Serveur d'exploration sur le patient édenté (maquette)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics

Identifieur interne : 000577 ( Pmc/Corpus ); précédent : 000576; suivant : 000578

Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics

Auteurs : Young-Dan Cho ; Ji-Cheol Shin ; Hye-Lee Kim ; Myagmar Gerelmaa ; Hyung-In Yoon ; Hyun-Mo Ryoo ; Dae-Joon Kim ; Jung-Suk Han

Source :

RBID : PMC:3975406

Abstract

Zirconia is now favored over titanium for use in dental implant materials because of its superior aesthetic qualities. However, zirconia is susceptible to degradation at lower temperatures. In order to address this issue, we have developed modified zirconia implants that contain tantalum oxide or niobium oxide. Cells attached as efficiently to the zirconia implants as to titanium-based materials, irrespective of surface roughness. Cell proliferation on the polished surface was higher than that on the rough surfaces, but the converse was true for the osteogenic response. Cells on yttrium oxide (Y2O3)/tantalum oxide (Ta2O5)- and yttrium oxide (Y2O3)/niobium oxide (Nb2O5)-containing tetragonal zirconia polycrystals (TZP) discs ((Y, Ta)-TZP and (Y, Nb)-TZP, respectively) had a similar proliferative potential as those grown on anodized titanium. The osteogenic potential of MC3T3-E1 pre-osteoblast cells on (Y, Ta)-TZP and (Y, Nb)-TZP was similar to that of cells grown on rough-surface titanium. These data demonstrate that improved zirconia implants, which are resistant to temperature-induced degradation, retain the desirable clinical properties of structural stability and support of an osteogenic response.


Url:
DOI: 10.3390/ijms15034442
PubMed: 24633198
PubMed Central: 3975406

Links to Exploration step

PMC:3975406

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics</title>
<author>
<name sortKey="Cho, Young Dan" sort="Cho, Young Dan" uniqKey="Cho Y" first="Young-Dan" last="Cho">Young-Dan Cho</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-15-04442">Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mail:
<email>hmryoo@snu.ac.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shin, Ji Cheol" sort="Shin, Ji Cheol" uniqKey="Shin J" first="Ji-Cheol" last="Shin">Ji-Cheol Shin</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hye Lee" sort="Kim, Hye Lee" uniqKey="Kim H" first="Hye-Lee" last="Kim">Hye-Lee Kim</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gerelmaa, Myagmar" sort="Gerelmaa, Myagmar" uniqKey="Gerelmaa M" first="Myagmar" last="Gerelmaa">Myagmar Gerelmaa</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Hyung In" sort="Yoon, Hyung In" uniqKey="Yoon H" first="Hyung-In" last="Yoon">Hyung-In Yoon</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryoo, Hyun Mo" sort="Ryoo, Hyun Mo" uniqKey="Ryoo H" first="Hyun-Mo" last="Ryoo">Hyun-Mo Ryoo</name>
<affiliation>
<nlm:aff id="af2-ijms-15-04442">Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mail:
<email>hmryoo@snu.ac.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dae Joon" sort="Kim, Dae Joon" uniqKey="Kim D" first="Dae-Joon" last="Kim">Dae-Joon Kim</name>
<affiliation>
<nlm:aff id="af3-ijms-15-04442">Department of Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea; E-Mail:
<email>djkim@sejong.ac.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Han, Jung Suk" sort="Han, Jung Suk" uniqKey="Han J" first="Jung-Suk" last="Han">Jung-Suk Han</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24633198</idno>
<idno type="pmc">3975406</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975406</idno>
<idno type="RBID">PMC:3975406</idno>
<idno type="doi">10.3390/ijms15034442</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000577</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000577</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics</title>
<author>
<name sortKey="Cho, Young Dan" sort="Cho, Young Dan" uniqKey="Cho Y" first="Young-Dan" last="Cho">Young-Dan Cho</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af2-ijms-15-04442">Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mail:
<email>hmryoo@snu.ac.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shin, Ji Cheol" sort="Shin, Ji Cheol" uniqKey="Shin J" first="Ji-Cheol" last="Shin">Ji-Cheol Shin</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hye Lee" sort="Kim, Hye Lee" uniqKey="Kim H" first="Hye-Lee" last="Kim">Hye-Lee Kim</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Gerelmaa, Myagmar" sort="Gerelmaa, Myagmar" uniqKey="Gerelmaa M" first="Myagmar" last="Gerelmaa">Myagmar Gerelmaa</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Hyung In" sort="Yoon, Hyung In" uniqKey="Yoon H" first="Hyung-In" last="Yoon">Hyung-In Yoon</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryoo, Hyun Mo" sort="Ryoo, Hyun Mo" uniqKey="Ryoo H" first="Hyun-Mo" last="Ryoo">Hyun-Mo Ryoo</name>
<affiliation>
<nlm:aff id="af2-ijms-15-04442">Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mail:
<email>hmryoo@snu.ac.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Dae Joon" sort="Kim, Dae Joon" uniqKey="Kim D" first="Dae-Joon" last="Kim">Dae-Joon Kim</name>
<affiliation>
<nlm:aff id="af3-ijms-15-04442">Department of Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea; E-Mail:
<email>djkim@sejong.ac.kr</email>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Han, Jung Suk" sort="Han, Jung Suk" uniqKey="Han J" first="Jung-Suk" last="Han">Jung-Suk Han</name>
<affiliation>
<nlm:aff id="af1-ijms-15-04442">Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Molecular Sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Zirconia is now favored over titanium for use in dental implant materials because of its superior aesthetic qualities. However, zirconia is susceptible to degradation at lower temperatures. In order to address this issue, we have developed modified zirconia implants that contain tantalum oxide or niobium oxide. Cells attached as efficiently to the zirconia implants as to titanium-based materials, irrespective of surface roughness. Cell proliferation on the polished surface was higher than that on the rough surfaces, but the converse was true for the osteogenic response. Cells on yttrium oxide (Y
<sub>2</sub>
O
<sub>3</sub>
)/tantalum oxide (Ta
<sub>2</sub>
O
<sub>5</sub>
)- and yttrium oxide (Y
<sub>2</sub>
O
<sub>3</sub>
)/niobium oxide (Nb
<sub>2</sub>
O
<sub>5</sub>
)-containing tetragonal zirconia polycrystals (TZP) discs ((Y, Ta)-TZP and (Y, Nb)-TZP, respectively) had a similar proliferative potential as those grown on anodized titanium. The osteogenic potential of MC3T3-E1 pre-osteoblast cells on (Y, Ta)-TZP and (Y, Nb)-TZP was similar to that of cells grown on rough-surface titanium. These data demonstrate that improved zirconia implants, which are resistant to temperature-induced degradation, retain the desirable clinical properties of structural stability and support of an osteogenic response.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Adell, R" uniqKey="Adell R">R. Adell</name>
</author>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U. Lekholm</name>
</author>
<author>
<name sortKey="Rockler, B" uniqKey="Rockler B">B. Rockler</name>
</author>
<author>
<name sortKey="Branemark, P I" uniqKey="Branemark P">P.I. Branemark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adell, R" uniqKey="Adell R">R. Adell</name>
</author>
<author>
<name sortKey="Eriksson, B" uniqKey="Eriksson B">B. Eriksson</name>
</author>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U. Lekholm</name>
</author>
<author>
<name sortKey="Branemark, P I" uniqKey="Branemark P">P.I. Branemark</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T. Jemt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Maeztu, M A" uniqKey="De Maeztu M">M.A. De Maeztu</name>
</author>
<author>
<name sortKey="Braceras, I" uniqKey="Braceras I">I. Braceras</name>
</author>
<author>
<name sortKey="Alava, J I" uniqKey="Alava J">J.I. Alava</name>
</author>
<author>
<name sortKey="Gay Escoda, C" uniqKey="Gay Escoda C">C. Gay-Escoda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, S H" uniqKey="Hsu S">S.H. Hsu</name>
</author>
<author>
<name sortKey="Liu, B S" uniqKey="Liu B">B.S. Liu</name>
</author>
<author>
<name sortKey="Lin, W H" uniqKey="Lin W">W.H. Lin</name>
</author>
<author>
<name sortKey="Chiang, H C" uniqKey="Chiang H">H.C. Chiang</name>
</author>
<author>
<name sortKey="Huang, S C" uniqKey="Huang S">S.C. Huang</name>
</author>
<author>
<name sortKey="Cheng, S S" uniqKey="Cheng S">S.S. Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knabe, C" uniqKey="Knabe C">C. Knabe</name>
</author>
<author>
<name sortKey="Howlett, C R" uniqKey="Howlett C">C.R. Howlett</name>
</author>
<author>
<name sortKey="Klar, F" uniqKey="Klar F">F. Klar</name>
</author>
<author>
<name sortKey="Zreiqat, H" uniqKey="Zreiqat H">H. Zreiqat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knabe, C" uniqKey="Knabe C">C. Knabe</name>
</author>
<author>
<name sortKey="Klar, F" uniqKey="Klar F">F. Klar</name>
</author>
<author>
<name sortKey="Fitzner, R" uniqKey="Fitzner R">R. Fitzner</name>
</author>
<author>
<name sortKey="Radlanski, R J" uniqKey="Radlanski R">R.J. Radlanski</name>
</author>
<author>
<name sortKey="Gross, U" uniqKey="Gross U">U. Gross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Guehennec, L" uniqKey="Le Guehennec L">L. Le Guehennec</name>
</author>
<author>
<name sortKey="Soueidan, A" uniqKey="Soueidan A">A. Soueidan</name>
</author>
<author>
<name sortKey="Layrolle, P" uniqKey="Layrolle P">P. Layrolle</name>
</author>
<author>
