Serveur d'exploration sur le patient édenté (maquette)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0005640 ( Pmc/Corpus ); précédent : 0005639; suivant : 0005641 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An
<italic>In Vivo</italic>
Study in Rabbit Femur</title>
<author>
<name sortKey="Melin Svanborg, Lory" sort="Melin Svanborg, Lory" uniqKey="Melin Svanborg L" first="Lory" last="Melin Svanborg">Lory Melin Svanborg</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meirelles, Luiz" sort="Meirelles, Luiz" uniqKey="Meirelles L" first="Luiz" last="Meirelles">Luiz Meirelles</name>
<affiliation>
<nlm:aff id="I2">Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Franke Stenport, Victoria" sort="Franke Stenport, Victoria" uniqKey="Franke Stenport V" first="Victoria" last="Franke Stenport">Victoria Franke Stenport</name>
<affiliation>
<nlm:aff id="I3">Department of Prosthodontics/Dental Material Science, Institute of Odontology, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kjellin, Per" sort="Kjellin, Per" uniqKey="Kjellin P" first="Per" last="Kjellin">Per Kjellin</name>
<affiliation>
<nlm:aff id="I4">Promimic AB, 412 92 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Currie, Fredrik" sort="Currie, Fredrik" uniqKey="Currie F" first="Fredrik" last="Currie">Fredrik Currie</name>
<affiliation>
<nlm:aff id="I4">Promimic AB, 412 92 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Andersson, Martin" sort="Andersson, Martin" uniqKey="Andersson M" first="Martin" last="Andersson">Martin Andersson</name>
<affiliation>
<nlm:aff id="I5">Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24723952</idno>
<idno type="pmc">3958713</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3958713</idno>
<idno type="RBID">PMC:3958713</idno>
<idno type="doi">10.1155/2014/197581</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000564</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000564</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An
<italic>In Vivo</italic>
Study in Rabbit Femur</title>
<author>
<name sortKey="Melin Svanborg, Lory" sort="Melin Svanborg, Lory" uniqKey="Melin Svanborg L" first="Lory" last="Melin Svanborg">Lory Melin Svanborg</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Meirelles, Luiz" sort="Meirelles, Luiz" uniqKey="Meirelles L" first="Luiz" last="Meirelles">Luiz Meirelles</name>
<affiliation>
<nlm:aff id="I2">Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Franke Stenport, Victoria" sort="Franke Stenport, Victoria" uniqKey="Franke Stenport V" first="Victoria" last="Franke Stenport">Victoria Franke Stenport</name>
<affiliation>
<nlm:aff id="I3">Department of Prosthodontics/Dental Material Science, Institute of Odontology, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kjellin, Per" sort="Kjellin, Per" uniqKey="Kjellin P" first="Per" last="Kjellin">Per Kjellin</name>
<affiliation>
<nlm:aff id="I4">Promimic AB, 412 92 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Currie, Fredrik" sort="Currie, Fredrik" uniqKey="Currie F" first="Fredrik" last="Currie">Fredrik Currie</name>
<affiliation>
<nlm:aff id="I4">Promimic AB, 412 92 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Andersson, Martin" sort="Andersson, Martin" uniqKey="Andersson M" first="Martin" last="Andersson">Martin Andersson</name>
<affiliation>
<nlm:aff id="I5">Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wennerberg, Ann" sort="Wennerberg, Ann" uniqKey="Wennerberg A" first="Ann" last="Wennerberg">Ann Wennerberg</name>
<affiliation>
<nlm:aff id="I1">Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="I2">Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Dentistry</title>
<idno type="ISSN">1687-8728</idno>
<idno type="eISSN">1687-8736</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA) were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Astrand, P" uniqKey="Astrand P">P Astrand</name>
</author>
<author>
<name sortKey="Engquist, B" uniqKey="Engquist B">B Engquist</name>
</author>
<author>
<name sortKey="Dahlgren, S" uniqKey="Dahlgren S">S Dahlgren</name>
</author>
<author>
<name sortKey="Grondahl, K" uniqKey="Grondahl K">K Gröndahl</name>
</author>
<author>
<name sortKey="Engquist, E" uniqKey="Engquist E">E Engquist</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Attard, Nj" uniqKey="Attard N">NJ Attard</name>
</author>
<author>
<name sortKey="Zarb, Ga" uniqKey="Zarb G">GA Zarb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T Jemt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lekholm, U" uniqKey="Lekholm U">U Lekholm</name>
</author>
<author>
<name sortKey="Grondahl, K" uniqKey="Grondahl K">K Gröndahl</name>
</author>
<author>
<name sortKey="Jemt, T" uniqKey="Jemt T">T Jemt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
<author>
<name sortKey="Branemark, P" uniqKey="Branemark P">P Branemark</name>
</author>
<author>
<name sortKey="Hansson, H" uniqKey="Hansson H">H Hansson</name>
</author>
<author>
<name sortKey="Lindstrom, J" uniqKey="Lindstrom J">J Lindstrom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Oliveira, Pt" uniqKey="De Oliveira P">PT de Oliveira</name>
</author>
<author>
<name sortKey="Nanci, A" uniqKey="Nanci A">A Nanci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Oliveira, Pt" uniqKey="De Oliveira P">PT de Oliveira</name>
</author>
<author>
<name sortKey="Zalzal, Sf" uniqKey="Zalzal S">SF Zalzal</name>
</author>
<author>
<name sortKey="Beloti, Mm" uniqKey="Beloti M">MM Beloti</name>
</author>
<author>
<name sortKey="Rosa, Al" uniqKey="Rosa A">AL Rosa</name>
</author>
<author>
<name sortKey="Nanci, A" uniqKey="Nanci A">A Nanci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elias, Kl" uniqKey="Elias K">KL Elias</name>
</author>
<author>
<name sortKey="Price, Rl" uniqKey="Price R">RL Price</name>
</author>
<author>
<name sortKey="Webster, Tj" uniqKey="Webster T">TJ Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Rl" uniqKey="Price R">RL Price</name>
</author>
<author>
<name sortKey="Waid, Mc" uniqKey="Waid M">MC Waid</name>
</author>
<author>
<name sortKey="Haberstroh, Km" uniqKey="Haberstroh K">KM Haberstroh</name>
</author>
<author>
<name sortKey="Webster, Tj" uniqKey="Webster T">TJ Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, Bc" uniqKey="Ward B">BC Ward</name>
</author>
<author>
<name sortKey="Webster, Tj" uniqKey="Webster T">TJ Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, Tj" uniqKey="Webster T">TJ Webster</name>
</author>
<author>
<name sortKey="Ejiofor, Ju" uniqKey="Ejiofor J">JU Ejiofor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, Tj" uniqKey="Webster T">TJ Webster</name>
</author>
<author>
<name sortKey="Ergun, C" uniqKey="Ergun C">C Ergun</name>
</author>
<author>
<name sortKey="Doremus, Rh" uniqKey="Doremus R">RH Doremus</name>
</author>
<author>
<name sortKey="Siegel, Rw" uniqKey="Siegel R">RW Siegel</name>
</author>
<author>
<name sortKey="Bizios, R" uniqKey="Bizios R">R Bizios</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goransson, A" uniqKey="Goransson A">A Goransson</name>
</author>
<author>
<name sortKey="Arvidsson, A" uniqKey="Arvidsson A">A Arvidsson</name>
</author>
<author>
<name sortKey="Currie, F" uniqKey="Currie F">F Currie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sato, M" uniqKey="Sato M">M Sato</name>
</author>
<author>
<name sortKey="Aslani, A" uniqKey="Aslani A">A Aslani</name>
</author>
<author>
<name sortKey="Sambito, Ma" uniqKey="Sambito M">MA Sambito</name>
</author>
<author>
<name sortKey="Kalkhoran, Nm" uniqKey="Kalkhoran N">NM Kalkhoran</name>
</author>
<author>
<name sortKey="Slamovich, Eb" uniqKey="Slamovich E">EB Slamovich</name>
</author>
<author>
<name sortKey="Webster, Tj" uniqKey="Webster T">TJ Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bjursten, Lm" uniqKey="Bjursten L">LM Bjursten</name>
</author>
<author>
<name sortKey="Rasmusson, L" uniqKey="Rasmusson L">L Rasmusson</name>
