Serveur d'exploration sur le patient édenté (maquette)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings

Identifieur interne : 000533 ( Pmc/Corpus ); précédent : 000532; suivant : 000534

Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings

Auteurs : Dongliang Cheng ; Yuzhu Ma ; Quanling Zhong ; Weifeng Xu

Source :

RBID : PMC:4242579

Abstract

Allometric biomass allocation theory predicts that leaf biomass (ML) scaled isometrically with stem (MS) and root (MR) biomass, and thus above-ground biomass (leaf and stem) (MA) and root (MR) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that ML and MS scaled in an isometric or a nearly isometric manner with MR, as well as MA to MR for five woody species. Significant variation was observed in the Y-intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for ML versus MS and ML versus MR, but not for MS versus MR and MA versus MR. We conclude, therefore, that a nearly isometric scaling relationship of MA versus MR holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.


Url:
DOI: 10.1002/ece3.1184
PubMed: 25505524
PubMed Central: 4242579

Links to Exploration step

PMC:4242579

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings</title>
<author>
<name sortKey="Cheng, Dongliang" sort="Cheng, Dongliang" uniqKey="Cheng D" first="Dongliang" last="Cheng">Dongliang Cheng</name>
<affiliation>
<nlm:aff id="au1">
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong</institution>
<addr-line>Shatin, Hongkong, 999077, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Yuzhu" sort="Ma, Yuzhu" uniqKey="Ma Y" first="Yuzhu" last="Ma">Yuzhu Ma</name>
<affiliation>
<nlm:aff id="au1">
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Quanling" sort="Zhong, Quanling" uniqKey="Zhong Q" first="Quanling" last="Zhong">Quanling Zhong</name>
<affiliation>
<nlm:aff id="au1">
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Weifeng" sort="Xu, Weifeng" uniqKey="Xu W" first="Weifeng" last="Xu">Weifeng Xu</name>
<affiliation>
<nlm:aff id="au2">
<institution>State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong</institution>
<addr-line>Shatin, Hongkong, 999077, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au3">
<institution>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences</institution>
<addr-line>Nanjing, 210008, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25505524</idno>
<idno type="pmc">4242579</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242579</idno>
<idno type="RBID">PMC:4242579</idno>
<idno type="doi">10.1002/ece3.1184</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000533</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000533</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings</title>
<author>
<name sortKey="Cheng, Dongliang" sort="Cheng, Dongliang" uniqKey="Cheng D" first="Dongliang" last="Cheng">Dongliang Cheng</name>
<affiliation>
<nlm:aff id="au1">
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au2">
<institution>State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong</institution>
<addr-line>Shatin, Hongkong, 999077, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ma, Yuzhu" sort="Ma, Yuzhu" uniqKey="Ma Y" first="Yuzhu" last="Ma">Yuzhu Ma</name>
<affiliation>
<nlm:aff id="au1">
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Quanling" sort="Zhong, Quanling" uniqKey="Zhong Q" first="Quanling" last="Zhong">Quanling Zhong</name>
<affiliation>
<nlm:aff id="au1">
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Xu, Weifeng" sort="Xu, Weifeng" uniqKey="Xu W" first="Weifeng" last="Xu">Weifeng Xu</name>
<affiliation>
<nlm:aff id="au2">
<institution>State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong</institution>
<addr-line>Shatin, Hongkong, 999077, China</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="au3">
<institution>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences</institution>
<addr-line>Nanjing, 210008, China</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and Evolution</title>
<idno type="ISSN">2045-7758</idno>
<idno type="eISSN">2045-7758</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Allometric biomass allocation theory predicts that leaf biomass (
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
) scaled isometrically with stem (
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
) and root (
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) biomass, and thus above-ground biomass (leaf and stem) (
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
) and root (
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
scaled in an isometric or a nearly isometric manner with
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, as well as
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
to
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for five woody species. Significant variation was observed in the
<italic>Y-</italic>
intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, but not for
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
. We conclude, therefore, that a nearly isometric scaling relationship of
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Aschan, G" uniqKey="Aschan G">G Aschan</name>
</author>
<author>
<name sortKey="Pfanz, H" uniqKey="Pfanz H">H Pfanz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bandara, Ms" uniqKey="Bandara M">MS Bandara</name>
</author>
<author>
<name sortKey="Tanino, Kk" uniqKey="Tanino K">KK Tanino</name>
</author>
<author>
<name sortKey="Waterer, Dr" uniqKey="Waterer D">DR Waterer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binkley, D" uniqKey="Binkley D">D Binkley</name>
</author>
<author>
<name sortKey="Stape, Jl" uniqKey="Stape J">JL Stape</name>
</author>
<author>
<name sortKey="Ryan, Mg" uniqKey="Ryan M">MG Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brouwer, R" uniqKey="Brouwer R">R Brouwer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Dl" uniqKey="Cheng D">DL Cheng</name>
</author>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Dl" uniqKey="Cheng D">DL Cheng</name>
</author>
<author>
<name sortKey="Wang, Gx" uniqKey="Wang G">GX Wang</name>
</author>
<author>
<name sortKey="Tang, Ql" uniqKey="Tang Q">QL Tang</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Zhong, Ql" uniqKey="Zhong Q">QL Zhong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Dl" uniqKey="Cheng D">DL Cheng</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Zhong, Ql" uniqKey="Zhong Q">QL Zhong</name>
</author>
<author>
<name sortKey="Wang, Gx" uniqKey="Wang G">GX Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, Rl" uniqKey="Davidson R">RL Davidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, Jm" uniqKey="Deng J">JM Deng</name>
</author>
<author>
<name sortKey="Li, T" uniqKey="Li T">T Li</name>
</author>
<author>
<name sortKey="Wang, Gx" uniqKey="Wang G">GX Wang</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Yu, Zl" uniqKey="Yu Z">ZL Yu</name>
</author>
<author>
<name sortKey="Zhao, Cm" uniqKey="Zhao C">CM Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dodds, P" uniqKey="Dodds P">P Dodds</name>
</author>
<author>
<name sortKey="Rothman, Dh" uniqKey="Rothman D">DH Rothman</name>
</author>
<author>
<name sortKey="Weitz, Js" uniqKey="Weitz J">JS Weitz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duursma, Ra" uniqKey="Duursma R">RA Duursma</name>
</author>
<author>
<name sortKey="M Kel, A" uniqKey="M Kel A">A Mäkelä</name>
</author>
<author>
<name sortKey="Reid, De" uniqKey="Reid D">DE Reid</name>
</author>
<author>
<name sortKey="Jokela, Ej" uniqKey="Jokela E">EJ Jokela</name>
</author>
<author>
<name sortKey="Porte, Aj" uniqKey="Porte A">AJ Porté</name>
</author>
<author>
<name sortKey="Roberts, Sd" uniqKey="Roberts S">SD Roberts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enquist, Bj" uniqKey="Enquist B">BJ Enquist</name>
</author>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enquist, Bj" uniqKey="Enquist B">BJ Enquist</name>
</author>
<author>
<name sortKey="Allen, Ap" uniqKey="Allen A">AP Allen</name>
</author>
<author>
<name sortKey="Brown, Jh" uniqKey="Brown J">JH Brown</name>
</author>
<author>
<name sortKey="Gillooly, Jf" uniqKey="Gillooly J">JF Gillooly</name>
</author>
<author>
<name sortKey="Kerkhoff, Aj" uniqKey="Kerkhoff A">AJ Kerkhoff</name>
</author>
<author>
<name sortKey="Nikla, Kj" uniqKey="Nikla K">KJ Nikla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falster, Ds" uniqKey="Falster D">DS Falster</name>
</author>
<author>
<name sortKey="Warton, Di" uniqKey="Warton D">DI Warton</name>
</author>
<author>
<name sortKey="Wright, Ij" uniqKey="Wright I">IJ Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gayon, J" uniqKey="Gayon J">J Gayon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hess, L" uniqKey="Hess L">L Hess</name>
</author>
<author>
<name sortKey="De Kroon, H" uniqKey="De Kroon H">H de Kroon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hui, Df" uniqKey="Hui D">DF Hui</name>
</author>
<author>
<name sortKey="Jackson, Rb" uniqKey="Jackson R">RB Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hunt, R" uniqKey="Hunt R">R Hunt</name>
</author>
<author>
<name sortKey="Burnett, Ja" uniqKey="Burnett J">JA Burnett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Koontz, Tl" uniqKey="Koontz T">TL Koontz</name>
</author>
<author>
<name sortKey="Petroff, A" uniqKey="Petroff A">A Petroff</name>
</author>
<author>
<name sortKey="West, Gb" uniqKey="West G">GB West</name>
</author>
<author>
<name sortKey="Brown, Jh" uniqKey="Brown J">JH Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozlowski, J" uniqKey="Kozlowski J">J Kozlowski</name>
</author>
<author>
<name sortKey="Konarzewski, M" uniqKey="Konarzewski M">M Konarzewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kutschera, U" uniqKey="Kutschera U">U Kutschera</name>