<name sortKey="Amouriq, Y" uniqKey="Amouriq Y">Y. Amouriq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mistry, S" uniqKey="Mistry S">S. Mistry</name>
</author>
<author>
<name sortKey="Kundu, D" uniqKey="Kundu D">D. Kundu</name>
</author>
<author>
<name sortKey="Datta, S" uniqKey="Datta S">S. Datta</name>
</author>
<author>
<name sortKey="Basu, D" uniqKey="Basu D">D. Basu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanematu, N" uniqKey="Kanematu N">N. Kanematu</name>
</author>
<author>
<name sortKey="Shibata, K I" uniqKey="Shibata K">K.I. Shibata</name>
</author>
<author>
<name sortKey="Kurenuma, S" uniqKey="Kurenuma S">S. Kurenuma</name>
</author>
<author>
<name sortKey="Watanabe, K" uniqKey="Watanabe K">K. Watanabe</name>
</author>
<author>
<name sortKey="Yamagami, A" uniqKey="Yamagami A">A. Yamagami</name>
</author>
<author>
<name sortKey="Nishio, Y" uniqKey="Nishio Y">Y. Nishio</name>
</author>
<author>
<name sortKey="Fujii, T" uniqKey="Fujii T">T. Fujii</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cunha, C" uniqKey="Cunha C">C. Cunha</name>
</author>
<author>
<name sortKey="Sprio, S" uniqKey="Sprio S">S. Sprio</name>
</author>
<author>
<name sortKey="Panseri, S" uniqKey="Panseri S">S. Panseri</name>
</author>
<author>
<name sortKey="Dapporto, M" uniqKey="Dapporto M">M. Dapporto</name>
</author>
<author>
<name sortKey="Marcacci, M" uniqKey="Marcacci M">M. Marcacci</name>
</author>
<author>
<name sortKey="Tampieri, A" uniqKey="Tampieri A">A. Tampieri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abou Neel, E A" uniqKey="Abou Neel E">E.A. Abou Neel</name>
</author>
<author>
<name sortKey="Knowles, J C" uniqKey="Knowles J">J.C. Knowles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawamura, Y" uniqKey="Kawamura Y">Y. Kawamura</name>
</author>
<author>
<name sortKey="Shibata, T" uniqKey="Shibata T">T. Shibata</name>
</author>
<author>
<name sortKey="Inoue, A" uniqKey="Inoue A">A. Inoue</name>
</author>
<author>
<name sortKey="Masumoto, T" uniqKey="Masumoto T">T. Masumoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pigatto, P D" uniqKey="Pigatto P">P.D. Pigatto</name>
</author>
<author>
<name sortKey="Guzzi, G" uniqKey="Guzzi G">G. Guzzi</name>
</author>
<author>
<name sortKey="Brambilla, L" uniqKey="Brambilla L">L. Brambilla</name>
</author>
<author>
<name sortKey="Sforza, C" uniqKey="Sforza C">C. Sforza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siddiqi, A" uniqKey="Siddiqi A">A. Siddiqi</name>
</author>
<author>
<name sortKey="Payne, A G" uniqKey="Payne A">A.G. Payne</name>
</author>
<author>
<name sortKey="De Silva, R K" uniqKey="De Silva R">R.K. de Silva</name>
</author>
<author>
<name sortKey="Duncan, W J" uniqKey="Duncan W">W.J. Duncan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaur, G" uniqKey="Kaur G">G. Kaur</name>
</author>
<author>
<name sortKey="Pandey, O P" uniqKey="Pandey O">O.P. Pandey</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K. Singh</name>
</author>
<author>
<name sortKey="Homa, D" uniqKey="Homa D">D. Homa</name>
</author>
<author>
<name sortKey="Scott, B" uniqKey="Scott B">B. Scott</name>
</author>
<author>
<name sortKey="Pickrell, G" uniqKey="Pickrell G">G. Pickrell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moller, B" uniqKey="Moller B">B. Moller</name>
</author>
<author>
<name sortKey="Terheyden, H" uniqKey="Terheyden H">H. Terheyden</name>
</author>
<author>
<name sortKey="Acil, Y" uniqKey="Acil Y">Y. Acil</name>
</author>
<author>
<name sortKey="Purcz, N M" uniqKey="Purcz N">N.M. Purcz</name>
</author>
<author>
<name sortKey="Hertrampf, K" uniqKey="Hertrampf K">K. Hertrampf</name>
</author>
<author>
<name sortKey="Tabakov, A" uniqKey="Tabakov A">A. Tabakov</name>
</author>
<author>
<name sortKey="Behrens, E" uniqKey="Behrens E">E. Behrens</name>
</author>
<author>
<name sortKey="Wiltfang, J" uniqKey="Wiltfang J">J. Wiltfang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K. Nakamura</name>
</author>
<author>
<name sortKey="Kanno, T" uniqKey="Kanno T">T. Kanno</name>
</author>
<author>
<name sortKey="Milleding, P" uniqKey="Milleding P">P. Milleding</name>
</author>
<author>
<name sortKey="Ortengren, U" uniqKey="Ortengren U">U. Ortengren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piconi, C" uniqKey="Piconi C">C. Piconi</name>
</author>
<author>
<name sortKey="Maccauro, G" uniqKey="Maccauro G">G. Maccauro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawai, Y" uniqKey="Kawai Y">Y. Kawai</name>
</author>
<author>
<name sortKey="Uo, M" uniqKey="Uo M">M. Uo</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Kono, S" uniqKey="Kono S">S. Kono</name>
</author>
<author>
<name sortKey="Ohnuki, S" uniqKey="Ohnuki S">S. Ohnuki</name>
</author>
<author>
<name sortKey="Watari, F" uniqKey="Watari F">F. Watari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hiromoto, S" uniqKey="Hiromoto S">S. Hiromoto</name>
</author>
<author>
<name sortKey="Tsai, A P" uniqKey="Tsai A">A.P. Tsai</name>
</author>
<author>
<name sortKey="Sumita, M" uniqKey="Sumita M">M. Sumita</name>
</author>
<author>
<name sortKey="Hanawa, T" uniqKey="Hanawa T">T. Hanawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D J" uniqKey="Kim D">D.J. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sennerby, L" uniqKey="Sennerby L">L. Sennerby</name>
</author>
<author>
<name sortKey="Dasmah, A" uniqKey="Dasmah A">A. Dasmah</name>
</author>
<author>
<name sortKey="Larsson, B" uniqKey="Larsson B">B. Larsson</name>
</author>
<author>
<name sortKey="Iverhed, M" uniqKey="Iverhed M">M. Iverhed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Carlo, F" uniqKey="Di Carlo F">F. Di Carlo</name>
</author>
<author>
<name sortKey="Prosper, L" uniqKey="Prosper L">L. Prosper</name>
</author>
<author>
<name sortKey="Ripari, F" uniqKey="Ripari F">F. Ripari</name>
</author>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lughi, V" uniqKey="Lughi V">V. Lughi</name>
</author>
<author>
<name sortKey="Sergo, V" uniqKey="Sergo V">V. Sergo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gremillard, L" uniqKey="Gremillard L">L. Gremillard</name>
</author>
<author>
<name sortKey="Chevalier, J" uniqKey="Chevalier J">J. Chevalier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsui, M" uniqKey="Matsui M">M. Matsui</name>
</author>
<author>
<name sortKey="Soma, T" uniqKey="Soma T">T. Soma</name>
</author>
<author>
<name sortKey="Oda, I" uniqKey="Oda I">I. Oda</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masonis, J L" uniqKey="Masonis J">J.L. Masonis</name>
</author>
<author>
<name sortKey="Bourne, R B" uniqKey="Bourne R">R.B. Bourne</name>
</author>
<author>
<name sortKey="Ries, M D" uniqKey="Ries M">M.D. Ries</name>
</author>
<author>
<name sortKey="Mccalden, R W" uniqKey="Mccalden R">R.W. McCalden</name>
</author>
<author>
<name sortKey="Salehi, A" uniqKey="Salehi A">A. Salehi</name>
</author>
<author>
<name sortKey="Kelman, D C" uniqKey="Kelman D">D.C. Kelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Clarke, I C" uniqKey="Clarke I">I.C. Clarke</name>
</author>
<author>
<name sortKey="Manaka, M" uniqKey="Manaka M">M. Manaka</name>
</author>
<author>
<name sortKey="Green, D D" uniqKey="Green D">D.D. Green</name>
</author>
<author>
<name sortKey="Williams, P" uniqKey="Williams P">P. Williams</name>
</author>
<author>
<name sortKey="Pezzotti, G" uniqKey="Pezzotti G">G. Pezzotti</name>
</author>
<author>
<name sortKey="Kim, Y H" uniqKey="Kim Y">Y.H. Kim</name>
</author>
<author>
<name sortKey="Ries, M" uniqKey="Ries M">M. Ries</name>
</author>
<author>
<name sortKey="Sugano, N" uniqKey="Sugano N">N. Sugano</name>
</author>
<author>
<name sortKey="Sedel, L" uniqKey="Sedel L">L. Sedel</name>
</author>
<author>
<name sortKey="Delauney, C" uniqKey="Delauney C">C. Delauney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D J" uniqKey="Kim D">D.J. Kim</name>
</author>
<author>
<name sortKey="Jung, H J" uniqKey="Jung H">H.J. Jung</name>
</author>
<author>
<name sortKey="Jang, J W" uniqKey="Jang J">J.W. Jang</name>
</author>
<author>
<name sortKey="Lee, H L" uniqKey="Lee H">H.L. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ray, J C" uniqKey="Ray J">J.C. Ray</name>
</author>
<author>
<name sortKey="Panda, A B" uniqKey="Panda A">A.B. Panda</name>
</author>
<author>
<name sortKey="Saha, C R" uniqKey="Saha C">C.R. Saha</name>
</author>
<author>
<name sortKey="Pramanik, P" uniqKey="Pramanik P">P. Pramanik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ray, J C" uniqKey="Ray J">J.C. Ray</name>
</author>
<author>
<name sortKey="Panda, A B" uniqKey="Panda A">A.B. Panda</name>
</author>
<author>
<name sortKey="Pramanik, P" uniqKey="Pramanik P">P. Pramanik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cho, Y D" uniqKey="Cho Y">Y.D. Cho</name>
</author>
<author>
<name sortKey="Yoon, W J" uniqKey="Yoon W">W.J. Yoon</name>
</author>
<author>
<name sortKey="Woo, K M" uniqKey="Woo K">K.M. Woo</name>
</author>
<author>
<name sortKey="Baek, J H" uniqKey="Baek J">J.H. Baek</name>
</author>
<author>
<name sortKey="Lee, G" uniqKey="Lee G">G. Lee</name>
</author>
<author>
<name sortKey="Cho, J Y" uniqKey="Cho J">J.Y. Cho</name>
</author>
<author>
<name sortKey="Ryoo, H M" uniqKey="Ryoo H">H.M. Ryoo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmalz, G" uniqKey="Schmalz G">G. Schmalz</name>
</author>
<author>
<name sortKey="Arenholt Bindslev, D" uniqKey="Arenholt Bindslev D">D. Arenholt-Bindslev</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, L F" uniqKey="Cooper L">L.F. Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rompen, E" uniqKey="Rompen E">E. Rompen</name>
