Ramires</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Romito</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Cosentino</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Milella</surname>
<given-names>E</given-names>
</name>
</person-group>
<source>The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials. 2001 Jun;22(12):1467-74.</source>
<pub-id pub-id-type="doi">10.1016/S0142-9612(00)00269-6</pub-id>
<pub-id pub-id-type="pmid">11374445</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Textor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Spencer</surname>
<given-names>ND</given-names>
</name>
<name>
<surname>Wieland</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sigrist</surname>
<given-names>H</given-names>
</name>
</person-group>
<source>Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment. J Mater Sci Mater Med. 1997 Dec;8(12):867-72.</source>
<pub-id pub-id-type="doi">10.1023/A:1018501804943</pub-id>
<pub-id pub-id-type="pmid">15348806</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Tsiourvas</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Tsetsekou</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arkas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diplas</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mastrogianni</surname>
<given-names>E</given-names>
</name>
</person-group>
<source>Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates. J Mater Sci Mater Med. 2011 Jan;22(1):85-96. Epub 2010 Nov 11.</source>
<pub-id pub-id-type="doi">10.1007/s10856-010-4181-7</pub-id>
<pub-id pub-id-type="pmid">21069559</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Bhakta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pattanayak</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Takadama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Mirsaneh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reaney</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Brook</surname>
<given-names>I</given-names>
</name>
<name>
<surname>van</surname>
<given-names>Noort R</given-names>
</name>
<name>
<surname>Hatton</surname>
<given-names>PV</given-names>
</name>
</person-group>
<source>Prediction of osteoconductive activity of modified potassium fluorrichterite glass-ceramics by immersion in simulated body fluid. J Mater Sci Mater Med. 2010 Nov;21(11):2979-88. Epub 2010 Aug 20.</source>
<pub-id pub-id-type="doi">10.1007/s10856-010-4145-y</pub-id>
<pub-id pub-id-type="pmid">20725768</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Will</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hoppe</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>FA</given-names>
</name>
<name>
<surname>Raya</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Fernández</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Greil</surname>
<given-names>P</given-names>
</name>
</person-group>
<source>Bioactivation of biomorphous silicon carbide bone implants. Acta Biomater. 2010 Dec;6(12):4488-94. Epub 2010 Jul 6.</source>
<pub-id pub-id-type="doi">10.1016/j.actbio.2010.06.036</pub-id>
<pub-id pub-id-type="pmid">20615484</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Yada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Akihito</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Noda</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Torikai</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Watari</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hotokebuchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Apatite-forming ability of titanium compound nanotube thin films formed on a titanium metal plate in a simulated body fluid. Colloids Surf B Biointerfaces. 2010 Oct 15;80(2):116-24. Epub 2010 May 31.</source>
<pub-id pub-id-type="doi">10.1016/j.colsurfb.2010.05.032</pub-id>
<pub-id pub-id-type="pmid">20580538</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kushitani</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Sakka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kitsugi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Yamamuro</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990 Jun;24(6):721-34.</source>
<pub-id pub-id-type="doi">10.1002/jbm.820240607</pub-id>
<pub-id pub-id-type="pmid">2361964</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Peltola</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pätsi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rahiala</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kangasniemi</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Yli-Urpo</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. J Biomed Mater Res. 1998 Sep 5;41(3):504-10.</source>
<pub-id pub-id-type="pmid">9659622</pub-id>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Takadama</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res. 2001 Dec 5;57(3):441-8.</source>
<pub-id pub-id-type="pmid">11523039</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Barrere</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Snel</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>van</surname>
<given-names>Blitterswijk CA</given-names>
</name>
<name>
<surname>de Groot</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Layrolle</surname>
<given-names>P</given-names>
</name>
</person-group>
<source>Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants. Biomaterials. 2004 Jun;25(14):2901-10.</source>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2003.09.063</pub-id>
<pub-id pub-id-type="pmid">14962569</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Takadama</surname>
<given-names>H</given-names>
</name>
</person-group>
<source>How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006 May;27(15):2907-15. Epub 2006 Jan 31. Review.</source>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2006.01.017</pub-id>
<pub-id pub-id-type="pmid">16448693</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Layrolle</surname>
<given-names>P</given-names>