</author>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Luo, Tx" uniqKey="Luo T">TX Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccarthy, Mc" uniqKey="Mccarthy M">MC McCarthy</name>
</author>
<author>
<name sortKey="Enquist, Bj" uniqKey="Enquist B">BJ Enquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mori, S" uniqKey="Mori S">S Mori</name>
</author>
<author>
<name sortKey="Yamaji, K" uniqKey="Yamaji K">K Yamaji</name>
</author>
<author>
<name sortKey="Ishida, A" uniqKey="Ishida A">A Ishida</name>
</author>
<author>
<name sortKey="Prokushkin, Sg" uniqKey="Prokushkin S">SG Prokushkin</name>
</author>
<author>
<name sortKey="Masyagina, Ov" uniqKey="Masyagina O">OV Masyagina</name>
</author>
<author>
<name sortKey="Hagihara, A" uniqKey="Hagihara A">A Hagihara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murphy, Gp" uniqKey="Murphy G">GP Murphy</name>
</author>
<author>
<name sortKey="File, Al" uniqKey="File A">AL File</name>
</author>
<author>
<name sortKey="Dudley, Sa" uniqKey="Dudley S">SA Dudley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niinemets, U" uniqKey="Niinemets U">U Niinemets</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peng, Y" uniqKey="Peng Y">Y Peng</name>
</author>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
<author>
<name sortKey="Reich, Pb" uniqKey="Reich P">PB Reich</name>
</author>
<author>
<name sortKey="Sun, S" uniqKey="Sun S">S Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poorter, L" uniqKey="Poorter L">L Poorter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poorter, H" uniqKey="Poorter H">H Poorter</name>
</author>
<author>
<name sortKey="Niklas, Kj" uniqKey="Niklas K">KJ Niklas</name>
</author>
<author>
<name sortKey="Reich, Pb" uniqKey="Reich P">PB Reich</name>
</author>
<author>
<name sortKey="Oleksyn, J" uniqKey="Oleksyn J">J Oleksyn</name>
</author>
<author>
<name sortKey="Poot, P" uniqKey="Poot P">P Poot</name>
</author>
<author>
<name sortKey="Mommer, L" uniqKey="Mommer L">L Mommer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poorter, H" uniqKey="Poorter H">H Poorter</name>
</author>
<author>
<name sortKey="Buhler, J" uniqKey="Buhler J">J Bühler</name>
</author>
<author>
<name sortKey="Van Dusschoten, D" uniqKey="Van Dusschoten D">D van Dusschoten</name>
</author>
<author>
<name sortKey="Climent, J" uniqKey="Climent J">J Climent</name>
</author>
<author>
<name sortKey="Postma, Ja" uniqKey="Postma J">JA Postma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Price, Ca" uniqKey="Price C">CA Price</name>
</author>
<author>
<name sortKey="Enquist, Bj" uniqKey="Enquist B">BJ Enquist</name>
</author>
<author>
<name sortKey="Savage, Vm" uniqKey="Savage V">VM Savage</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ray, Jd" uniqKey="Ray J">JD Ray</name>
</author>
<author>
<name sortKey="Sinclair, Tr" uniqKey="Sinclair T">TR Sinclair</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reich, Pb" uniqKey="Reich P">PB Reich</name>
</author>
<author>
<name sortKey="Tjoelker, Mg" uniqKey="Tjoelker M">MG Tjoelker</name>
</author>
<author>
<name sortKey="Machado, Jl" uniqKey="Machado J">JL Machado</name>
</author>
<author>
<name sortKey="Oleksyn, J" uniqKey="Oleksyn J">J Oleksyn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reich, Pb" uniqKey="Reich P">PB Reich</name>
</author>
<author>
<name sortKey="Tjoelker, Mg" uniqKey="Tjoelker M">MG Tjoelker</name>
</author>
<author>
<name sortKey="Pregitzer, Ks" uniqKey="Pregitzer K">KS Pregitzer</name>
</author>
<author>
<name sortKey="Wright, Ij" uniqKey="Wright I">IJ Wright</name>
</author>
<author>
<name sortKey="Oleksyn, J" uniqKey="Oleksyn J">J Oleksyn</name>
</author>
<author>
<name sortKey="Machado, Jl" uniqKey="Machado J">JL Machado</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ryan, Mg" uniqKey="Ryan M">MG Ryan</name>
</author>
<author>
<name sortKey="Linder, S" uniqKey="Linder S">S Linder</name>
</author>
<author>
<name sortKey="Vose, Jm" uniqKey="Vose J">JM Vose</name>
</author>
<author>
<name sortKey="Hubbard, Rm" uniqKey="Hubbard R">RM Hubbard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sack, L" uniqKey="Sack L">L Sack</name>
</author>
<author>
<name sortKey="Mara N, T" uniqKey="Mara N T">T Marañón</name>
</author>
<author>
<name sortKey="Grubb, Pj" uniqKey="Grubb P">PJ Grubb</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savage, Vm" uniqKey="Savage V">VM Savage</name>
</author>
<author>
<name sortKey="Deeds, Ej" uniqKey="Deeds E">EJ Deeds</name>
</author>
<author>
<name sortKey="Fontana, W" uniqKey="Fontana W">W Fontana</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Teskey, Ro" uniqKey="Teskey R">RO Teskey</name>
</author>
<author>
<name sortKey="Saveyn, A" uniqKey="Saveyn A">A Saveyn</name>
</author>
<author>
<name sortKey="Steppe, K" uniqKey="Steppe K">K Steppe</name>
</author>
<author>
<name sortKey="Mcguire, Ma" uniqKey="Mcguire M">MA McGuire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vose, Jm" uniqKey="Vose J">JM Vose</name>