</author>
<author>
<name sortKey="Domken, O" uniqKey="Domken O">O. Domken</name>
</author>
<author>
<name sortKey="Degidi, M" uniqKey="Degidi M">M. Degidi</name>
</author>
<author>
<name sortKey="Pontes, A E" uniqKey="Pontes A">A.E. Pontes</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, D J" uniqKey="Kim D">D.J. Kim</name>
</author>
<author>
<name sortKey="Lee, M H" uniqKey="Lee M">M.H. Lee</name>
</author>
<author>
<name sortKey="Lee, D Y" uniqKey="Lee D">D.Y. Lee</name>
</author>
<author>
<name sortKey="Han, J S" uniqKey="Han J">J.S. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raghavan, S" uniqKey="Raghavan S">S. Raghavan</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Porter, W D" uniqKey="Porter W">W.D. Porter</name>
</author>
<author>
<name sortKey="Dinwiddie, R B" uniqKey="Dinwiddie R">R.B. Dinwiddie</name>
</author>
<author>
<name sortKey="Mayo, M J" uniqKey="Mayo M">M.J. Mayo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalabi, M M" uniqKey="Shalabi M">M.M. Shalabi</name>
</author>
<author>
<name sortKey="Gortemaker, A" uniqKey="Gortemaker A">A. Gortemaker</name>
</author>
<author>
<name sortKey="Van Hof, M A" uniqKey="Van Hof M">M.A. Van’t Hof</name>
</author>
<author>
<name sortKey="Jansen, J A" uniqKey="Jansen J">J.A. Jansen</name>
</author>
<author>
<name sortKey="Creugers, N H" uniqKey="Creugers N">N.H. Creugers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orsini, G" uniqKey="Orsini G">G. Orsini</name>
</author>
<author>
<name sortKey="Assenza, B" uniqKey="Assenza B">B. Assenza</name>
</author>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A. Scarano</name>
</author>
<author>
<name sortKey="Piattelli, M" uniqKey="Piattelli M">M. Piattelli</name>
</author>
<author>
<name sortKey="Piattelli, A" uniqKey="Piattelli A">A. Piattelli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, F X B" uniqKey="Xiao F">F.X.B. Xiao</name>
</author>
<author>
<name sortKey="Liu, R F" uniqKey="Liu R">R.F. Liu</name>
</author>
<author>
<name sortKey="Zheng, Y Z" uniqKey="Zheng Y">Y.Z. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xiao, X F" uniqKey="Xiao X">X.F. Xiao</name>
</author>
<author>
<name sortKey="Liu, R F" uniqKey="Liu R">R.F. Liu</name>
</author>
<author>
<name sortKey="Zheng, Y Z" uniqKey="Zheng Y">Y.Z. Zheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Q H" uniqKey="Jiang Q">Q.H. Jiang</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="Peel, S" uniqKey="Peel S">S. Peel</name>
</author>
<author>
<name sortKey="Yang, G L" uniqKey="Yang G">G.L. Yang</name>
</author>
<author>
<name sortKey="Zhao, S F" uniqKey="Zhao S">S.F. Zhao</name>
</author>
<author>
<name sortKey="He, F M" uniqKey="He F">F.M. He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ong, J L" uniqKey="Ong J">J.L. Ong</name>
</author>
<author>
<name sortKey="Cardenas, H L" uniqKey="Cardenas H">H.L. Cardenas</name>
</author>
<author>
<name sortKey="Cavin, R" uniqKey="Cavin R">R. Cavin</name>
</author>
<author>
<name sortKey="Carnes, D L" uniqKey="Carnes D">D.L. Carnes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, B C" uniqKey="Lee B">B.C. Lee</name>
</author>
<author>
<name sortKey="Yeo, I S" uniqKey="Yeo I">I.S. Yeo</name>
</author>
<author>
<name sortKey="Kim, D J" uniqKey="Kim D">D.J. Kim</name>
</author>
<author>
<name sortKey="Lee, J B" uniqKey="Lee J">J.B. Lee</name>
</author>
<author>
<name sortKey="Kim, S H" uniqKey="Kim S">S.H. Kim</name>
</author>
<author>
<name sortKey="Han, J S" uniqKey="Han J">J.S. Han</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Mol Sci</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Mol Sci</journal-id>
<journal-id journal-id-type="publisher-id">ijms</journal-id>
<journal-title-group>
<journal-title>International Journal of Molecular Sciences</journal-title>
</journal-title-group>
<issn pub-type="epub">1422-0067</issn>
<publisher>
<publisher-name>Molecular Diversity Preservation International (MDPI)</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24633198</article-id>
<article-id pub-id-type="pmc">3975406</article-id>
<article-id pub-id-type="doi">10.3390/ijms15034442</article-id>
<article-id pub-id-type="publisher-id">ijms-15-04442</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cho</surname>
<given-names>Young-Dan</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-15-04442">1</xref>
<xref ref-type="aff" rid="af2-ijms-15-04442">2</xref>
<xref rid="fn1-ijms-15-04442" ref-type="author-notes"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shin</surname>
<given-names>Ji-Cheol</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-15-04442">1</xref>
<xref rid="fn1-ijms-15-04442" ref-type="author-notes"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Hye-Lee</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-15-04442">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Gerelmaa</surname>
<given-names>Myagmar</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-15-04442">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yoon</surname>
<given-names>Hyung-In</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-15-04442">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ryoo</surname>
<given-names>Hyun-Mo</given-names>
</name>
<xref ref-type="aff" rid="af2-ijms-15-04442">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kim</surname>
<given-names>Dae-Joon</given-names>
</name>
<xref ref-type="aff" rid="af3-ijms-15-04442">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Han</surname>
<given-names>Jung-Suk</given-names>
</name>
<xref ref-type="aff" rid="af1-ijms-15-04442">1</xref>
<xref rid="c1-ijms-15-04442" ref-type="corresp">*</xref>
</contrib>
</contrib-group>
<aff id="af1-ijms-15-04442">
<label>1</label>
Department of Prosthodontics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mails:
<email>cacodm@hanmail.net</email>
(Y.-D.C.);
<email>sjcyj@snu.ac.kr</email>
(J.-C.S.);
<email>kim.haley12@gmail.com</email>
(H.-L.K.);
<email>myagmar.gerelmaa@gmail.com</email>
(M.G.);
<email>prosthoyoon@gmail.com</email>
(H.-I.Y.)</aff>
<aff id="af2-ijms-15-04442">
<label>2</label>
Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul 110-749, Korea; E-Mail:
<email>hmryoo@snu.ac.kr</email>
</aff>
<aff id="af3-ijms-15-04442">
<label>3</label>
Department of Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea; E-Mail:
<email>djkim@sejong.ac.kr</email>
</aff>
<author-notes>
<fn id="fn1-ijms-15-04442">
<label></label>
<p>These authors contributed equally to this work.</p>
</fn>
<corresp id="c1-ijms-15-04442">
<label>*</label>
Author to whom correspondence should be addressed; E-Mail:
<email>proshan@snu.ac.kr</email>
or
<email>proshan@unitel.co.kr</email>
; Tel.: +82-2-2072-2661; Fax: +82-2-2072-3860.</corresp>
</author-notes>
<pub-date pub-type="collection">
<month>3</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>13</day>
<month>3</month>
<year>2014</year>
</pub-date>
<volume>15</volume>
<issue>3</issue>
<fpage>4442</fpage>
<lpage>4452</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>1</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>06</day>
<month>3</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>3</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 by the authors; licensee MDPI, Basel, Switzerland</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</ext-link>
).</license-p>
</license>
</permissions>
<abstract>
<p>Zirconia is now favored over titanium for use in dental implant materials because of its superior aesthetic qualities. However, zirconia is susceptible to degradation at lower temperatures. In order to address this issue, we have developed modified zirconia implants that contain tantalum oxide or niobium oxide. Cells attached as efficiently to the zirconia implants as to titanium-based materials, irrespective of surface roughness. Cell proliferation on the polished surface was higher than that on the rough surfaces, but the converse was true for the osteogenic response. Cells on yttrium oxide (Y
<sub>2</sub>
O
<sub>3</sub>
)/tantalum oxide (Ta
<sub>2</sub>
O
<sub>5</sub>
)- and yttrium oxide (Y
<sub>2</sub>
O
<sub>3</sub>
)/niobium oxide (Nb
<sub>2</sub>
O
<sub>5</sub>
)-containing tetragonal zirconia polycrystals (TZP) discs ((Y, Ta)-TZP and (Y, Nb)-TZP, respectively) had a similar proliferative potential as those grown on anodized titanium. The osteogenic potential of MC3T3-E1 pre-osteoblast cells on (Y, Ta)-TZP and (Y, Nb)-TZP was similar to that of cells grown on rough-surface titanium. These data demonstrate that improved zirconia implants, which are resistant to temperature-induced degradation, retain the desirable clinical properties of structural stability and support of an osteogenic response.</p>
</abstract>
<kwd-group>
<kwd>dental implant</kwd>
<kwd>titanium</kwd>
<kwd>zirconia</kwd>
<kwd>LTD</kwd>
<kwd>osteogenic potential</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<label>1.</label>
<title>Introduction</title>
<p>Several types of biomaterials have been used in dental implant studies; among them, titanium has been considered the most useful, as it has excellent mechanical properties and biocompatibility [
<xref rid="b1-ijms-15-04442" ref-type="bibr">1</xref>
,
<xref rid="b2-ijms-15-04442" ref-type="bibr">2</xref>
]. Modification of titanium surfaces via different additive (bioactive coatings) and subtractive processes (acid etching, grit-blasting) can improve osseointegration [
<xref rid="b3-ijms-15-04442" ref-type="bibr">3</xref>
<xref rid="b10-ijms-15-04442" ref-type="bibr">10</xref>
]. Additional trials showed that incorporation of titanium into glass-based biomaterials could enhance biological responses [