</author>
<author>
<name sortKey="Oh, S" uniqKey="Oh S">S Oh</name>
</author>
<author>
<name sortKey="Smith, Gc" uniqKey="Smith G">GC Smith</name>
</author>
<author>
<name sortKey="Brammer, Ks" uniqKey="Brammer K">KS Brammer</name>
</author>
<author>
<name sortKey="Jin, S" uniqKey="Jin S">S Jin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meirelles, L" uniqKey="Meirelles L">L Meirelles</name>
</author>
<author>
<name sortKey="Arvidsson, A" uniqKey="Arvidsson A">A Arvidsson</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
<author>
<name sortKey="Kjellin, P" uniqKey="Kjellin P">P Kjellin</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mendes, Vc" uniqKey="Mendes V">VC Mendes</name>
</author>
<author>
<name sortKey="Moineddin, R" uniqKey="Moineddin R">R Moineddin</name>
</author>
<author>
<name sortKey="Davies, Je" uniqKey="Davies J">JE Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goene, Rj" uniqKey="Goene R">RJ Goené</name>
</author>
<author>
<name sortKey="Testori, T" uniqKey="Testori T">T Testori</name>
</author>
<author>
<name sortKey="Trisi, P" uniqKey="Trisi P">P Trisi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le Guehennec, L" uniqKey="Le Guehennec L">L Le Guéhennec</name>
</author>
<author>
<name sortKey="Soueidan, A" uniqKey="Soueidan A">A Soueidan</name>
</author>
<author>
<name sortKey="Layrolle, P" uniqKey="Layrolle P">P Layrolle</name>
</author>
<author>
<name sortKey="Amouriq, Y" uniqKey="Amouriq Y">Y Amouriq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svanborg, Lm" uniqKey="Svanborg L">LM Svanborg</name>
</author>
<author>
<name sortKey="Hoffman, M" uniqKey="Hoffman M">M Hoffman</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
<author>
<name sortKey="Currie, F" uniqKey="Currie F">F Currie</name>
</author>
<author>
<name sortKey="Kjellin, P" uniqKey="Kjellin P">P Kjellin</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bornstein, Mm" uniqKey="Bornstein M">MM Bornstein</name>
</author>
<author>
<name sortKey="Schmid, B" uniqKey="Schmid B">B Schmid</name>
</author>
<author>
<name sortKey="Belser, Uc" uniqKey="Belser U">UC Belser</name>
</author>
<author>
<name sortKey="Lussi, A" uniqKey="Lussi A">A Lussi</name>
</author>
<author>
<name sortKey="Buser, D" uniqKey="Buser D">D Buser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kjellin, P" uniqKey="Kjellin P">P Kjellin</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Svanborg, Lm" uniqKey="Svanborg L">LM Svanborg</name>
</author>
<author>
<name sortKey="Andersson, M" uniqKey="Andersson M">M Andersson</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arvidsson, A" uniqKey="Arvidsson A">A Arvidsson</name>
</author>
<author>
<name sortKey="Sater, Ba" uniqKey="Sater B">BA Sater</name>
</author>
<author>
<name sortKey="Wennerberg, A" uniqKey="Wennerberg A">A Wennerberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stout, Kj" uniqKey="Stout K">KJ Stout</name>
</author>
<author>
<name sortKey="Sullivan, Pj" uniqKey="Sullivan P">PJ Sullivan</name>
</author>
<author>
<name sortKey="Dong, Wp" uniqKey="Dong W">WP Dong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donath, K" uniqKey="Donath K">K Donath</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coelho, Pg" uniqKey="Coelho P">PG Coelho</name>
</author>
<author>
<name sortKey="Cardaropoli, G" uniqKey="Cardaropoli G">G Cardaropoli</name>
</author>
<author>
<name sortKey="Suzuki, M" uniqKey="Suzuki M">M Suzuki</name>
</author>
<author>
<name sortKey="Lemons, Je" uniqKey="Lemons J">JE Lemons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schouten, C" uniqKey="Schouten C">C Schouten</name>
</author>
<author>
<name sortKey="Meijer, Gj" uniqKey="Meijer G">GJ Meijer</name>
</author>
<author>
<name sortKey="Van Den Beucken, Jjjp" uniqKey="Van Den Beucken J">JJJP van den Beucken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schliephake, H" uniqKey="Schliephake H">H Schliephake</name>
</author>
<author>
<name sortKey="Aref, A" uniqKey="Aref A">A Aref</name>
</author>
<author>
<name sortKey="Scharnweber, D" uniqKey="Scharnweber D">D Scharnweber</name>
</author>
<author>
<name sortKey="Ro Ler, S" uniqKey="Ro Ler S">S Rößler</name>
</author>
<author>
<name sortKey="Sewing, A" uniqKey="Sewing A">A Sewing</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Sieweke, Jh" uniqKey="Sieweke J">JH Sieweke</name>
</author>
<author>
<name sortKey="Rodriguez, Na" uniqKey="Rodriguez N">NA Rodriguez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orsini, G" uniqKey="Orsini G">G Orsini</name>
</author>
<author>
<name sortKey="Piattelli, M" uniqKey="Piattelli M">M Piattelli</name>
</author>
<author>
<name sortKey="Scarano, A" uniqKey="Scarano A">A Scarano</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Dent</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Dent</journal-id>
<journal-id journal-id-type="publisher-id">IJD</journal-id>
<journal-title-group>
<journal-title>International Journal of Dentistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">1687-8728</issn>
<issn pub-type="epub">1687-8736</issn>
<publisher>
<publisher-name>Hindawi Publishing Corporation</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24723952</article-id>
<article-id pub-id-type="pmc">3958713</article-id>
<article-id pub-id-type="doi">10.1155/2014/197581</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Evaluation of Bone Healing on Sandblasted and Acid Etched Implants Coated with Nanocrystalline Hydroxyapatite: An
<italic>In Vivo</italic>
Study in Rabbit Femur</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Melin Svanborg</surname>
<given-names>Lory</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Meirelles</surname>
<given-names>Luiz</given-names>
</name>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Franke Stenport</surname>
<given-names>Victoria</given-names>
</name>
<xref ref-type="aff" rid="I3">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0002-3619-1764</contrib-id>
<name>
<surname>Kjellin</surname>
<given-names>Per</given-names>
</name>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Currie</surname>
<given-names>Fredrik</given-names>
</name>
<xref ref-type="aff" rid="I4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Andersson</surname>
<given-names>Martin</given-names>
</name>
<xref ref-type="aff" rid="I5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<contrib-id contrib-id-type="orcid" authenticated="false">http://orcid.org/0000-0003-2957-1133</contrib-id>
<name>
<surname>Wennerberg</surname>
<given-names>Ann</given-names>
</name>
<xref ref-type="aff" rid="I1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="I2">
<sup>2</sup>
</xref>
</contrib>
</contrib-group>
<aff id="I1">
<sup>1</sup>
Department of Prosthodontics, Faculty of Odontology, Malmö University, 205 06 Malmö, Sweden</aff>
<aff id="I2">
<sup>2</sup>
Department of Biomaterials/Handicap Research, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</aff>
<aff id="I3">
<sup>3</sup>
Department of Prosthodontics/Dental Material Science, Institute of Odontology, Sahlgrenska Academy, Gothenburg University, 405 30 Göteborg, Sweden</aff>
<aff id="I4">
<sup>4</sup>
Promimic AB, 412 92 Göteborg, Sweden</aff>
<aff id="I5">
<sup>5</sup>
Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden</aff>
<author-notes>
<corresp id="cor1">*Lory Melin Svanborg:
<email>lory.svanborg@mah.se</email>
</corresp>
<fn fn-type="other">
<p>Academic Editor: Ryo Jimbo</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>2</day>
<month>3</month>
<year>2014</year>
</pub-date>
<volume>2014</volume>
<elocation-id>197581</elocation-id>
<history>
<date date-type="received">
<day>30</day>
<month>7</month>
<year>2013</year>
</date>
<date date-type="rev-recd">
<day>24</day>
<month>9</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>10</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2014 Lory Melin Svanborg et al.</copyright-statement>