</name>
<name>
<surname>de Bruijn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>van</surname>
<given-names>Blitterswijk C</given-names>
</name>
<name>
<surname>de Groot</surname>
<given-names>K</given-names>
</name>
</person-group>
<source>Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. J Biomed Mater Res. 2001 Dec 5;57(3):327-35.</source>
<pub-id pub-id-type="pmid">11523027</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Combes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials. 2002 Jul;23(13):2817-23. Review.</source>
<pub-id pub-id-type="doi">10.1016/S0142-9612(02)00073-X</pub-id>
<pub-id pub-id-type="pmid">12059033</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Wen</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>de Wijn</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>van</surname>
<given-names>Blitterswijk CA</given-names>
</name>
<name>
<surname>de Groot</surname>
<given-names>K</given-names>
</name>
</person-group>
<source>Incorporation of bovine serum albumin in calcium phosphate coating on titanium. J Biomed Mater Res. 1999 Aug;46(2):245-52.</source>
<pub-id pub-id-type="pmid">10380003</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chittur</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Lacefield</surname>
<given-names>WR</given-names>
</name>
</person-group>
<source>Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials. 1999 Feb;20(4):377-84.</source>
<pub-id pub-id-type="doi">10.1016/S0142-9612(98)00184-7</pub-id>
<pub-id pub-id-type="pmid">10048411</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Anselme</surname>
<given-names>K</given-names>
</name>
</person-group>
<source>Osteoblast adhesion on biomaterials. Biomaterials. 2000 Apr;21(7):667-81. Review.</source>
<pub-id pub-id-type="doi">10.1016/S0142-9612(99)00242-2</pub-id>
<pub-id pub-id-type="pmid">10711964</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Colognato</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yurchenco</surname>
<given-names>PD</given-names>
</name>
</person-group>
<source>Form and function: the laminin family of heterotrimers. Dev Dyn. 2000 Jun;218(2):213-34. Review.</source>
<pub-id pub-id-type="pmid">10842354</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Hynes</surname>
<given-names>RO</given-names>
</name>
</person-group>
<source>Cell adhesion: old and new questions. Trends Cell Biol. 1999 Dec;9(12):M33-7. Review.</source>
<pub-id pub-id-type="doi">10.1016/S0962-8924(99)01667-0</pub-id>
<pub-id pub-id-type="pmid">10611678</pub-id>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Roche</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Goldberg</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Delmas</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Malaval</surname>
<given-names>L</given-names>
</name>
</person-group>
<source>Selective attachment of osteoprogenitors to laminin. Bone. 1999 Apr;24(4):329-36.</source>
<pub-id pub-id-type="pmid">10221545</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Roche</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rousselle</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lissitzky</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Delmas</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>Malaval</surname>
<given-names>L</given-names>
</name>
</person-group>
<source>Isoform-specific attachment of osteoprogenitors to laminins: mapping to the short arms of laminin-1. Exp Cell Res. 1999 Aug 1;250(2):465-74.</source>
<pub-id pub-id-type="doi">10.1006/excr.1999.4518</pub-id>
<pub-id pub-id-type="pmid">10413600</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Gronthos</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Graves</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Hay</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simmons</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<source>Integrin expression and function on human osteoblast-like cells. J Bone Miner Res. 1997 Aug;12(8):1189-97.</source>
<pub-id pub-id-type="doi">10.1359/jbmr.1997.12.8.1189</pub-id>
<pub-id pub-id-type="pmid">925874</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Miyaji</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. J Mater Sci Mater Med. 1997 Jun;8(6):341-7.</source>
<pub-id pub-id-type="doi">10.1023/A:1018524731409</pub-id>
<pub-id pub-id-type="pmid">15348733</pub-id>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Miyaji</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nishiguchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Graded surface structure of bioactive titanium prepared by chemical treatment. J Biomed Mater Res. 1999 May;45(2):100-7.</source>
<pub-id pub-id-type="pmid">10397963</pub-id>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Sul</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Byon</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials. 2005 Nov;26(33):6720-30.</source>
<pub-id pub-id-type="doi">10.1016/j.biomaterials.2005.04.058</pub-id>
<pub-id pub-id-type="pmid">15975649</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Sul</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001 Jun;23(5):329-46.</source>
<pub-id pub-id-type="pmid">11435147</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Sul</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Oxidized titanium screws coated with calcium ions and their performance in rabbit bone. Int J Oral Maxillofac Implants. 2002 Sep-Oct;17(5):625-34.</source>
<pub-id pub-id-type="pmid">12381062</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Sul</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Petronis</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Krozer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jeong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002 Jan;23(2):491-501.</source>
<pub-id pub-id-type="doi">10.1016/S0142-9612(01)00131-4</pub-id>