<xref rid="b11-ijms-15-04442" ref-type="bibr">11</xref>
,
<xref rid="b12-ijms-15-04442" ref-type="bibr">12</xref>
]. However, titanium’s metallic grayish color sometimes causes aesthetic problems in the anterior part of the dental implantation, as there is insufficient soft tissue to mask the peri-implant region. Furthermore, allergic reactions and sensitivities to titanium have been reported [
<xref rid="b13-ijms-15-04442" ref-type="bibr">13</xref>
,
<xref rid="b14-ijms-15-04442" ref-type="bibr">14</xref>
]. To minimize the soft tissue recession and aesthetic problems, many implant collars based on non-metallic materials have been developed. Tooth-colored and biocompatible ceramic materials or bioactive glass substrates are also potential candidates for novel implants [
<xref rid="b15-ijms-15-04442" ref-type="bibr">15</xref>
]. Alumina is a highly biocompatible ceramic material with good aesthetic properties, but is associated with a high fracture risk. Because of this critical weakness, zirconia was introduced as a titanium alternative [
<xref rid="b16-ijms-15-04442" ref-type="bibr">16</xref>
,
<xref rid="b17-ijms-15-04442" ref-type="bibr">17</xref>
]. Zirconia exists in three phases, monoclinic (M), cubic (C) and tetragonal (T), depending on temperature. M-phase is fragile at room temperature, and therefore requires stabilization to prevent tetragonal (T)-to-monoclinic (M) phase transformation in technical applications [
<xref rid="b18-ijms-15-04442" ref-type="bibr">18</xref>
,
<xref rid="b19-ijms-15-04442" ref-type="bibr">19</xref>
]. A stress-induced transformation toughening mechanism improves the mechanical strength of zirconia, rendering it more suitable as a dental implant material [
<xref rid="b17-ijms-15-04442" ref-type="bibr">17</xref>
,
<xref rid="b20-ijms-15-04442" ref-type="bibr">20</xref>
]. Yttria (Y
<sub>2</sub>
O
<sub>3</sub>
) is used as a general stabilizer for maintaining the T-phase of ZrO
<sub>2</sub>
. Y
<sub>2</sub>
O
<sub>3</sub>
-stabilized tetragonal zirconia polycrystals (Y-TZP) have high strength, toughness, and biocompatibility, and elicit biological responses that are similar to those induced by titanium [
<xref rid="b21-ijms-15-04442" ref-type="bibr">21</xref>
<xref rid="b23-ijms-15-04442" ref-type="bibr">23</xref>
]. Therefore, Y-TZP is considered as a potential titanium alternative. However, zirconia exhibits structural instability upon low temperature degradation (LTD, often referred as “aging”), which is due to tetragonal (T)-to-monoclinic (M) phase transformation in moist or stress conditions [
<xref rid="b24-ijms-15-04442" ref-type="bibr">24</xref>
]. Clearly, this limits the clinical utility of zirconia. Since the T-to-M transformation rate is most rapid at ~250 °C, it was not initially considered as a liability under physiological conditions of 37 °C [
<xref rid="b25-ijms-15-04442" ref-type="bibr">25</xref>
,
<xref rid="b26-ijms-15-04442" ref-type="bibr">26</xref>
]. However, several clinical failures in the use of hip prostheses were subsequently reported [
<xref rid="b25-ijms-15-04442" ref-type="bibr">25</xref>
<xref rid="b29-ijms-15-04442" ref-type="bibr">29</xref>
]. This spurred many efforts to inhibit LTD-dependent phase transformation, including addition of stabilizers such as niobium oxide (Nb
<sub>2</sub>
O
<sub>5</sub>
) [
<xref rid="b30-ijms-15-04442" ref-type="bibr">30</xref>
,
<xref rid="b31-ijms-15-04442" ref-type="bibr">31</xref>
] or tantalum oxide (Ta
<sub>2</sub>
O
<sub>5</sub>
) [
<xref rid="b32-ijms-15-04442" ref-type="bibr">32</xref>
]. Unlike Y
<sub>2</sub>
O
<sub>3</sub>
, alloys of Ta
<sub>2</sub>
O
<sub>5</sub>
or Nb
<sub>2</sub>
O
<sub>5</sub>
contain lower numbers of cations coordinated to oxygen ions, and therefore increase the phase stability of T-ZrO
<sub>2</sub>
[
<xref rid="b30-ijms-15-04442" ref-type="bibr">30</xref>
,
<xref rid="b32-ijms-15-04442" ref-type="bibr">32</xref>
]. Based on these observations, we developed 3Y-TZP co-doped with Nb
<sub>2</sub>
O
<sub>5</sub>
and Ta
<sub>2</sub>
O
<sub>5</sub>
, (Y, Nb)-TZP, and (Y, Ta)-TZP. The purpose of the present study was to evaluate the capacity of these LTD-resistant (Y, Nb)-TZP and (Y, Ta)-TZP biomaterials to support osteogenesis, with a view to using them as replacements for current titanium-based dental implant materials.</p>
</sec>
<sec>
<label>2.</label>
<title>Results and Discussion</title>
<sec>
<label>2.1.</label>
<title>Results</title>
<sec>
<label>2.1.1.</label>
<title>Surface Analysis of the Titanium and Zirconia Discs</title>
<p>The average roughness values (
<italic>R</italic>
<sub>a</sub>
) of the specimens upon investigation with confocal laser microscopy are shown in
<xref rid="f1-ijms-15-04442" ref-type="fig">Figure 1</xref>
. The
<italic>R</italic>
<sub>a</sub>
values of Ti-m and Ti-a were 0.225 μm ± 0.03 (
<xref rid="f1-ijms-15-04442" ref-type="fig">Figure 1A</xref>
) and 0.633 μm ± 0.05 (
<xref rid="f1-ijms-15-04442" ref-type="fig">Figure 1B</xref>
), respectively. As previously reported, we increased surface roughness by modifying the surface using anodizing. The average roughness values of (Y, Nb)-TZP and (Y, Ta)-TZP were 0.092 μm ± 0.001 and 0.096 μm ± 0.001 (data not shown). To increase roughness, we sandblasted the zirconia with alumina spraying. Sandblasting with 50-μm alumina (Al
<sub>2</sub>
O
<sub>3</sub>
) at 1 bar pressure for 1 min created a rougher surface on the (Y, Ta)-TZP material when compared with (Y, Nb)-TZP (data not shown). To equalize the roughness, (Y, Nb)-TZP was instead subjected to 50 μm alumina (Al
<sub>2</sub>
O
<sub>3</sub>
) sandblasting with 2 bar for 1 min. This led to an
<italic>R</italic>
<sub>a</sub>
of 0.819 μm ± 0.05 for (Y, Nb)-TZP (
<xref rid="f1-ijms-15-04442" ref-type="fig">Figure 1C</xref>
) and 0.880 μm ± 0.06 for (Y, Ta)-TZP (
<xref rid="f1-ijms-15-04442" ref-type="fig">Figure 1D</xref>
).</p>
<p>The surface morphology of specimens was different. Machined Ti (Ti-m) has grooves because of the grinding operation (
<xref rid="f2-ijms-15-04442" ref-type="fig">Figure 2A</xref>
). After anodizing, the roughness of Ti significantly increased (
<xref rid="f2-ijms-15-04442" ref-type="fig">Figure 2B</xref>
). The surface of anodized Ti (Ti-a) was porous with patterned micrographs due to the presence of crystalline structures in the form of rutile and anatase (
<xref rid="f2-ijms-15-04442" ref-type="fig">Figure 2B</xref>
). The surface morphologies of (Y, Nb)-TZP (
<xref rid="f2-ijms-15-04442" ref-type="fig">Figure 2C</xref>
) and (Y, Ta)-TZP (
<xref rid="f2-ijms-15-04442" ref-type="fig">Figure 2D</xref>
) were similar, as each exhibited irregular rough patterns. These results were in good agreement with their average roughness (
<xref rid="f1-ijms-15-04442" ref-type="fig">Figure 1</xref>
).</p>
</sec>
<sec>
<label>2.1.2.</label>
<title>Cell Attachment and Morphology</title>
<p>Twenty-four hours after MC3T3-E1 pre-osteoblast cells were seeded onto the discs, cell attachment and morphology were examined using confocal laser microscopy (
<xref rid="f3-ijms-15-04442" ref-type="fig">Figure 3</xref>
). Generally, cells that adhered to the polished surface showed a regular, even size morphology (
<xref rid="f3-ijms-15-04442" ref-type="fig">Figure 3A</xref>
); however, surface roughness produced by anodizing or sandblasting induced slight morphologic irregularities and unequal cell sizes (
<xref rid="f3-ijms-15-04442" ref-type="fig">Figure 3B–D</xref>
). This appears to be due to the surface roughness caused by uneven grooves. There was little difference in the proportion of cells with flat morphology between samples grown on titanium and those grown on zirconia, regardless of surface roughness.</p>
</sec>
<sec>
<label>2.1.3.</label>
<title>Cellular Proliferation</title>
<p>A PicoGreen assay was performed to examine cellular proliferation. Cells were cultured on the discs and harvested after 1, 3 and 7 day (
<xref rid="f4-ijms-15-04442" ref-type="fig">Figure 4</xref>
). The proliferation rate increased for the first 3 day, and declined thereafter. Cells on the polished surface (Ti-m) proliferated more rapidly than those on the rough surface discs (Ti-a, (Y, Nb)-TZP and (Y, Ta)-TZP), whereas there was no significant difference between cells grown on Ti-a, (Y, Nb)-TZP and (Y, Ta)-TZP. These results also indicate that the zirconia stabilizers niobium (Nb
<sub>2</sub>
O
<sub>5</sub>
) and tantalum (Ta
<sub>2</sub>
O
<sub>5</sub>
) are non-toxic to cells and that both (Y, Nb)-TZP and (Y, Ta)-TZP are biocompatible materials.</p>
</sec>
<sec>
<label>2.1.4.</label>
<title>Osteoblast Differentiation</title>
<p>MC3T3-E1 cells were seeded onto the discs and cultured in osteogenic media. Cells were harvested at 3, 7, and 10 day. We performed molecular profiling of osteoblast differentiation by using real-time PCR (
<xref rid="f5-ijms-15-04442" ref-type="fig">Figure 5</xref>
). The expression of osteoblast differentiation marker genes,
<italic>type I collagen</italic>
(
<xref rid="f5-ijms-15-04442" ref-type="fig">Figure 5A</xref>
),
<italic>alkaline phosphatase</italic>
(
<italic>Alp</italic>
) (
<xref rid="f5-ijms-15-04442" ref-type="fig">Figure 5B</xref>
), and
<italic>osteocalcin</italic>
(
<italic>Oc</italic>
) (
<xref rid="f5-ijms-15-04442" ref-type="fig">Figure 5C</xref>
) was consistent with the differentiation patterns we have previously described [
<xref rid="b33-ijms-15-04442" ref-type="bibr">33</xref>