<copyright-year>2014</copyright-year>
<license xlink:href="https://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>This study aimed at investigating if a coating of hydroxyapatite nanocrystals would enhance bone healing over time in trabecular bone. Sandblasted and acid etched titanium implants with and without a submicron thick coat of hydroxyapatite nanocrystals (nano-HA) were implanted in rabbit femur with healing times of 2, 4, and 9 weeks. Removal torque analyses and histological evaluations were performed. The torque analysis did not show any significant differences between the implants at any healing time. The control implant showed a tendency of more newly formed bone after 4 weeks of healing and significantly higher bone area values after 9 weeks of healing. According to the results from this present study, both control and nano-HA surfaces were biocompatible and osteoconductive. A submicron thick coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing, as compared to blasted and etched control implants when placed in trabecular bone.</p>
</abstract>
</article-meta>
</front>
<body>
<sec id="sec1">
<title>1. Introduction</title>
<p>Dental implant treatment is today a very reliable method that provides good clinical results with success rates over 90%. Generally, lower implant survival rates have been reported in the maxilla than in the mandible, due to the difference in bone structure [
<xref rid="B1" ref-type="bibr">1</xref>
<xref rid="B4" ref-type="bibr">4</xref>
]. However, the optimal implant surface is yet to be developed. The current aim is to develop surfaces resulting in improved success rates in implant sites with poor bone quality and quantity. Several factors have previously been identified to be of particular importance to achieve successful osseointegration. Such factors include the surface topography, at least on a micrometer level of resolution [
<xref rid="B5" ref-type="bibr">5</xref>
]. A surface with an average surface roughness (
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
) of approximately 1.5 
<italic>μ</italic>
m has been shown to give a stronger bone response compared to smoother (
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
< 1.0 
<italic>μ</italic>
m) and rougher surfaces (
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
> 2 
<italic>μ</italic>
m) [
<xref rid="B6" ref-type="bibr">6</xref>
]. However, research is today often aimed at evaluating the importance of nanometer-sized structures, especially in the early bone healing phase. Several
<italic>in vitro</italic>
studies have shown an increased cell response to surfaces with applied nanostructures compared to surfaces without such structures [
<xref rid="B7" ref-type="bibr">7</xref>
<xref rid="B15" ref-type="bibr">15</xref>
]. During the last few years
<italic>in vivo</italic>
studies have also shown promising results on bone healing to different nanostructured titanium (Ti) implant surfaces [
<xref rid="B16" ref-type="bibr">16</xref>
<xref rid="B18" ref-type="bibr">18</xref>
]. Further, some human studies have provided evidence of improved bone healing to Ti implants with applied nanostructures [
<xref rid="B19" ref-type="bibr">19</xref>
]. Despite this, the knowledge of the importance of nanostructures in bone healing is still limited and the significance of nanoirregularities in the clinical treatment of patients is currently unknown. According to earlier experimental and clinical studies of implants with micrometer level irregularities, plasma-sprayed hydroxyapatite (HA) coated implants have a stronger initial bone response compared to conventional titanium implants. However, long-term clinical results of the same implants have been poor. This may be explained by the plasma spraying method resulting in coats of a thickness of 50–200 
<italic>μ</italic>
m and with poor adhesion to the underlying metal [
<xref rid="B20" ref-type="bibr">20</xref>
,
<xref rid="B21" ref-type="bibr">21</xref>
]. However, it was never investigated whether the initially positive bone response to the plasma-sprayed HA coats was due to an alleged superior biocompatibility of HA, to possible alterations in surface topography, or to a greater press fit of the thicker HA-coated implants when placed in the same sized sites as the controls. To improve the coating and minimize potential problems of coat loosening, thinner HA coats have been developed. A previous study by Svanborg et al. [
<xref rid="B22" ref-type="bibr">22</xref>
] did not support the importance of a nanocrystalline HA coat deposited on sandblasted and acid etched dental implants when placed in cortical bone. Rabbit tibia is suggested to simulate the bone of the human mandible and rabbit femur that of the human maxilla [
<xref rid="B6" ref-type="bibr">6</xref>
]. It may be that nanostructures are of benefit in trabecular bone, which do not provide satisfactory initial stability in contrast to the cortical bone site investigated in our previous study [
<xref rid="B22" ref-type="bibr">22</xref>
]. The use of blasted and acid etched dental implants has shown good clinical results [
<xref rid="B23" ref-type="bibr">23</xref>
] and it would be of interest to investigate if an added coat of nanocrystalline HA further improves the early bone healing in trabecular bone. The aim of this study was to investigate if a submicron thick coating of hydroxyapatite nanocrystals would enhance the bone healing over time, when deposited on sandblasted and acid etched screw shaped implants and placed in trabecular bone.</p>
</sec>
<sec id="sec2">
<title>2. Material and Methods</title>
<sec id="sec2.1">
<title>2.1. Implants</title>
<p>The implants used in this study were threaded, sandblasted and acid etched titanium screws (grade 4) having a diameter of 3.5 mm and a length of 8.5 mm (custom made). A HA coating was applied on the test implants using a modification of the technique previously described by Kjellin and Andersson, 2006 [
<xref rid="B24" ref-type="bibr">24</xref>
]. This method creates an aqueous dispersion of nanosized HA crystals, sized ~5 nm, which are coated with amino acids. The coating of amino acids presents a positive crystal charge, which makes the crystals adhere to negatively charged surfaces, such as a titanium surface. The dispersion was applied onto the implant, and the implant was rotated in a spin-coating apparatus at 3000 rpm. The coated implant was dried in air, and a heat treatment at 550°C for 5 minutes in an oxygen rich atmosphere was done in order to sinter the HA particles onto the titanium surface and to remove the amino acids. With this method, the thickness of the resulting HA layer could be varied depending on the rotating speed. The rotating speed was set in such a way that the resulting HA layer was less than a micrometer thick, which was estimated using a Leo Ultra 55 FEG high resolution scanning electron microscope (SEM) (Carl Zeiss SMT Inc., North America). Powder X-ray diffraction (XRD) was used to determine the presence of crystalline HA structures. XRD was performed using a Bruker XRD D8 Advance (Bruker AXS, Karlsruhe, Germany) and monochromatic Cu radiation. Sandblasted and acid etched titanium implants were used as control.</p>
</sec>
<sec id="sec2.2">
<title>2.2. Implant Surface Analysis</title>
<p>The implants were examined using SEM, operating at an acceleration voltage of 10 kV (Leo Ultra 55 FEG high resolution SEM, Carl Zeiss SMT Inc.). The magnification used was ×40 000 and the micrographs were recorded at randomly chosen areas of the implants. The surface roughness was examined using a white light interferometer (MicroXAM, Phaseshift, Arizona, USA) which is as a highly suitable technique to evaluate threaded implant surfaces [
<xref rid="B25" ref-type="bibr">25</xref>
]. An ×50 objective and a zoom factor of 0.62 were used in this study. The measured area had a size of 264 × 200 