</author>
<author>
<name sortKey="Ryan, Mg" uniqKey="Ryan M">MG Ryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Taub, Dr" uniqKey="Taub D">DR Taub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Warton, Di" uniqKey="Warton D">DI Warton</name>
</author>
<author>
<name sortKey="Weber, Nc" uniqKey="Weber N">NC Weber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weiner, J" uniqKey="Weiner J">J Weiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="West, Gb" uniqKey="West G">GB West</name>
</author>
<author>
<name sortKey="Brown, Jh" uniqKey="Brown J">JH Brown</name>
</author>
<author>
<name sortKey="Enquist, Bj" uniqKey="Enquist B">BJ Enquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="West Eberhard, Mj" uniqKey="West Eberhard M">MJ West-Eberhard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xue, L" uniqKey="Xue L">L Xue</name>
</author>
<author>
<name sortKey="Lie, G" uniqKey="Lie G">G Lie</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G Lu</name>
</author>
<author>
<name sortKey="Shao, Y" uniqKey="Shao Y">Y Shao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Yh" uniqKey="Yang Y">YH Yang</name>
</author>
<author>
<name sortKey="Luo, Yq" uniqKey="Luo Y">YQ Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Yh" uniqKey="Yang Y">YH Yang</name>
</author>
<author>
<name sortKey="Fang, Jy" uniqKey="Fang J">JY Fang</name>
</author>
<author>
<name sortKey="Ma, Wh" uniqKey="Ma W">WH Ma</name>
</author>
<author>
<name sortKey="Guo, Dl" uniqKey="Guo D">DL Guo</name>
</author>
<author>
<name sortKey="Mohammat, A" uniqKey="Mohammat A">A Mohammat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zha, Ts" uniqKey="Zha T">TS Zha</name>
</author>
<author>
<name sortKey="Kellomaki, Z" uniqKey="Kellomaki Z">Z Kellomaki</name>
</author>
<author>
<name sortKey="Wang, Ky" uniqKey="Wang K">KY Wang</name>
</author>
<author>
<name sortKey="Ryyppo, A" uniqKey="Ryyppo A">A Ryyppo</name>
</author>
<author>
<name sortKey="Niinisto, S" uniqKey="Niinisto S">S Niinisto</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Ecol Evol</journal-id>
<journal-id journal-id-type="iso-abbrev">Ecol Evol</journal-id>
<journal-id journal-id-type="publisher-id">ece3</journal-id>
<journal-title-group>
<journal-title>Ecology and Evolution</journal-title>
</journal-title-group>
<issn pub-type="ppub">2045-7758</issn>
<issn pub-type="epub">2045-7758</issn>
<publisher>
<publisher-name>Blackwell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25505524</article-id>
<article-id pub-id-type="pmc">4242579</article-id>
<article-id pub-id-type="doi">10.1002/ece3.1184</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cheng</surname>
<given-names>Dongliang</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
<xref ref-type="aff" rid="au2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ma</surname>
<given-names>Yuzhu</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhong</surname>
<given-names>Quanling</given-names>
</name>
<xref ref-type="aff" rid="au1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Xu</surname>
<given-names>Weifeng</given-names>
</name>
<xref ref-type="aff" rid="au2">2</xref>
<xref ref-type="aff" rid="au3">3</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>College of Geographical Science, Fujian Normal University</institution>
<addr-line>Fuzhou, Fujian Province, 350007, China</addr-line>
</aff>
<aff id="au2">
<label>2</label>
<institution>State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong</institution>
<addr-line>Shatin, Hongkong, 999077, China</addr-line>
</aff>
<aff id="au3">
<label>3</label>
<institution>State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences</institution>
<addr-line>Nanjing, 210008, China</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">Quanling Zhong, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian Province 350007, China. Tel/Fax: +85 591 83465397, E-mail:
<email>qlzhong@126.com</email>
and Weifeng Xu, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China. Tel/Fax: +86 25 8688 1000; E-mail:
<email>wfxu@issas.ac.cn</email>
</corresp>
<fn>
<p>
<bold>Funding Information</bold>
This study was supported by grants from the National Natural Science Foundation of China (31170374, 31370589 and 31170596), National Basic Research Program of China (2014CB954500 and 2013CB127402) the Program for New Century Excellent Talents in Fujian Province University (JA12055), and Fujian Natural Science Funds for Distinguished Young Scholar (2013J06009).</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>10</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>9</month>
<year>2014</year>
</pub-date>
<volume>4</volume>
<issue>20</issue>
<fpage>3968</fpage>
<lpage>3977</lpage>
<history>
<date date-type="received">
<day>04</day>
<month>4</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>15</day>
<month>7</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 The Authors.