]. However, there was some variation in the degree of osteoblast differentiation. Cells remained largely undifferentiated on polished surface Ti-m, whereas there was greater differentiation on all the Ti-a, (Y, Nb)-TZP and (Y, Ta)-TZP rough surface discs. The expression profile of differentiation-associated markers was not significantly different between cells grown on the various rough surface discs.</p>
</sec>
</sec>
<sec>
<label>2.2.</label>
<title>Discussion</title>
<p>Biomaterials for dental implants have to meet the requirement of biocompatibility (e.g., low cellular cytotoxicity, efficient attachment, and support of proliferation and differentiation) [
<xref rid="b34-ijms-15-04442" ref-type="bibr">34</xref>
]. Besides, surface topography, energy and chemical property play an important role in response of cells grown on biomaterials [
<xref rid="b35-ijms-15-04442" ref-type="bibr">35</xref>
,
<xref rid="b36-ijms-15-04442" ref-type="bibr">36</xref>
]. Although many reports have focused on the structural stability and strength of modified zirconia ((Y, Nb)-TZP and (Y, Ta)-TZP) [
<xref rid="b37-ijms-15-04442" ref-type="bibr">37</xref>
,
<xref rid="b38-ijms-15-04442" ref-type="bibr">38</xref>
], few studies have addressed whether the osteogenic response on (Y, Nb)-TZP and (Y, Ta)-TZP is different when compared to traditional titanium implants. In our study, we show that the serious limitation of LTD-dependent destabilization is compensated by addition of either niobium (Nb
<sub>2</sub>
O
<sub>5</sub>
) or tantalum (Ta
<sub>2</sub>
O
<sub>5</sub>
). As previous studies showed that bone-to-implant surface contact was improved by increasing surface roughness [
<xref rid="b39-ijms-15-04442" ref-type="bibr">39</xref>
], we opted to induce surface roughness by sandblasting with alumina particles (Al
<sub>2</sub>
O
<sub>3</sub>
). This process clearly enhanced increased surface roughness, as is also observed following the anodizing procedure. Although this rough surface induced cell morphological irregularities, cell attachment was equivalent between titanium and zirconia, regardless of surface roughness (
<xref rid="f3-ijms-15-04442" ref-type="fig">Figure 3</xref>
). Orsini and colleagues suggested that morphologic irregularities in sandblasted and acid-etched implants improve initial cell anchorage, thereby providing better osseointegration [
<xref rid="b40-ijms-15-04442" ref-type="bibr">40</xref>
]. Similarly, our data indicated that morphologic irregularities in the rough surfaces (Ti-a, (Y, Nb)-TZP and (Y, Ta)-TZP) (
<xref rid="f3-ijms-15-04442" ref-type="fig">Figure 3</xref>
) improve the osteogenic response (
<xref rid="f5-ijms-15-04442" ref-type="fig">Figure 5</xref>
). Cellular proliferation is facilitated by polished surface material (Ti-m) (
<xref rid="f4-ijms-15-04442" ref-type="fig">Figure 4</xref>
); on the other hand, osteoblast differentiation is predominant in the rough surfaces Ti-a, (Y, Nb)-TZP and (Y, Ta)-TZP), which was confirmed by robust expression of differentiation-associated genes (
<xref rid="f5-ijms-15-04442" ref-type="fig">Figure 5</xref>
). Osteoblasts are specialized fibroblasts that secrete and mineralize the bone matrix, which contains a high proportion of type I collagen. Osteoblast differentiation proceeds through the three stages of cellular proliferation, matrix maturation, and matrix mineralization. During the initiation stage, genes that encode extracellular matrix proteins (procollagen I and fibronectin) are highly expressed. At the matrix maturation phase (around 7 day culture in the osteogenic media) alkaline phosphatase expression is at its peak, and by the beginning of matrix mineralization, genes encoding osteocalcin, bone sialoprotein, and osteopontin are expressed [
<xref rid="b33-ijms-15-04442" ref-type="bibr">33</xref>
]. Based on the similar osteogenic potential and gene expression profiles we observed between titanium and modified zirconia discs, we are currently exploring strategies to enhance osteogenic potential by using zirconia implants coated with biomolecules such as the pro-osteogenic factors hydroxyapatite or BMP-2 [
<xref rid="b7-ijms-15-04442" ref-type="bibr">7</xref>
,
<xref rid="b41-ijms-15-04442" ref-type="bibr">41</xref>
<xref rid="b45-ijms-15-04442" ref-type="bibr">45</xref>
].</p>
</sec>
</sec>
<sec>
<label>3.</label>
<title>Experimental Section</title>
<sec>
<label>3.1.</label>
<title>Specimen Preparation</title>
<p>Pure titanium specimens were prepared in disc shapes (25 mm diameter and 1 mm thickness) through machining (Ti-m, Ti-machined) and treated by anodizing (Ti-a, Ti-anodizing) (OnePlant System, Warrantec Co., Ltd., Seoul, Korea). For the preparation of zirconia specimens, powders of 90.6 mol % ZrO
<sub>2</sub>
, 5.3 mol % Y
<sub>2</sub>
O
<sub>3</sub>
, and 4.1 mol % of Nb
<sub>2</sub>
O
<sub>5</sub>
were mixed for (Y, Nb)-TZP and those of 86.2 mol % ZrO
<sub>2</sub>
, 7.2 mol % Y
<sub>2</sub>
O
<sub>3</sub>
, and 6.4 mol % Ta
<sub>2</sub>
O
<sub>5</sub>
were mixed for (Y, Ta)-YZP. Disc-shaped green compacts (15 mm diameter and 1 mm thickness) were prepared by cold isostatic press of the powder mixtures at 200 MPa and then sintered for 5 h at 1650 °C in air. All zirconia discs were gradually polished and finished with diamond pastes to acquire a mirror-like surface. After polishing, (Y, Ta)-TZP and (Y, Nb)-TZP were sandblasted with 50-μm alumina (Al
<sub>2</sub>
O
<sub>3</sub>
) for 1 min with 1 or 2 bar pressure, respectively in order to create a rough surface.</p>
</sec>
<sec>
<label>3.2.</label>
<title>Surface Roughness Assessment</title>
<p>The average surface roughness (
<italic>R</italic>
<sub>a</sub>
) and surface topography were measured using a confocal laser microscope (Carl Zeiss, Oberkochen, Germany). Surface morphology of specimens was observed using a scanning electron microscope (HITACHI S-4700 and JEOL, Tokyo, Japan) after sputter coating with platinum (Pt).</p>
</sec>
<sec>
<label>3.3.</label>
<title>Cell Culture</title>
<p>Mouse pre-osteoblast MC3T3-E1 cells were purchased from ATCC (Manassas, VA, USA) and seeded on the discs and cultured in α-minimal essential medium (α-MEM), which contains 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Osteogenic media includes 10 mM β-glycerophosphate and 50 μg/mL ascorbic acid.</p>
</sec>
<sec>
<label>3.4.</label>
<title>Cell Attachment Observation</title>
<p>Confocal microscopy observation was performed. Cells on the discs were fixed in 4% formaldehyde and 4′,6-diamidino-2-phenylindole (DAPI, Invitrogen, Carlsbad, CA, USA) was used for detection of cell nuclei, and Alexa Fluor 568 phalloidin (Invitrogen, Carlsbad, CA, USA) was used for detection of the cytoskeleton. Fluorescence was visualized with a Carl Zeiss LSM700 microscope and analyzed with ZEN2011 software (Carl Zeiss, Oberkochen, Germany).</p>
</sec>
<sec>
<label>3.5.</label>
<title>Cell Proliferation Assay</title>
<p>PicoGreen assay was performed using the Quant-iT PicoGreen assay kit (Invitrogen Ltd., Paisley, UK) at 1, 4, and 7 day after seeding cells on the discs. Cells were washed with PBS and lysed using TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5). The DNA contents were determined by mixing 100 μL of PicoGreen reagent and 100 μL of DNA sample. Samples were loaded in triplicate and florescence intensity was measured on a GloMax-Multi Detection System machine (Promega, Madison, WI, USA). Florescence intensity was converted into DNA concentration with the DNA standard curve per the manufacturer’s instructions. Values are represented mean ± SD of three independent measurements.</p>
</sec>
<sec>
<label>3.6.</label>
<title>Reverse-Transcription PCR and Quantitative Real-Time PCR</title>
<p>Cells were harvested at 3, 7, and 10 day of osteoblast differentiation and RNA was isolated using QIAzol lysis reagent (QIAGEN, Valencia, CA, USA). The Primescript RT reagent kit for reverse transcription was purchased from TAKARA (Takara Bio, Shiga, Japan). Quantitative real-time PCR was performed with the primer sets for the type I collagen gene, alkaline phosphatase (
<italic>Alp</italic>
), and osteocalcin (
<italic>Oc</italic>
) as previously described [
<xref rid="b33-ijms-15-04442" ref-type="bibr">33</xref>
]. Quantitative real-time PCR was performed using Takara SYBR premix Ex Taq (Takara Bio, Shiga, Japan) on Applied Biosystems 7500 Real Time PCR system (Foster City, CA, USA). PCR primers were synthesized by Integrated DNA technology (IDT; Coralville, IA, USA). All samples were run in duplicate, and the relative levels of mRNA were normalized to those of glyceraldehyde-3-phosphate dehydrogenase (
<italic>Gapdh</italic>
).</p>
</sec>
<sec>
<label>3.7.</label>
<title>Statistical Analysis</title>
<p>All quantitative data are presented as the mean ± SD, each experiment was performed at least three times, and the results from one representative experiment are shown. Significant differences were analyzed using ANOVA-test. A value of
<italic>p</italic>
< 0.05 was considered statistically significant.</p>
</sec>
</sec>
<sec sec-type="conclusions">
<label>4.</label>
<title>Conclusions</title>
<p>This
<italic>in vitro</italic>
study demonstrates that the osteogenic response of cells grown on (Y, Nb)-TZP and (Y, Ta)-TZP substrates is comparable to that observed on titanium, which is widely used in dental implant materials. By compensating the LTD weakness using stabilizers such as niobium oxide (Nb
<sub>2</sub>
O
<sub>5</sub>
) or tantalum oxide (Ta
<sub>2</sub>
O
<sub>5</sub>
), zirconia is therefore a viable substitute for titanium in terms of both structural stability and biocompatibility. Future studies are now required to determine the