<italic>μ</italic>
m and the vertical measuring range was 100 
<italic>μ</italic>
m. The maximal resolution of the technique is 0.3 
<italic>μ</italic>
m horizontally and 0.05 nm vertically. To be able to describe the surface topography, the roughness, the waviness and shape must be taken into consideration. The standard filter used to separate micrometer roughness from waviness, and shape is a high-pass Gaussian filter. A filter size of 50 × 50 
<italic>μ</italic>
m has been used for threaded implants. To evaluate the height deviation at the nanometer level a filter size of 1 × 1 
<italic>μ</italic>
m was used in this study, as suggested by Svanborg et al. [
<xref rid="B26" ref-type="bibr">26</xref>
]. Surfascan software (Somicronic Instrument, Lyon, France) was used to do the filtration and evaluation. This equipment provides images and numerical descriptions of the surface topography. SPIP (Image Metrology, Denmark) was used to do 3D-illustrations of the surfaces. Three implants from each group were examined. Three valleys on each implant were measured and evaluated.</p>
<p>For numerical description of the surface topography, four parameters were used:
<list list-type="simple">
<list-item>
<label>  </label>
<p>
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
= the arithmetic mean of the roughness area from the mean plane;</p>
</list-item>
<list-item>
<label>  </label>
<p>
<italic>S</italic>
<sub>ds</sub>
= density of summits, that is, number of peaks per area unit;</p>
</list-item>
<list-item>
<label>  </label>
<p>
<italic>S</italic>
<sub>dr</sub>
= the ratio between the developed surface area and a flat reference area;</p>
</list-item>
<list-item>
<label>  </label>
<p>
<italic>S</italic>
<sub>ci</sub>
= core fluid retention index.</p>
</list-item>
</list>
</p>
<p>The parameters used represent one amplitude (
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
), one spatial (
<italic>S</italic>
<sub>ds</sub>
), one hybrid (
<italic>S</italic>
<sub>dr</sub>
), and one functional (
<italic>S</italic>
<sub>ci</sub>
) value. The functional parameter, core fluid retention index (
<italic>S</italic>
<sub>ci</sub>
), is related to the bone biological ranking based on earlier studies on micrometer level. A low value may be related to a positive biological outcome of bone anchored implants [
<xref rid="B27" ref-type="bibr">27</xref>
]. Mathematical formulas for the parameters can be found in the literature [
<xref rid="B28" ref-type="bibr">28</xref>
].</p>
<p>X-ray photoelectron spectroscopy (XPS) was used for characterisation of the surface chemical compositions. XPS survey spectra were obtained using a PHI 5000C ESCA System (Perkin-Elmer Wellesley, USA). An
<italic>α</italic>
excitation source was used at 250 W with an operating angle of 45°.</p>
</sec>
<sec id="sec2.3">
<title>2.3. Animals and Surgical Technique</title>
<p>27 adult New Zeeland rabbits were divided into 3 groups (9 animals in each) with a healing time after implant insertion of 2, 4, and 9 weeks. Before surgery the animals were anaesthezised with an intramuscular injection of fentanyl 0.3 mg/mL and fluanisone 10 mg/mL (Hypnorm Vet, Janssen, Pharmaucetica, Beerse, Belgium) at a dose of 0.5 mL per kg body weight and an intraperitoneal injection of diazepam (Stesolid Novum, Alpharma, Denmark) at a dose of 2.5 mg per animal. One mL of lidocaine (Xylocain, Astra, Sweden) was administered subcutaneously in the surgical site as analgesics and the operation was performed under aseptic conditions. One HA coated implant and one control implant was inserted into the left and right femur, respectively, therefore each animal served as its own control. The implant sites were prepared under irrigation with saline using increasing diameter of drills. Thereafter, the implant was inserted in the bone under saline irrigation. A single dose of prophylactic antibiotic sulfadoxin 200 mg/mL and trimethoprim 40 mg/mL (Borgal, Intervet, Boxmeer, Netherlands) at a dose of 0.5 mL/kg and 0.5 mL buprenorphine 0.3 mg/mL (Temgesic, Schering-Plough, Belgium) were administrated immediately after the surgery. Right after surgery the rabbits were kept in separate cages to control the wound healing. They had free access to tap water and were fed with pellets and hay. After initial healing the rabbits were allowed to run freely in a specially designed room. The three groups of animals were sacrificed after 2, 4, and 9 weeks of healing with 10 mL overdose of pentobarbital 60 mg/mL (Pentobarbital-natrium, Apoteksbolaget, Sweden).</p>
</sec>
<sec id="sec2.4">
<title>2.4. Removal Torque Analysis</title>
<p>A removal torque analysis was performed on each implant with an electrically controlled removal torque unit. The implants were subjected only to the necessary torque (Ncm), to interrupt osseointegration, but were then not screwed out from the bone any further. This was done to enable histological evaluations of the bone complex.</p>
</sec>
<sec id="sec2.5">
<title>2.5. Specimen Preparation and Histological Evaluation</title>
<p>After the torque analysis, each implant was removed in a block with the surrounding bone and fixed in 4% neutral buffered formaldehyde. Then the samples were dehydrated in alcohol solutions and embedded in light curing resin (Technovit 7200 VLC, Kultzer & co, Germany). The cutting and grinding was performed as described by Donath [
<xref rid="B29" ref-type="bibr">29</xref>
]. The final sections were approximately 20 
<italic>μ</italic>
m thick and stained with toluidine-blue. Histological evaluations were performed using a light microscope together with an image analysis software (Image analysis 2000, Sweden). The evaluations included measurements of the amount of new bone (NB) and bone area (BA) along the entire implant. The amount of NB was calculated from the total amount of bone minus the amount of old bone (
<xref ref-type="fig" rid="fig1">Figure 1</xref>
) with a ×4 objective and a ×10 lens when needed for visualization. The bone area (BA) was evaluated in each thread on each implant and on the upper threadless part of the implant. The evaluations were made using a ×10 objective and were presented as the mean value of all threads on the entire implant and as a mean of the three best threads on each side of the implant on histological sample. All measurements were made using a ×10 eye-pice and in a blinded manner.</p>
</sec>
<sec id="sec2.6">
<title>2.6. Statistics</title>
<p>The statistical analysis was performed using SPSS (statistical package for the social studies). Mann-Whitney
<italic>U</italic>
-test was used and differences were considered significant at
<italic>P</italic>
≤ 0.05.</p>
</sec>
</sec>
<sec id="sec3">
<title>3. Results</title>
<p>Five animals experienced tibia fracture, two in each group with 2 and 9 weeks of healing time, and one in the group with 4 weeks of healing time. These five rabbits had to be sacrificed in advance and were not included in the results. The postoperative period was uncomplicated for the rest of the rabbits. No signs of infection or inflammation were registered at the time of implant retrieval nor were other deviations from normal observed. All implants were stable at the time of retrieval.</p>
<sec id="sec3.1">
<title>3.1. Implant Surface Characterization</title>
<p>SEM images of the surfaces are shown in
<xref ref-type="fig" rid="fig2">Figure 2</xref>
.</p>
<p>Results from the interferometry analysis are presented in
<xref ref-type="table" rid="tab1">Table 1</xref>
and images of the surface topography are shown in
<xref ref-type="fig" rid="fig3">Figure 3</xref>
. Both implant types presented similar surface roughness on both micrometer and nanometer level. The mean
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
value on the micrometer level was 1.08 
<italic>μ</italic>
m for the control implant and 0.93 