<italic>Ecology and Evolution</italic>
published by John Wiley & Sons Ltd.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>Allometric biomass allocation theory predicts that leaf biomass (
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
) scaled isometrically with stem (
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
) and root (
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) biomass, and thus above-ground biomass (leaf and stem) (
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
) and root (
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
scaled in an isometric or a nearly isometric manner with
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, as well as
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
to
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for five woody species. Significant variation was observed in the
<italic>Y-</italic>
intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, but not for
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
. We conclude, therefore, that a nearly isometric scaling relationship of
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.</p>
</abstract>
<kwd-group>
<kwd>Allometry</kwd>
<kwd>biomass partitioning patterns</kwd>
<kwd>intraspecific scaling and interspecific scaling</kwd>
<kwd>isometric scaling</kwd>
<kwd>leaf</kwd>
<kwd>stem and root biomass allocation</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Biomass allocation between different organs and above- versus below-ground parts is important in the performance of individual plants in terms of coping with abiotic and biotic stresses (West-Eberhard
<xref rid="b49" ref-type="bibr">2003</xref>
; Weiner
<xref rid="b47" ref-type="bibr">2004</xref>
; Poorter et al.
<xref rid="b34" ref-type="bibr">2012a</xref>
), and as well as of serving community functions, such as carbon flux (Hui and Jackson
<xref rid="b18" ref-type="bibr">2006</xref>
; Xue et al.
<xref rid="b50" ref-type="bibr">2013</xref>
). The allometric approach for biomass allocation describes the biomass of different parts as alloemtric relationships (Enquist and Niklas
<xref rid="b13" ref-type="bibr">2002</xref>
; Niklas
<xref rid="b28" ref-type="bibr">2004</xref>
,
<xref rid="b29" ref-type="bibr">2005</xref>
; Savage et al.
<xref rid="b42" ref-type="bibr">2008</xref>
), with the mathematical formula:</p>
<p>
<disp-formula>
<graphic xlink:href="ece30004-3968-m1.jpg" mimetype="image" position="float"></graphic>
</disp-formula>
</p>
<p>where
<italic>Y</italic>
<sub>1</sub>
and
<italic>Y</italic>
<sub>2</sub>
are biomass for different organs,
<italic>β</italic>
is a normalization (allometric) constant, and
<italic>α</italic>
is the scaling exponent. Prior work has shown that above-ground mass (leaf biomass + stem biomass, denoted by
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
) scales, on average, nearly isometrically with respect to below-ground mass (root biomass, denoted by
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) across a broad spectrum of ecologically diverse vascular plants at the individual level (Enquist and Niklas
<xref rid="b13" ref-type="bibr">2002</xref>
; Sack et al.
<xref rid="b41" ref-type="bibr">2002</xref>
; Niklas
<xref rid="b28" ref-type="bibr">2004</xref>
,
<xref rid="b29" ref-type="bibr">2005</xref>
; Cheng et al.
<xref rid="b6" ref-type="bibr">2009</xref>
; Xue et al.
<xref rid="b50" ref-type="bibr">2013</xref>
), as well as in the community level (i.e.
<italic>α</italic>
≈ 1.0) (Cheng and Niklas
<xref rid="b5" ref-type="bibr">2007</xref>
; Yang et al.
<xref rid="b52" ref-type="bibr">2010</xref>
; Yang and Luo
<xref rid="b51" ref-type="bibr">2011</xref>
). Such isometry is predicted from a strictly analytical approach to addressing how plants annually partition their total biomass into leaf, stem and root biomass based on the assumptions of the metabolic theory of ecology (West et al.
<xref rid="b48" ref-type="bibr">1999</xref>
).</p>
<p>Specifically, prior work has shown that for seedlings, which lack substantial quantities of secondary tissues, leaf, stem and root biomass should scale isometrically with respect to each other, as:</p>
<p>
<disp-formula id="m2">
<graphic xlink:href="ece30004-3968-m2.jpg" mimetype="image" position="float"></graphic>
<label>(1)</label>
</disp-formula>
</p>
<p>where
<italic>β</italic>
denotes an allometric constant numerically distinguished from others by its subscript. Because above-ground biomass is the sum of leaf and stem biomass:
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
=
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
+
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
, it followings that:</p>
<p>
<disp-formula id="m3">
<graphic xlink:href="ece30004-3968-m3.jpg" mimetype="image" position="float"></graphic>
<label>(2)</label>
</disp-formula>
</p>
<p>Therefore, an isometric relationship could be derived based on the isometric relationships among leaf, stem and root biomass for tree seedlings. Similarly, for larger trees, because annual accumulations of root wood exceed annual increases in leaf mass, above-ground biomass scales nearly isometrically with below-ground biomass (Enquist and Niklas
<xref rid="b13" ref-type="bibr">2002</xref>
). Nevertheless, the isometric biomass allocation pattern in seedlings for a given species remains controversial at least for two reasons. First, despite a number of theoretical and empirical justifications for constant scaling exponents at individual and community levels across a broad range of plant taxa growing in diverse environments, the invariance of the scaling exponents has been hotly debated (e.g. Dodds et al.