<italic>in vivo</italic>
efficacy of zirconia implants with respect to osseointegration.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This work was supported by the Technology Innovation Program (10043164) funded by the Ministry of Trade, industry & Energy (MI, Seoul, Korea) & the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0024170).</p>
</ack>
<notes>
<title>Conflicts of Interest</title>
<p>The authors declare no conflict of interest.</p>
</notes>
<ref-list>
<title>References</title>
<ref id="b1-ijms-15-04442">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adell</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lekholm</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Rockler</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Branemark</surname>
<given-names>P.I.</given-names>
</name>
</person-group>
<article-title>A 15-year study of osseointegrated implants in the treatment of the edentulous jaw</article-title>
<source>Int. J. Oral Surg.</source>
<year>1981</year>
<volume>10</volume>
<fpage>387</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="pmid">6809663</pub-id>
</element-citation>
</ref>
<ref id="b2-ijms-15-04442">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Adell</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eriksson</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lekholm</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Branemark</surname>
<given-names>P.I.</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws</article-title>
<source>Int. J. Oral Maxillofac. Implant.</source>
<year>1990</year>
<volume>5</volume>
<fpage>347</fpage>
<lpage>359</lpage>
</element-citation>
</ref>
<ref id="b3-ijms-15-04442">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Maeztu</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Braceras</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Alava</surname>
<given-names>J.I.</given-names>
</name>
<name>
<surname>Gay-Escoda</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Improvement of osseointegration of titanium dental implant surfaces modified with co ions: A comparative histomorphometric study in beagle dogs</article-title>
<source>Int. J. Oral Maxillofac. Surg.</source>
<year>2008</year>
<volume>37</volume>
<fpage>441</fpage>
<lpage>447</lpage>
<pub-id pub-id-type="pmid">18339518</pub-id>
</element-citation>
</ref>
<ref id="b4-ijms-15-04442">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>W.H.</given-names>
</name>
<name>
<surname>Chiang</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.S.</given-names>
</name>
</person-group>
<article-title>Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface</article-title>
<source>Bio-Med. Mater. Eng.</source>
<year>2007</year>
<volume>17</volume>
<fpage>53</fpage>
<lpage>68</lpage>
</element-citation>
</ref>
<ref id="b5-ijms-15-04442">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knabe</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Howlett</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Klar</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Zreiqat</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells</article-title>
<source>J. Biomed. Mater. Res. Part A</source>
<year>2004</year>
<volume>71</volume>
<fpage>98</fpage>
<lpage>107</lpage>
</element-citation>
</ref>
<ref id="b6-ijms-15-04442">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knabe</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Klar</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fitzner</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Radlanski</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Gross</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
investigation of titanium and hydroxyapatite dental implant surfaces using a rat bone marrow stromal cell culture system</article-title>
<source>Biomaterials</source>
<year>2002</year>
<volume>23</volume>
<fpage>3235</fpage>
<lpage>3245</lpage>
<pub-id pub-id-type="pmid">12102195</pub-id>
</element-citation>
</ref>
<ref id="b7-ijms-15-04442">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le Guehennec</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Soueidan</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Layrolle</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Amouriq</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Surface treatments of titanium dental implants for rapid osseointegration</article-title>
<source>Dent. Mater.</source>
<year>2007</year>
<volume>23</volume>
<fpage>844</fpage>
<lpage>854</lpage>
<pub-id pub-id-type="pmid">16904738</pub-id>
</element-citation>
</ref>
<ref id="b8-ijms-15-04442">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mistry</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kundu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Datta</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Basu</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone</article-title>
<source>Aust. Dent. J.</source>
<year>2011</year>
<volume>56</volume>
<fpage>68</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="pmid">21332743</pub-id>
</element-citation>
</ref>
<ref id="b9-ijms-15-04442">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kanematu</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Kurenuma</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watanabe</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yamagami</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Nishio</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Cytotoxicity of oxide anodized titanium alloy evaluated by cell and organic culture study</article-title>
<source>Gifu Shika Gakkai Zasshi</source>
<year>1990</year>
<volume>17</volume>
<fpage>583</fpage>
<lpage>591</lpage>
<pub-id pub-id-type="pmid">2133670</pub-id>
</element-citation>
</ref>
<ref id="b10-ijms-15-04442">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cunha</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Sprio</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Panseri</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Dapporto</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Marcacci</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tampieri</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>High biocompatibility and improved osteogenic potential of novel ca-p/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects</article-title>
<source>J. Biomed. Mater. Res. Part A</source>
<year>2013</year>
<volume>101</volume>
<fpage>1612</fpage>
<lpage>1619</lpage>
</element-citation>
</ref>
<ref id="b11-ijms-15-04442">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abou Neel</surname>
<given-names>E.A.</given-names>
</name>
<name>
<surname>Knowles</surname>
<given-names>J.C.</given-names>
</name>
</person-group>
<article-title>Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications</article-title>
<source>J. Mater. Sci. Mater. Med.</source>
<year>2008</year>
<volume>19</volume>
<fpage>377</fpage>
<lpage>386</lpage>
<pub-id pub-id-type="pmid">17607512</pub-id>
</element-citation>
</ref>
<ref id="b12-ijms-15-04442">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Shibata</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Masumoto</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Workability of the supercooled liquid in the zr65al10ni10cu15 bulk metallic glass</article-title>
<source>Acta Mater.</source>
<year>1998</year>
<volume>46</volume>
<fpage>253</fpage>
<lpage>263</lpage>
</element-citation>
</ref>
<ref id="b13-ijms-15-04442">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pigatto</surname>
<given-names>P.D.</given-names>
</name>
<name>
<surname>Guzzi</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Brambilla</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sforza</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Titanium allergy associated with dental implant failure</article-title>
<source>Clin. Oral Implant. Res.</source>
<year>2009</year>
<volume>20</volume>
<fpage>857</fpage>
</element-citation>
</ref>
<ref id="b14-ijms-15-04442">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Siddiqi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>de Silva</surname>
<given-names>R.K.</given-names>
</name>
<name>
<surname>Duncan</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Titanium allergy: Could it affect dental implant integration?</article-title>
<source>Clin. Oral Implant. Res.</source>
<year>2011</year>
<volume>22</volume>
<fpage>673</fpage>
<lpage>680</lpage>
</element-citation>
</ref>
<ref id="b15-ijms-15-04442">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaur</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Pandey</surname>
<given-names>O.P.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Homa</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Pickrell</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>A review of bioactive glasses: Their structure properties fabrication and apatite formation</article-title>
<source>J. Biomed. Mater. Res. Part A</source>
<year>2013</year>
<pub-id pub-id-type="doi">10.1002/jbm.a.34690</pub-id>
</element-citation>
</ref>
<ref id="b16-ijms-15-04442">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moller</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Terheyden</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Acil</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Purcz</surname>
<given-names>N.M.</given-names>
</name>
<name>