<italic>μ</italic>
m for the nano-HA coated one. There was no significant difference (
<italic>P</italic>
> 0.05) with respect to the evaluated surface parameters between test and control implants. Further, on the nanometer level, the mean
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
value was 114 nm for the control and 119 nm for the nano-HA coated test implants, no significant difference (
<italic>P</italic>
> 0.05).</p>
<p>The XPS analysis showed presence of calcium and phosphorus on the surface of the coated test implants, while the controls had no such elements present (
<xref ref-type="fig" rid="fig4">Figure 4</xref>
). Furthermore, the XRD demonstrated the presence of crystalline HA (
<xref ref-type="fig" rid="fig5">Figure 5</xref>
).</p>
</sec>
<sec id="sec3.2">
<title>3.2. Removal Torque Analysis</title>
<p>Results from the torque analysis showed no significant differences between the implant groups at any healing time (
<italic>P</italic>
> 0.05), see
<xref ref-type="fig" rid="fig6">Figure 6</xref>
. A slightly higher mean value for the nano-HA coated implants could be noted after 2 weeks of healing. No increase in torque value were seen after 4 weeks; however, after 9 weeks of healing the value increased for both implant types, but there were no significant differences between the implants.</p>
</sec>
<sec id="sec3.3">
<title>3.3. Histological Results</title>
<p>Qualitative analysis of all the samples showed a normal inflammatory response in terms of few macrophages and neutrophils observed in the histological samples. After 4 weeks of healing there was a tendency for more new bone on the control implants compared with the coated nano-HA. However, there were no significant differences at any of the chosen healing times (
<xref ref-type="fig" rid="fig7">Figure 7</xref>
).</p>
<p>There was no difference between the implant groups when evaluating the bone area along the entire implant (
<xref ref-type="fig" rid="fig8">Figure 8</xref>
). However, when calculating the 3 best threads on each side of the samples, the control implant had a significantly (
<italic>P</italic>
= 0.025) higher value than the nano-HA after 9 weeks of healing. When evaluating the BA on the upper nonthreaded part of the implants there was also a significantly (
<italic>P</italic>
= 0.003) higher value for the control implant.</p>
</sec>
</sec>
<sec id="sec4">
<title>4. Discussion</title>
<p>An error search was made after the experimental part of the study was finished, since 5 rabbits unfortunately suffered from tibia fracture. The animal operations were made according to standard protocol and after well-documented procedures with no complications and by an experienced operator. After a close and strict error analysis, the authors could not find any explanation other than chance for these fractures.</p>
<p>The results from this study showed that both control and nano-Ha surfaces were biocompatible and osteoconductive. However, the submicron thick nano-HA coating did not improve the early bone healing compared to the control and the results support the following studies.</p>
<p>Coelho et al. (2009) showed that 20–50 nm thick CaP based coating on a blasted and etched cylindrical implants did not improve the biomechanical fixation or BIC after 2 and 4 weeks of healing in dog tibia [
<xref rid="B30" ref-type="bibr">30</xref>
]; an
<italic>in vivo</italic>
study in goat, on screw shaped grit-blasted, acid etched (GAE) and electrosprayed CaP nanoparticle-coated implants gave similar bone responses and torque values as to GAE alone [
<xref rid="B31" ref-type="bibr">31</xref>
]; Schliephake et al. (2009) did not find any significant difference in host response (foxhound) to dual acid etched (DAE) screw shaped implants coated with HA compared to DAE alone [
<xref rid="B32" ref-type="bibr">32</xref>
]. Further, Lee et al. (2009) concluded that screw shaped titanium or ceramic implants coated with HA nanocrystals did not improve the early bone response in rabbit [
<xref rid="B33" ref-type="bibr">33</xref>
]; Svanborg et al. (2011) confirmed similar results [
<xref rid="B22" ref-type="bibr">22</xref>
]. However, there are other
<italic>in vivo</italic>
studies having shown positive effects on bone healing to various nanostructured Ti implants [
<xref rid="B16" ref-type="bibr">16</xref>
,
<xref rid="B18" ref-type="bibr">18</xref>
,
<xref rid="B19" ref-type="bibr">19</xref>
,
<xref rid="B34" ref-type="bibr">34</xref>
].</p>
<p>As mentioned before, one theory behind this discrepancy in reported results has been that nanostructured Ti implants may be of benefit in bone with poor quality but of insignificant importance in the healing in sites that already provide excellent initial implant stability. However, the present study of implants placed in trabecular bone did not support this theory on trabecular bone influence on implant outcome. Several
<italic>in vivo</italic>
and some clinical studies have tried to clarify the importance of nanosized structures in early bone healing and osseointegration. Although the studies are performed in different animals, the size, shape, and chemical composition of the nanostructures are also often different and therefore the studies are very difficult to compare. The difference in results from previous studies might be explained by differences in nanotopography; however the possible effect of the surface chemical composition cannot be excluded. Hence, further studies are needed to be able to conclude if some type of nanostructure may influence the bone healing and also if they might be of significance in the treatment of patients.</p>
</sec>
<sec id="sec5">
<title>5. Conclusion</title>
<p>According to the results from this present study, both control and nano-Ha surfaces were biocompatible and osteoconductive. A coating of hydroxyapatite nanocrystals deposited onto blasted and acid etched screw shaped titanium implants did not enhance bone healing after 2, 4, or 9 weeks compared to a blasted and etched control implants.</p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>This study was supported by Wilhelm and Martina Lundgren Science Foundation, Hjalmar Svensson Foundation, Sigge Perssons & Alice Nybergs Stiftelse (Gothenburg Dental Society), and the Swedish Dental Society, the Swedish Research Council, and Royal Society of Art Sciences in Göteborg. Petra Johansson and Ann Albrektsson are gratefully acknowledged for the preparation of the histological samples.</p>
</ack>
<sec sec-type="conflict">
<title>Conflict of Interests </title>
<p>The authors declare that there is no conflict of interests regarding the publication of this paper.</p>
</sec>
<ref-list>
<ref id="B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Astrand</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Engquist</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Dahlgren</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gröndahl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Engquist</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Astra Tech and Brånemark system implants: a 5-year prospective study of marginal bone reactions</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2004</year>
<volume>15</volume>
<issue>4</issue>
<fpage>413</fpage>
<lpage>420</lpage>
<pub-id pub-id-type="other">2-s2.0-4644309415</pub-id>
<pub-id pub-id-type="pmid">15248875</pub-id>
</element-citation>
</ref>
<ref id="B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Attard</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Zarb</surname>
<given-names>GA</given-names>
</name>
</person-group>
<article-title>Long-term treatment outcomes in edentulous patients with implant-fixed prostheses: the Toronto study</article-title>
<source>
<italic>International Journal of Prosthodontics</italic>
</source>
<year>2004</year>
<volume>17</volume>
<issue>4</issue>