<pub-id pub-id-type="pmid">11761170</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kjellin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Synthetic nano-sized crystalline calcium phosphate and method of production patent. 2006 Aprl 25.</source>
<comment>URL:
<ext-link ext-link-type="uri" xlink:href="http://www.freepatentsonline.com/EP1781568A1.html">http://www.freepatentsonline.com/EP1781568A1.html</ext-link>
.</comment>
</element-citation>
</ref>
<ref id="B35">
<label>35</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Oyane</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Furuya</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kokubo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Miyazaki</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003 May 1;65(2):188-95.</source>
<pub-id pub-id-type="doi">10.1002/jbm.a.10482</pub-id>
<pub-id pub-id-type="pmid">12734811</pub-id>
</element-citation>
</ref>
<ref id="B36">
<label>36</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Werle</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Diehl</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Hasslacher</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Levels and molecular size distribution of serum laminin in adult type I diabetic patients with and without microangiopathy. Metabolism. 1998 Jan;47(1):63-9.</source>
<pub-id pub-id-type="doi">10.1016/S0026-0495(98)90194-9</pub-id>
<pub-id pub-id-type="pmid">9440479</pub-id>
</element-citation>
</ref>
<ref id="B37">
<label>37</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Benesch</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Askendal</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tengvall</surname>
<given-names>P</given-names>
</name>
</person-group>
<source>Quantification of adsorbed human serum albumin at solid interfaces: a comparison between radioimmunoassay (RIA) and simple null ellipsometry. Colloids Surf B Biointerfaces 2000;18:71-81.</source>
<pub-id pub-id-type="doi">10.1016/S0927-7765(99)00136-8</pub-id>
</element-citation>
</ref>
<ref id="B38">
<label>38</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<source>Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants. 2000 May-Jun;15(3):331-44.</source>
<pub-id pub-id-type="pmid">10874798</pub-id>
</element-citation>
</ref>
<ref id="B39">
<label>39</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Jimbo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mikaelsson</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Koskela</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sul</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Johansson</surname>
<given-names>CB</given-names>
</name>
</person-group>
<source>Protein adsorption to surface chemistry and chrystal structure modification of titanium surfaces. J Oral Maxillofac Res 2010 (Jul-Sep);1(3):e3.</source>
<comment>URL:
<ext-link ext-link-type="uri" xlink:href="http://www.ejomr.org/JOMR/archives/2010/3/e3/e3ht.htm">http://www.ejomr.org/JOMR/archives/2010/3/e3/e3ht.htm</ext-link>
.</comment>
<pub-id pub-id-type="doi">10.5037/jomr.2010.1303</pub-id>
</element-citation>
</ref>
<ref id="B40">
<label>40</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Stenport</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kjellin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Currie</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Sul</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arvidsson</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>Precipitation of calcium phosphate in the presence of albumin on titanium implants with four different possibly bioactive surface preparations. An in vitro study. J Mater Sci Mater Med. 2008 Dec;19(12):3497-505. Epub 2008 Jul 15.</source>
<pub-id pub-id-type="doi">10.1007/s10856-008-3517-z</pub-id>
<pub-id pub-id-type="pmid">18622767</pub-id>
</element-citation>
</ref>
<ref id="B41">
<label>41</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Combes</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>C</given-names>
</name>
</person-group>
<source>Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials. 2002 Jul;23(13):2817-23. Review.</source>
<pub-id pub-id-type="doi">10.1016/S0142-9612(02)00073-X</pub-id>
<pub-id pub-id-type="pmid">12059033</pub-id>
</element-citation>
</ref>
<ref id="B42">
<label>42</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Rodríguez</surname>
<given-names>Hernández JC</given-names>
</name>
<name>
<surname>Salmerón</surname>
<given-names>Sánchez M</given-names>
</name>
<name>
<surname>Soria</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Gómez</surname>
<given-names>Ribelles JL</given-names>
</name>
<name>
<surname>Monleón</surname>
<given-names>Pradas M</given-names>
</name>
</person-group>
<source>Substrate chemistry-dependent conformations of single laminin molecules on polymer surfaces are revealed by the phase signal of atomic force microscopy. Biophys J. 2007 Jul 1;93(1):202-7. Epub 2007 Apr 6.</source>
<pub-id pub-id-type="doi">10.1529/biophysj.106.102491</pub-id>
<pub-id pub-id-type="pmid">17416620</pub-id>
</element-citation>
</ref>
<ref id="B43">
<label>43</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>OY</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Kwon</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>HR</given-names>
</name>
<name>
<surname>Qadir</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Ryoo</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>JH</given-names>
</name>
</person-group>
<source>High extracellular calcium-induced NFATc3 regulates the expression of receptor activator of NF-κB ligand in osteoblasts. Bone. 2011 Aug;49(2):242-9. Epub 2011 Apr 14.</source>
<pub-id pub-id-type="doi">10.1016/j.bone.2011.04.006</pub-id>
<pub-id pub-id-type="pmid">21514407</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0006920 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0006920 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Dec 4 11:02:15 2017. Site generation: Tue Sep 29 19:14:38 2020