<surname>Hertrampf</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Tabakov</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Behrens</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Wiltfang</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>A comparison of biocompatibility and osseointegration of ceramic and titanium implants: An
<italic>in vivo</italic>
and
<italic>in vitro</italic>
study</article-title>
<source>Int. J. Oral Maxillofac. Surg.</source>
<year>2012</year>
<volume>41</volume>
<fpage>638</fpage>
<lpage>645</lpage>
<pub-id pub-id-type="pmid">22406235</pub-id>
</element-citation>
</ref>
<ref id="b17-ijms-15-04442">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kanno</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Milleding</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Ortengren</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Zirconia as a dental implant abutment material: A systematic review</article-title>
<source>Int. J. Prosthodont.</source>
<year>2010</year>
<volume>23</volume>
<fpage>299</fpage>
<lpage>309</lpage>
<pub-id pub-id-type="pmid">20617217</pub-id>
</element-citation>
</ref>
<ref id="b18-ijms-15-04442">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piconi</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Maccauro</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Zirconia as a ceramic biomaterial</article-title>
<source>Biomaterials</source>
<year>1999</year>
<volume>20</volume>
<fpage>1</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">9916767</pub-id>
</element-citation>
</ref>
<ref id="b19-ijms-15-04442">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Uo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kono</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ohnuki</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watari</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Phase transformation of zirconia ceramics by hydrothermal degradation</article-title>
<source>Dent. Mater. J.</source>
<year>2011</year>
<volume>30</volume>
<fpage>286</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="pmid">21597215</pub-id>
</element-citation>
</ref>
<ref id="b20-ijms-15-04442">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiromoto</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Sumita</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hanawa</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Effect of chloride ion on the anodic polarization behavior of the zr65al75ni10cu175 amorphous alloy in phosphate buffered solution</article-title>
<source>Corros. Sci.</source>
<year>2000</year>
<volume>42</volume>
<fpage>1651</fpage>
<lpage>1660</lpage>
</element-citation>
</ref>
<ref id="b21-ijms-15-04442">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.J.</given-names>
</name>
</person-group>
<article-title>Effect of Ta
<sub>2</sub>
o
<sub>5</sub>
Nb
<sub>2</sub>
O
<sub>5</sub>
and HfO
<sub>2</sub>
alloying on the transformability of Y
<sub>2</sub>
O
<sub>3</sub>
-stabilized tetragonal ZrO
<sub>2</sub>
</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1990</year>
<volume>73</volume>
<fpage>115</fpage>
<lpage>120</lpage>
</element-citation>
</ref>
<ref id="b22-ijms-15-04442">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sennerby</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dasmah</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Larsson</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Iverhed</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit</article-title>
<source>Clin. Implant. Dent. Relat. Res.</source>
<year>2005</year>
<volume>7</volume>
<fpage>S13</fpage>
<lpage>S20</lpage>
<pub-id pub-id-type="pmid">16137083</pub-id>
</element-citation>
</ref>
<ref id="b23-ijms-15-04442">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Carlo</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Prosper</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ripari</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Bone response to zirconia ceramic implants: An experimental study in rabbit</article-title>
<source>J. Oral Implantol.</source>
<year>2000</year>
<volume>29</volume>
<fpage>8</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">12614079</pub-id>
</element-citation>
</ref>
<ref id="b24-ijms-15-04442">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lughi</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Sergo</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry</article-title>
<source>Dent. Mater.</source>
<year>2010</year>
<volume>26</volume>
<fpage>807</fpage>
<lpage>820</lpage>
<pub-id pub-id-type="pmid">20537701</pub-id>
</element-citation>
</ref>
<ref id="b25-ijms-15-04442">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gremillard</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chevalier</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Durability of zirconia-based ceramics and composites for total hip replacement</article-title>
<source>Key Eng. Mater.</source>
<year>2008</year>
<volume>361–363</volume>
<fpage>791</fpage>
<lpage>794</lpage>
</element-citation>
</ref>
<ref id="b26-ijms-15-04442">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Soma</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Oda</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Stress-induced transformation and plastic deformation for Y203-containing tetragonal zirconia polycrystals</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1986</year>
<volume>69</volume>
<fpage>198</fpage>
<lpage>202</lpage>
</element-citation>
</ref>
<ref id="b27-ijms-15-04442">
<label>27.</label>
<element-citation publication-type="journal">
<collab>United States Food and Drug Administration</collab>
<article-title>Recall of zirconia ceramic femoral heads for hip implants</article-title>
<source>Am. Ceram. Soc. Bull.</source>
<year>2001</year>
<volume>80</volume>
<fpage>14</fpage>
<lpage>15</lpage>
</element-citation>
</ref>
<ref id="b28-ijms-15-04442">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masonis</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Bourne</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Ries</surname>
<given-names>M.D.</given-names>
</name>
<name>
<surname>McCalden</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Salehi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kelman</surname>
<given-names>D.C.</given-names>
</name>
</person-group>
<article-title>Zirconia femoral head fractures: A clinical and retrieval analysis</article-title>
<source>J. Arthroplast.</source>
<year>2004</year>
<volume>19</volume>
<fpage>898</fpage>
<lpage>905</lpage>
</element-citation>
</ref>
<ref id="b29-ijms-15-04442">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Clarke</surname>
<given-names>I.C.</given-names>
</name>
<name>
<surname>Manaka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>D.D.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Pezzotti</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Ries</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Sugano</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sedel</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Delauney</surname>
<given-names>C.</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Current status of zirconia used in total hip implants</article-title>
<source>J. Bone Jt. Surg. Am.</source>
<year>2003</year>
<volume>85-A</volume>
<fpage>73</fpage>
<lpage>84</lpage>
</element-citation>
</ref>
<ref id="b30-ijms-15-04442">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Jang</surname>
<given-names>J.W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>H.L.</given-names>
</name>
</person-group>
<article-title>Fracture toughness ionic conductivity and low-temperature phase stability of tetragonal zirconia codoped with yttria and niobium oxide</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>1998</year>
<volume>81</volume>
<fpage>2309</fpage>
<lpage>2314</lpage>
</element-citation>
</ref>
<ref id="b31-ijms-15-04442">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ray</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Panda</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Saha</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Pramanik</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Synthesis of niobium(v)-stabilized tetragonal zirconia nanocrystalline powders</article-title>
<source>J. Am. Ceram. Soc.</source>
<year>2003</year>
<volume>86</volume>
<fpage>514</fpage>
<lpage>516</lpage>
</element-citation>
</ref>
<ref id="b32-ijms-15-04442">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ray</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Panda</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Pramanik</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Chemical synthesis of nanocrystals of tantalum ion-doped tetragonal zirconia</article-title>
<source>Mater. Lett.</source>
<year>2002</year>
<volume>53</volume>
<fpage>145</fpage>
<lpage>150</lpage>
</element-citation>
</ref>
<ref id="b33-ijms-15-04442">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cho</surname>
<given-names>Y.D.</given-names>
</name>
<name>
<surname>Yoon</surname>
<given-names>W.J.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Baek</surname>
<given-names>J.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cho</surname>
<given-names>J.Y.</given-names>
</name>
<name>
<surname>Ryoo</surname>
<given-names>H.M.</given-names>
</name>
</person-group>
<article-title>Molecular regulation of matrix extracellular phosphoglycoprotein expression by bone morphogenetic protein-2</article-title>
<source>J. Biol. Chem.</source>
<year>2009</year>