<xref rid="b11" ref-type="bibr">2001</xref>
; Kozlowski and Konarzewski
<xref rid="b21" ref-type="bibr">2004</xref>
; Reich et al.
<xref rid="b38" ref-type="bibr">2006</xref>
; Price et al.
<xref rid="b36" ref-type="bibr">2007</xref>
; Koontz et al.
<xref rid="b20" ref-type="bibr">2009</xref>
). And, second, there is no guarantee that interspecific biomass allocation patterns hold true for intraspecific biomass allocations. Specifically, ecologists have long demonstrated that ratio for above- to below-ground biomass (i.e., shoot/root ratio, SRR) varies across species and manifest adaptive responses to changes in environmental gradient (Niinemets
<xref rid="b27" ref-type="bibr">1998</xref>
; Poorter
<xref rid="b33" ref-type="bibr">2001</xref>
; Binkley et al.
<xref rid="b3" ref-type="bibr">2004</xref>
; McCarthy and Enquist
<xref rid="b24" ref-type="bibr">2007</xref>
; Cheng et al.
<xref rid="b6" ref-type="bibr">2009</xref>
; Wang and Taub
<xref rid="b45" ref-type="bibr">2010</xref>
; Poorter et al.
<xref rid="b34" ref-type="bibr">2012a</xref>
). Therefore, the allometric constant, which is equal to SRR (i.e., β
<sub>3</sub>
≈ SRR) when above-ground biomass scales isometrically with below-ground biomass, should be expected to vary across species. Indeed, Cheng and Niklas (
<xref rid="b5" ref-type="bibr">2007</xref>
) indicated that although
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
scaled nearly isometrically with
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, scaling constants differed between forest types. In this scenario, variation in scaling constants (β) among different species might result in different scaling exponents across species. For examples, Reich et al. (
<xref rid="b38" ref-type="bibr">2006</xref>
) reported that respiration rates scales nearly isometrically with biomass in individual studies, but scales as 0.81–0.84 power of body size across all data pooled because of the variation of scaling constants among individual studies. Therefore, whether the interspecific biomass allocation patterns hold true for intraspecific biomass allocations remains to be see.</p>
<p>We studied scaling relationships for biomass allocation patterns among five evergreen tree seedlings to test: (1) whether the isometric scaling relationships exist among different organs (leaf, stem, and root), (2) if not, whether such allometric relationship leads to a deviation for the isometric scaling relationship between above- and below-ground biomass, and (3) how the different scaling constants influence the scaling relationship across the entire data set.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and Methods</title>
<sec>
<title>Study sites</title>
<p>The seedlings were harvested between December 2012 and April 2013 at Forestry Science and Technology Promotion Center in Shunchang County, Fujian Province, China (26°46′N, 117°52′E). Here, the climate is subtropical monsoon climate; the mean annual temperature is 18.5°C, with an average temperature of 26.85°C in the warmest month (July) and of 9.1°C in the coldest month (January); the average annual precipitation is 1756 mm and the prevalent soil type is red soil. Seedlings were sampled based on the availability in the greenhouse of Forestry Science and Technology Promotion Center, containing two gymnosperm species (i.e.,
<italic>Pinus massoniana</italic>
Lamb. and
<italic>Cunninghamia lanceolata</italic>
(Lamb.) Hook.) and three angiosperm species (i.e.,
<italic>Machilus pauhoi</italic>
Kanehira,
<italic>Phoebe bournei</italic>
(Hemsl.) Yang and
<italic>Schima superba</italic>
Gardn. et Champ.). The five species were the typical forest planting species in Fujian province. Specifically, mature seeds of
<italic>P. massoniana</italic>
,
<italic>C. lanceolata,</italic>
and
<italic>S. superb</italic>
were provided by forestry department of Fujian province, and seeds for
<italic>M. pauhoi,</italic>
and
<italic>Phoebe bournei</italic>
species were collected from natural populations. Before sowing, seeds were disinfected with KMnO
<sub>4</sub>
solution for 30 min, and subsequently dipped in water at 20°C for 24 h. The dipped seeds were sown in wet sand and placed in a growth chamber until they germinated, after which they were planted individually in circle plastic containers filled with decomposed sawdust in March of 2012, expect for
<italic>S. superb</italic>
, which was planted in March of 2011. The seedlings were cultivated under sunshade net, which reduced incoming photosynthetically active radiation (PAR) by about 20% compared with that observed outside the shelter under sunny conditions. The shelter had no sidewalls, such that air temperature, wind speed, and relative humidity were similar to ambient conditions.</p>
</sec>
<sec>
<title>Biomass measurements</title>
<p>The range of sizes for each species was selected to represent the whole distribution observed in greenhouse. Therefore, a total of 258 individuals, ranging in size between 0.11 and 51.39 g, and including at least 19 individuals per species, were examined. All seedlings were cut at the base of the stem, to separate above-ground parts and below-ground parts (roots), followed by separation of the above-ground parts into leaf and stem. After the soils on roots were washed out, all leaf, stem, and root parts were dried at 65°C for 72 h to determine its biomass.</p>
</sec>
<sec>
<title>Statistical protocols</title>
<p>Data of leaf, stem, root, and above-ground biomass (denoted as
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
,
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
,
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, and
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
, respectively) were log
<sub>10</sub>
-transformed. Model Type II regression was used to determine the slope (scaling exponent) and
<italic>y</italic>
-intercept (allometric constant) of log–log linear relationships (i.e., α and log β, respectively). The software package “Standardized Major Axis Tests and Routines” (Warton and Weber
<xref rid="b46" ref-type="bibr">2002</xref>
; Falster et al.