<fpage>417</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="other">2-s2.0-4344594280</pub-id>
<pub-id pub-id-type="pmid">15382777</pub-id>
</element-citation>
</ref>
<ref id="B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jemt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Single implants in the anterior maxilla after 15 years of follow-up: comparison with central implants in the edentulous maxilla</article-title>
<source>
<italic>International Journal of Prosthodontics</italic>
</source>
<year>2008</year>
<volume>21</volume>
<issue>5</issue>
<fpage>400</fpage>
<lpage>408</lpage>
<pub-id pub-id-type="other">2-s2.0-53749101824</pub-id>
<pub-id pub-id-type="pmid">18950060</pub-id>
</element-citation>
</ref>
<ref id="B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lekholm</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Gröndahl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jemt</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Outcome of oral implant treatment in partially edentulous jaws followed 20 years in clinical function</article-title>
<source>
<italic>Clinical Implant Dentistry and Related Research</italic>
</source>
<year>2006</year>
<volume>8</volume>
<issue>4</issue>
<fpage>178</fpage>
<lpage>186</lpage>
<pub-id pub-id-type="other">2-s2.0-33845615865</pub-id>
<pub-id pub-id-type="pmid">17100743</pub-id>
</element-citation>
</ref>
<ref id="B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Branemark</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Hansson</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lindstrom</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man</article-title>
<source>
<italic>Acta Orthopaedica Scandinavica</italic>
</source>
<year>1981</year>
<volume>52</volume>
<issue>2</issue>
<fpage>155</fpage>
<lpage>170</lpage>
<pub-id pub-id-type="other">2-s2.0-0019435541</pub-id>
<pub-id pub-id-type="pmid">7246093</pub-id>
</element-citation>
</ref>
<ref id="B6">
<label>6</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
</person-group>
<source>
<italic>On Surface Roughness and Implant Incorporation</italic>
</source>
<year>1996</year>
<publisher-loc>Gothenburg, Sweden</publisher-loc>
<publisher-name>Department of Biomaterials/Handicap Research, University of Gothenburg</publisher-name>
</element-citation>
</ref>
<ref id="B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Oliveira</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Nanci</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2004</year>
<volume>25</volume>
<issue>3</issue>
<fpage>403</fpage>
<lpage>413</lpage>
<pub-id pub-id-type="other">2-s2.0-0142165126</pub-id>
<pub-id pub-id-type="pmid">14585688</pub-id>
</element-citation>
</ref>
<ref id="B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Oliveira</surname>
<given-names>PT</given-names>
</name>
<name>
<surname>Zalzal</surname>
<given-names>SF</given-names>
</name>
<name>
<surname>Beloti</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Rosa</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Nanci</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2007</year>
<volume>80</volume>
<issue>3</issue>
<fpage>554</fpage>
<lpage>564</lpage>
<pub-id pub-id-type="other">2-s2.0-33846927027</pub-id>
</element-citation>
</ref>
<ref id="B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elias</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Enhanced functions of osteoblasts on nanometer diameter carbon fibers</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2002</year>
<volume>23</volume>
<issue>15</issue>
<fpage>3279</fpage>
<lpage>3287</lpage>
<pub-id pub-id-type="other">2-s2.0-0035999785</pub-id>
<pub-id pub-id-type="pmid">12102199</pub-id>
</element-citation>
</ref>
<ref id="B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Waid</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Haberstroh</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Selective bone cell adhesion on formulations containing carbon nanofibers</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2003</year>
<volume>24</volume>
<issue>11</issue>
<fpage>1877</fpage>
<lpage>1887</lpage>
<pub-id pub-id-type="other">2-s2.0-0037400814</pub-id>
<pub-id pub-id-type="pmid">12615478</pub-id>
</element-citation>
</ref>
<ref id="B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ward</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2006</year>
<volume>27</volume>
<issue>16</issue>
<fpage>3064</fpage>
<lpage>3074</lpage>
<pub-id pub-id-type="other">2-s2.0-32644483712</pub-id>
<pub-id pub-id-type="pmid">16476478</pub-id>
</element-citation>
</ref>
<ref id="B12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Ejiofor</surname>
<given-names>JU</given-names>
</name>
</person-group>
<article-title>Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2004</year>
<volume>25</volume>
<issue>19</issue>
<fpage>4731</fpage>
<lpage>4739</lpage>
<pub-id pub-id-type="other">2-s2.0-2342440651</pub-id>
<pub-id pub-id-type="pmid">15120519</pub-id>
</element-citation>
</ref>
<ref id="B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Ergun</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Doremus</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Bizios</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Enhanced functions of osteoblasts on nanophase ceramics</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2000</year>
<volume>21</volume>
<issue>17</issue>
<fpage>1803</fpage>
<lpage>1810</lpage>
<pub-id pub-id-type="other">2-s2.0-0034084101</pub-id>
<pub-id pub-id-type="pmid">10905463</pub-id>
</element-citation>
</ref>
<ref id="B14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goransson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arvidsson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Currie</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An in vitro comparison of possibly bioactive titanium implant surfaces</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2009</year>
<volume>88</volume>
<issue>4</issue>
<fpage>1037</fpage>
<lpage>1047</lpage>
</element-citation>
</ref>
<ref id="B15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sato</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Aslani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sambito</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Kalkhoran</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Slamovich</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Nanocrystalline hydroxyapatite/titania coatings on titanium improves osteoblast adhesion</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2008</year>
<volume>84</volume>
<issue>1</issue>
<fpage>265</fpage>
<lpage>272</lpage>
<pub-id pub-id-type="other">2-s2.0-36949030256</pub-id>
</element-citation>
</ref>
<ref id="B16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bjursten</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Rasmusson</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>GC</given-names>
</name>
<name>
<surname>Brammer</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Titanium dioxide nanotubes enhance bone bonding
<italic>in vivo</italic>
</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2010</year>
<volume>92</volume>
<issue>3</issue>
<fpage>1218</fpage>
<lpage>1224</lpage>
<pub-id pub-id-type="other">2-s2.0-75749148812</pub-id>
</element-citation>
</ref>
<ref id="B17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meirelles</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Arvidsson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kjellin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Nano hydroxyapatite structures influence early bone formation</article-title>
<source>
<italic>Journal of Biomedical Materials Research A</italic>
</source>
<year>2008</year>
<volume>87</volume>
<issue>2</issue>
<fpage>299</fpage>
<lpage>307</lpage>
<pub-id pub-id-type="other">2-s2.0-53549097080</pub-id>