<volume>284</volume>
<fpage>25230</fpage>
<lpage>25240</lpage>
<pub-id pub-id-type="pmid">19617624</pub-id>
</element-citation>
</ref>
<ref id="b34-ijms-15-04442">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmalz</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Arenholt-Bindslev</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Biocompatibility of dental materials</article-title>
<source>Dent. Clin. N. Am.</source>
<year>2007</year>
<volume>51</volume>
<fpage>747</fpage>
<lpage>760</lpage>
<pub-id pub-id-type="pmid">17586154</pub-id>
</element-citation>
</ref>
<ref id="b35-ijms-15-04442">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cooper</surname>
<given-names>L.F.</given-names>
</name>
</person-group>
<article-title>A role for surface topography in creating and maintaining bone at titanium endosseous implants</article-title>
<source>J. Prosthet. Dent.</source>
<year>2000</year>
<volume>84</volume>
<fpage>522</fpage>
<lpage>534</lpage>
<pub-id pub-id-type="pmid">11105008</pub-id>
</element-citation>
</ref>
<ref id="b36-ijms-15-04442">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rompen</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Domken</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Degidi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pontes</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>The effect of material characteristics of surface topography and of implant components and connections on soft tissue integration: A literature review</article-title>
<source>Clin. Oral Implant. Res.</source>
<year>2006</year>
<volume>17</volume>
<fpage>55</fpage>
<lpage>67</lpage>
</element-citation>
</ref>
<ref id="b37-ijms-15-04442">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.H.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>D.Y.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Mechanical properties phase stability and biocompatibility of (YNb)-TZP/Al
<sub>2</sub>
O
<sub>3</sub>
composite abutments for dental implant</article-title>
<source>J. Biomed. Mater. Res.</source>
<year>2000</year>
<volume>53</volume>
<fpage>438</fpage>
<lpage>443</lpage>
<pub-id pub-id-type="pmid">10898886</pub-id>
</element-citation>
</ref>
<ref id="b38-ijms-15-04442">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raghavan</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>W.D.</given-names>
</name>
<name>
<surname>Dinwiddie</surname>
<given-names>R.B.</given-names>
</name>
<name>
<surname>Mayo</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>Thermal properties of zirconia co-doped with trivalent and pentavalent oxides</article-title>
<source>Acta Mater.</source>
<year>2001</year>
<volume>49</volume>
<fpage>169</fpage>
<lpage>179</lpage>
</element-citation>
</ref>
<ref id="b39-ijms-15-04442">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalabi</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Gortemaker</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Van’t Hof</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Creugers</surname>
<given-names>N.H.</given-names>
</name>
</person-group>
<article-title>Implant surface roughness and bone healing: A systematic review</article-title>
<source>J. Dent. Res.</source>
<year>2006</year>
<volume>85</volume>
<fpage>496</fpage>
<lpage>500</lpage>
<pub-id pub-id-type="pmid">16723643</pub-id>
</element-citation>
</ref>
<ref id="b40-ijms-15-04442">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orsini</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Assenza</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Scarano</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Surface analysis of machined
<italic>versus</italic>
sandblasted and acid-etched titanium implants</article-title>
<source>Int. J. Oral Maxillofac. Implant.</source>
<year>2000</year>
<volume>15</volume>
<fpage>779</fpage>
<lpage>784</lpage>
</element-citation>
</ref>
<ref id="b41-ijms-15-04442">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>F.X.B.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y.Z.</given-names>
</name>
</person-group>
<article-title>Hydoxyapatite/titanium composite coating prepared by hydrothermal-electrochemical technique</article-title>
<source>Mater. Lett.</source>
<year>2005</year>
<volume>59</volume>
<fpage>1660</fpage>
<lpage>1664</lpage>
</element-citation>
</ref>
<ref id="b42-ijms-15-04442">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xiao</surname>
<given-names>X.F.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>R.F.</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>Y.Z.</given-names>
</name>
</person-group>
<article-title>Hydrothermal-electrochemical codeposited hydoxyapatite/yttria-stabilized zirconia composite coating</article-title>
<source>J. Mater. Sci.</source>
<year>2006</year>
<volume>41</volume>
<fpage>3417</fpage>
<lpage>3424</lpage>
</element-citation>
</ref>
<ref id="b43-ijms-15-04442">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>Q.H.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Peel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>S.F.</given-names>
</name>
<name>
<surname>He</surname>
<given-names>F.M.</given-names>
</name>
</person-group>
<article-title>Bone response to the multilayer BMP-2 gene coated porous titanium implant surface</article-title>
<source>Clin. Oral Implant. Res.</source>
<year>2013</year>
<volume>24</volume>
<fpage>853</fpage>
<lpage>861</lpage>
</element-citation>
</ref>
<ref id="b44-ijms-15-04442">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ong</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Cardenas</surname>
<given-names>H.L.</given-names>
</name>
<name>
<surname>Cavin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Carnes</surname>
<given-names>D.L.</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Osteoblast responses to bmp-2-treated titanium
<italic>in vitro</italic>
</article-title>
<source>Int. J. Oral Maxillofac. Implant.</source>
<year>1997</year>
<volume>12</volume>
<fpage>649</fpage>
<lpage>654</lpage>
</element-citation>
</ref>
<ref id="b45-ijms-15-04442">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>B.C.</given-names>
</name>
<name>
<surname>Yeo</surname>
<given-names>I.S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>D.J.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>S.H.</given-names>
</name>
<name>
<surname>Han</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Bone formation around zirconia implants combined with rhbmp-2 gel in the canine mandible</article-title>
<source>Clin. Oral Implant. Res.</source>
<year>2013</year>
<volume>24</volume>
<fpage>1332</fpage>
<lpage>1338</lpage>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-ijms-15-04442" position="float">
<label>Figure 1.</label>
<caption>
<p>Three-dimensional confocal laser microscopy showing the roughness (
<italic>R</italic>
<sub>a</sub>
) of the examined substrate surfaces. (
<bold>A</bold>
) Titanium-machined; (
<bold>B</bold>
) Titanium-anodizing; (
<bold>C</bold>
) Sandblasted (Y, Nb)-TZP; (
<bold>D</bold>
) Sandblasted (Y, Ta)-TZP. (S.B.: Sandblasted).</p>
</caption>
<graphic xlink:href="ijms-15-04442f1"></graphic>
</fig>
<fig id="f2-ijms-15-04442" position="float">
<label>Figure 2.</label>
<caption>
<p>SEM images of Titanium and Zirconia, (
<bold>A</bold>
) Titanium-machined; (
<bold>B</bold>
) Titanium-anodizing; (
<bold>C</bold>
) Sandblasted (Y, Nb)-TZP; (
<bold>D</bold>
) Sandblasted (Y, Ta)-TZP. Original magnifications are 500, 1500, and 3000×.</p>
</caption>
<graphic xlink:href="ijms-15-04442f2"></graphic>
</fig>
<fig id="f3-ijms-15-04442" position="float">
<label>Figure 3.</label>
<caption>
<p>Microscopic observation 24 h after MC3T3-E1 cells were seeded onto the Ti- or Zir-discs. (
<bold>A</bold>
) Titanium-machined disc; (
<bold>B</bold>
) Titanium-anodized disc; (
<bold>C</bold>
) Sandblasted (Y, Nb)-TZP disc; (
<bold>D</bold>
) Sandblasted (Y, Ta)-TZP disc. Original magnification is 300× and bar = 100 μm.</p>
</caption>
<graphic xlink:href="ijms-15-04442f3"></graphic>
</fig>
<fig id="f4-ijms-15-04442" position="float">
<label>Figure 4.</label>
<caption>
<p>Cell proliferation assay (PicoGreen assay) of MC3T3-E1 cells seeded on the Ti- or Zr-discs at day 1, 3 and 7. Data are expressed as the mean ± SD of three independent experiments. Significance was tested by one-way ANOVA test.
<bold>*</bold>
Asterisks indicate
<italic>p</italic>
< 0.05 against the Ti-machined. (S.B.: Sandblasted).</p>
</caption>
<graphic xlink:href="ijms-15-04442f4"></graphic>
</fig>
<fig id="f5-ijms-15-04442" position="float">
<label>Figure 5.</label>
<caption>
<p>Real-time PCR analysis of MC3T3-E1 cells grown in osteogenic media on Ti- or Zir-discs after 3, 7, and 10 day of culture. (
<bold>A</bold>
) Type I collagen; (
<bold>B</bold>
) Alkaline phosphatase (Alp); (
<bold>C</bold>
) Osteocalcin (Oc). Data are expressed as the mean ± SD of three independent experiments. Significance was tested by one-way ANOVA test.
<bold>*</bold>
Asterisks indicate
<italic>p</italic>
< 0.05 against the Ti-machined.</p>
</caption>
<graphic xlink:href="ijms-15-04442f5"></graphic>
</fig>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000577 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000577 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3975406
   |texte=   Comparison of the Osteogenic Potential of Titanium and Modified Zirconia-Based Bioceramics
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24633198" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Dec 4 11:02:15 2017. Site generation: Tue Sep 29 19:14:38 2020