<xref rid="b15" ref-type="bibr">2003</xref>
) was also used to determine whether the numerical values of α for log
<italic>M</italic>
<sub>
<italic>o</italic>
</sub>
versus log
<italic>M</italic>
<sub>
<italic>a</italic>
</sub>
differed between five species, where log
<italic>M</italic>
<sub>
<italic>o</italic>
</sub>
and log
<italic>M</italic>
<sub>
<italic>a</italic>
</sub>
are the mass variables of interest (plotted on the ordinate and abscissa axis, respectively). This software package, denoted by (S) MATR, was used to provide the Model Type II equivalent of OLS standard analyses of covariance (ANCOVA). The significance level for testing slope heterogeneity was
<italic>P</italic>
< 0.05 (i.e., common slope was rejected if
<italic>P</italic>
< 0.05). If the compared regressions have common slopes but have different y-intercepts, then the difference in y-intercepts might lead to the significant difference between the common slope across species and the slope obtained from the all data.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>Significant allometric relationships were detected among biomass components across and within five woody species (i.e.,
<italic>r</italic>
<sup>2</sup>
> 0.73). For each allometry, different species typically had the nearly consistent slope with different scaling constants, except for the relationship between
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
.</p>
<sec>
<title>The scaling of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</title>
<p>The scaling exponents for leaf with respect to stem biomass differed significantly (
<italic>P</italic>
= 0.001) among five species (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig01">1</xref>
). Numerically, the lowest scaling exponent was observed for
<italic>P. massoniana</italic>
; the highest was obtained for
<italic>S. superba</italic>
(i.e., α
<sub>RMA</sub>
= 0.76 and 1.02, respectively). Based on 95% CIs overlaps and ANCOVA analyses, the
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
scaling exponents for
<italic>C. lanceolata</italic>
and
<italic>S. superba</italic>
were statistically indistinguishable from isometry (
<italic>P</italic>
= 0.215 and 0.525, respectively), whereas the scaling exponents for the other three species were significantly <1.0 (
<italic>P</italic>
< 0.001).</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<p>(S) MATR reduced major axis regression slopes and y-intercepts (α
<sub>RMA</sub>
and log β
<sub>RMA</sub>
, respectively) for log
<sub>10</sub>
-tranformed data of leaf, stem and root (
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
,
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, respectively), and above- and below-ground biomass (
<italic>M</italic>
<sub>A</sub>
and
<italic>M</italic>
<sub>R</sub>
, respectively) within and across five species. Scaling exponents in bold type have 95% CIs that numerically include the predicted value of 1.0.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th rowspan="1" colspan="1"></th>
<th align="center" rowspan="1" colspan="1">α
<sub>RMA</sub>
(95% CI)</th>
<th align="center" rowspan="1" colspan="1">log β
<sub>RMA</sub>
</th>
<th align="center" rowspan="1" colspan="1">
<italic>r</italic>
<sup>
<italic>2</italic>
</sup>
</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" colspan="4" rowspan="1">
<italic>Pinus massoniana</italic>
(
<italic>n</italic>
= 68)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">0.76 (0.70; 0.83)</td>
<td align="center" rowspan="1" colspan="1">0.068</td>
<td align="center" rowspan="1" colspan="1">0.879</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.87 (0.75; 1.00)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.29</td>
<td align="center" rowspan="1" colspan="1">0.665</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">1.14 (1.01; 1.29)</td>
<td align="center" rowspan="1" colspan="1">0.30</td>
<td align="center" rowspan="1" colspan="1">0.762</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.96 (0.85; 1.09)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.58</td>
<td align="center" rowspan="1" colspan="1">0.742</td>
</tr>
<tr>
<td align="left" colspan="4" rowspan="1">
<italic>Cunninghamia lanceolata</italic>
(
<italic>n</italic>
= 58)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.93 (0.83; 1.04)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.31</td>
<td align="center" rowspan="1" colspan="1">0.826</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.90 (0.79; 1.02)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.18</td>
<td align="center" rowspan="1" colspan="1">0.782</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.96 (0.84; 1.10)</bold>
</td>
<td align="center" rowspan="1" colspan="1">−0.14</td>
<td align="center" rowspan="1" colspan="1">0.739</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.91 (0.80; 1.02)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.35</td>
<td align="center" rowspan="1" colspan="1">0.798</td>
</tr>
<tr>