</element-citation>
</ref>
<ref id="B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mendes</surname>
<given-names>VC</given-names>
</name>
<name>
<surname>Moineddin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces</article-title>
<source>
<italic>Biomaterials</italic>
</source>
<year>2007</year>
<volume>28</volume>
<issue>32</issue>
<fpage>4748</fpage>
<lpage>4755</lpage>
<pub-id pub-id-type="other">2-s2.0-34548019921</pub-id>
<pub-id pub-id-type="pmid">17697709</pub-id>
</element-citation>
</ref>
<ref id="B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goené</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Testori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Trisi</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Influence of a nanometer-scale surface enhancement on de novo bone formation on titanium implants: a histomorphometric study in human maxillae</article-title>
<source>
<italic>International Journal of Periodontics and Restorative Dentistry</italic>
</source>
<year>2007</year>
<volume>27</volume>
<issue>3</issue>
<fpage>211</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="other">2-s2.0-34250167234</pub-id>
<pub-id pub-id-type="pmid">17694944</pub-id>
</element-citation>
</ref>
<ref id="B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Hydroxyapatite-coated implants: a case against their use</article-title>
<source>
<italic>Journal of Oral and Maxillofacial Surgery</italic>
</source>
<year>1998</year>
<volume>56</volume>
<issue>11</issue>
<fpage>1312</fpage>
<lpage>1326</lpage>
<pub-id pub-id-type="other">2-s2.0-0031737699</pub-id>
<pub-id pub-id-type="pmid">9820220</pub-id>
</element-citation>
</ref>
<ref id="B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le Guéhennec</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Soueidan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Layrolle</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Amouriq</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Surface treatments of titanium dental implants for rapid osseointegration</article-title>
<source>
<italic>Dental Materials</italic>
</source>
<year>2007</year>
<volume>23</volume>
<issue>7</issue>
<fpage>844</fpage>
<lpage>854</lpage>
<pub-id pub-id-type="other">2-s2.0-34248356846</pub-id>
<pub-id pub-id-type="pmid">16904738</pub-id>
</element-citation>
</ref>
<ref id="B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Svanborg</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Hoffman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Currie</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Kjellin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The effect of hydroxyapatite nanocrystals on early bone formation surrounding dental implants</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Surgery</italic>
</source>
<year>2011</year>
<volume>40</volume>
<issue>3</issue>
<fpage>308</fpage>
<lpage>315</lpage>
<pub-id pub-id-type="other">2-s2.0-79952312780</pub-id>
<pub-id pub-id-type="pmid">21111575</pub-id>
</element-citation>
</ref>
<ref id="B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bornstein</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Schmid</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Belser</surname>
<given-names>UC</given-names>
</name>
<name>
<surname>Lussi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Buser</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Early loading of non-submerged titanium implants with a sandblasted and acid-etched surface: 5-year results of a prospective study in partially edentulous patients</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2005</year>
<volume>16</volume>
<issue>6</issue>
<fpage>631</fpage>
<lpage>638</lpage>
<pub-id pub-id-type="other">2-s2.0-33644673024</pub-id>
<pub-id pub-id-type="pmid">16307568</pub-id>
</element-citation>
</ref>
<ref id="B24">
<label>24</label>
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Kjellin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Synthetic nano-sized crystalline calcium phosphate and method of production patent</article-title>
<comment>SE-0401524-4, 2006</comment>
</element-citation>
</ref>
<ref id="B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Albrektsson</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Suggested guidelines for the topographic evaluation of implant surfaces</article-title>
<source>
<italic>International Journal of Oral and Maxillofacial Implants</italic>
</source>
<year>2000</year>
<volume>15</volume>
<issue>3</issue>
<fpage>331</fpage>
<lpage>344</lpage>
<pub-id pub-id-type="other">2-s2.0-0034183113</pub-id>
<pub-id pub-id-type="pmid">10874798</pub-id>
</element-citation>
</ref>
<ref id="B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Svanborg</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Andersson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Surface characterization of commercial oral implants on the nanometer level</article-title>
<source>
<italic>Journal of Biomedical Materials Research B</italic>
</source>
<year>2010</year>
<volume>92</volume>
<issue>2</issue>
<fpage>462</fpage>
<lpage>469</lpage>
<pub-id pub-id-type="other">2-s2.0-74749086013</pub-id>
</element-citation>
</ref>
<ref id="B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arvidsson</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sater</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Wennerberg</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The role of functional parameters for topographical characterization of bone-anchored implants</article-title>
<source>
<italic>Clinical Implant Dentistry and Related Research</italic>
</source>
<year>2006</year>
<volume>8</volume>
<issue>2</issue>
<fpage>70</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="other">2-s2.0-33746640888</pub-id>
<pub-id pub-id-type="pmid">16774592</pub-id>
</element-citation>
</ref>
<ref id="B28">
<label>28</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Stout</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Sullivan</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Dong</surname>
<given-names>WP</given-names>
</name>
<etal></etal>
</person-group>
<source>
<italic>The Development of Methods For Characterisation of Roughness in Three Dimensions</italic>
</source>
<year>1993</year>
<publisher-loc>Birmingham, UK</publisher-loc>
<publisher-name>University of Birmingham</publisher-name>
<series>EUR, 15178 EN of Commission of the European Communities</series>
</element-citation>
</ref>
<ref id="B29">
<label>29</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Donath</surname>
<given-names>K</given-names>
</name>
</person-group>
<source>
<italic>Preparation of Histologic Sections by the Cutting-Grinding Technique for Hard Tissue and Other Material Not Suitable to Be Sectioned by Routine Methods</italic>
</source>
<year>1987</year>
<publisher-loc>Norderstedt, Germany</publisher-loc>
<publisher-name>EXAKT-Kulzer-Publication</publisher-name>
</element-citation>
</ref>
<ref id="B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coelho</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Cardaropoli</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lemons</surname>
<given-names>JE</given-names>
</name>
</person-group>
<article-title>Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs</article-title>
<source>
<italic>Journal of Biomedical Materials Research B</italic>
</source>
<year>2009</year>
<volume>88</volume>
<issue>2</issue>
<fpage>387</fpage>
<lpage>393</lpage>
<pub-id pub-id-type="other">2-s2.0-60849132465</pub-id>
</element-citation>
</ref>
<ref id="B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schouten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Meijer</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>van den Beucken</surname>
<given-names>JJJP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vivo</italic>
bone response and mechanical evaluation of electrosprayed CaP nanoparticle coatings using the iliac crest of goats as an implantation model</article-title>
<source>
<italic>Acta Biomaterialia</italic>
</source>
<year>2010</year>
<volume>6</volume>
<issue>6</issue>
<fpage>2227</fpage>
<lpage>2236</lpage>
<pub-id pub-id-type="other">2-s2.0-77956621831</pub-id>
<pub-id pub-id-type="pmid">19944782</pub-id>
</element-citation>
</ref>
<ref id="B32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schliephake</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Aref</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Scharnweber</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rößler</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sewing</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Effect of modifications of dual acid-etched implant surfaces on periimplant bone formation—part II: calcium phosphate coatings</article-title>
<source>
<italic>Clinical Oral Implants Research</italic>
</source>
<year>2009</year>
<volume>20</volume>
<issue>1</issue>
<fpage>38</fpage>
<lpage>44</lpage>
<pub-id pub-id-type="other">2-s2.0-58149157591</pub-id>
<pub-id pub-id-type="pmid">19126106</pub-id>
</element-citation>
</ref>
<ref id="B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sieweke</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Rodriguez</surname>
<given-names>NA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits</article-title>
<source>
<italic>Journal of Clinical Periodontology</italic>
</source>
<year>2009</year>
<volume>36</volume>
<issue>7</issue>
<fpage>610</fpage>
<lpage>617</lpage>
<pub-id pub-id-type="other">2-s2.0-68049123282</pub-id>
<pub-id pub-id-type="pmid">19538335</pub-id>
</element-citation>
</ref>
<ref id="B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orsini</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Piattelli</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scarano</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Randomized, controlled histologic and histomorphometric evaluation of implants with nanometer-scale calcium phosphate added to the dual acid-etched surface in the human posterior maxilla</article-title>
<source>
<italic>Journal of Periodontology</italic>
</source>
<year>2007</year>
<volume>78</volume>
<issue>2</issue>
<fpage>209</fpage>
<lpage>218</lpage>
<pub-id pub-id-type="other">2-s2.0-33847784250</pub-id>
<pub-id pub-id-type="pmid">17274708</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="fig1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<p>Method of measuring total bone and old bone for the new bone calculation. The new bone was calculated from the total amount of bone on each side of the implant on each histological sample minus the amount of old bone; then the percentage was calculated.</p>
</caption>
<graphic xlink:href="IJD2014-197581.001"></graphic>
</fig>
<fig id="fig2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<p>SEM images taken at ×40 000 magnification on (a) the control surface and (b) the nano-HA surface.</p>
</caption>
<graphic xlink:href="IJD2014-197581.002"></graphic>
</fig>
<fig id="fig3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<p>Images from the interferometer analysis of (a) the control titanium surface and (b) the test nano-HA surface.</p>
</caption>
<graphic xlink:href="IJD2014-197581.003"></graphic>
</fig>
<fig id="fig4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<p>XPS survey spectra of (a) the test nano-HA surface and (b) the control titanium surface.</p>
</caption>
<graphic xlink:href="IJD2014-197581.004"></graphic>
</fig>
<fig id="fig5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<p>XRD demonstrating the presence of crystalline HA.</p>
</caption>
<graphic xlink:href="IJD2014-197581.005"></graphic>
</fig>
<fig id="fig6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<p>Removal torque results (mean value) after 2, 4, and 9 weeks of healing. The bar presents the standard deviation. Seven samples were evaluated in each group.</p>
</caption>
<graphic xlink:href="IJD2014-197581.006"></graphic>
</fig>
<fig id="fig7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<p>Amount of new bone after 2, 4, and 9 weeks of healing. The bar presents the standard deviation. Seven samples were evaluated in each group.</p>
</caption>
<graphic xlink:href="IJD2014-197581.007"></graphic>
</fig>
<fig id="fig8" orientation="portrait" position="float">
<label>Figure 8</label>
<caption>
<p>Bone area after 2, 4, and 9 weeks of healing. Presented in percentage as a mean of all threads and calculated for the three best threads on each side of each implant. The bar represents the standard deviation.</p>
</caption>
<graphic xlink:href="IJD2014-197581.008"></graphic>
</fig>
<table-wrap id="tab1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<p>Results from the interferometer characterization. The numbers represent the mean value of each parameter (the standard deviation is presented within parenthesis).</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="2" colspan="1"></th>
<th align="center" colspan="4" rowspan="1">Gauss filter 50 × 50 µm</th>
<th align="center" colspan="4" rowspan="1">Gauss filter 1 × 1 µm</th>
</tr>
<tr>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
(µm)</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>ds</sub>
(/mm
<sup>2</sup>
)</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>dr</sub>
(%)</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>ci</sub>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
(nm)</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>ds</sub>
(/mm
<sup>2</sup>
)</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>dr</sub>
(%)</th>
<th align="center" rowspan="1" colspan="1">
<italic>S</italic>
<sub>ci</sub>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="1" colspan="1">Control</td>
<td align="center" rowspan="1" colspan="1">1.08
<break></break>
(0.41)</td>
<td align="center" rowspan="1" colspan="1">1 184807
<break></break>
(244569)</td>
<td align="center" rowspan="1" colspan="1"> 142.5
<break></break>
(73.0)</td>
<td align="center" rowspan="1" colspan="1">1.21
<break></break>
(0.18)</td>
<td align="center" rowspan="1" colspan="1">114
<break></break>
(11.1)</td>
<td align="center" rowspan="1" colspan="1">2 055650
<break></break>
(106081)</td>
<td align="center" rowspan="1" colspan="1">74.9
<break></break>
(13.4)</td>
<td align="center" rowspan="1" colspan="1">0.95
<break></break>
(0.12)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Nano-HA</td>
<td align="center" rowspan="1" colspan="1">0.93
<break></break>
(0.25)</td>
<td align="center" rowspan="1" colspan="1">1 259841
<break></break>
(143100)</td>
<td align="center" rowspan="1" colspan="1"> 146.5
<break></break>
(46.0)</td>
<td align="center" rowspan="1" colspan="1">1.12
<break></break>
(0.25)</td>
<td align="center" rowspan="1" colspan="1">119
<break></break>
(6.9)</td>
<td align="center" rowspan="1" colspan="1">2 132025
<break></break>
(78489)</td>
<td align="center" rowspan="1" colspan="1">83.9
<break></break>
(8.9)</td>
<td align="center" rowspan="1" colspan="1"> 0.84
<break></break>
(0.04)</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>
<italic>S</italic>
<sub>
<italic>a</italic>
</sub>
: the arithmetic mean of the roughness area from the mean plane;
<italic>S</italic>
<sub>ds</sub>
: density of summits, that is, number of peaks per area unit;
<italic>S</italic>
<sub>dr</sub>
: the ratio between the developed surface area and a flat reference area;
<italic>S</italic>
<sub>ci</sub>
: core fluid retention index.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0005640 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0005640 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Dec 4 11:02:15 2017. Site generation: Tue Sep 29 19:14:38 2020