<td align="left" colspan="4" rowspan="1">
<italic>Machilus pauhoi</italic>
(
<italic>n</italic>
= 53)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">0.86 (0.81; 0.91)</td>
<td align="center" rowspan="1" colspan="1">0.27</td>
<td align="center" rowspan="1" colspan="1">0.952</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.96 (0.88; 1.05)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.29</td>
<td align="center" rowspan="1" colspan="1">0.898</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">1.12 (1.04; 1.20)</td>
<td align="center" rowspan="1" colspan="1">0.016</td>
<td align="center" rowspan="1" colspan="1">0.934</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.01 (0.93; 1.09)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.48</td>
<td align="center" rowspan="1" colspan="1">0.921</td>
</tr>
<tr>
<td align="left" colspan="4" rowspan="1">
<italic>Phoebe bournei</italic>
(
<italic>n</italic>
= 19)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">0.84 (0.77; 0.92)</td>
<td align="center" rowspan="1" colspan="1">0.17</td>
<td align="center" rowspan="1" colspan="1">0.968</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.87 (0.73; 1.03)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.36</td>
<td align="center" rowspan="1" colspan="1">0.881</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.03 (0.89; 1.20)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.22</td>
<td align="center" rowspan="1" colspan="1">0.912</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.93 (0.79; 1.09)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.60</td>
<td align="center" rowspan="1" colspan="1">0.897</td>
</tr>
<tr>
<td align="left" colspan="4" rowspan="1">
<italic>Schima superba</italic>
(
<italic>n</italic>
= 60)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.02 (0.95; 1.10)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.12</td>
<td align="center" rowspan="1" colspan="1">0.926</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.00 (0.90; 1.10)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.13</td>
<td align="center" rowspan="1" colspan="1">0.862</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.97 (0.87; 1.08)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.0080</td>
<td align="center" rowspan="1" colspan="1">0.823</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>0.96 (0.87; 1.06)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.38</td>
<td align="center" rowspan="1" colspan="1">0.855</td>
</tr>
<tr>
<td align="left" colspan="4" rowspan="1">All data (
<italic>n</italic>
= 258)</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">0.88 (0.85; 0.91)</td>
<td align="center" rowspan="1" colspan="1">0.20</td>
<td align="center" rowspan="1" colspan="1">0.902</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">0.89 (0.85; 0.93)</td>
<td align="center" rowspan="1" colspan="1">0.23</td>
<td align="center" rowspan="1" colspan="1">0.833</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">
<bold>1.01 (0.96; 1.06)</bold>
</td>
<td align="center" rowspan="1" colspan="1">0.030</td>
<td align="center" rowspan="1" colspan="1">0.834</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1"> log
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs. log
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</td>
<td align="center" rowspan="1" colspan="1">0.92 (0.88; 0.96)</td>
<td align="center" rowspan="1" colspan="1">0.44</td>
<td align="center" rowspan="1" colspan="1">0.854</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="fig01" position="float">
<label>Figure 1</label>
<caption>
<p>Log–log bivariate plots of leaf versus stem biomass (
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs.
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
) within and across five evergreen tree species. (A)
<italic>Pinus massoniana</italic>
; (B)
<italic>Cunninghamia lanceolata</italic>
; (C)
<italic>Machilus pauhoi</italic>
; (D)
<italic>Phoebe bournei</italic>
; (E)
<italic>Schima superb</italic>
; (F) across five species.</p>
</caption>
<graphic xlink:href="ece30004-3968-f1"></graphic>
</fig>
<p>The scaling constants varied significantly among five species, ranging from 0.068 for
<italic>P. massoniana</italic>
to 0.31 for
<italic>C. lanceolata</italic>
. Therefore,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
scaled as 0.88-power with respect to
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
across the entire data, which was significantly <1.0 expected for seedlings (
<italic>P</italic>
< 0.001 for five species).</p>
</sec>
<sec>
<title>The scaling of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
(
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
) versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</title>
<p>The isometric scaling relationship for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
was versified for the sampled five species. Specifically, the ANCOVA results indicated that the five species had the common slope (i.e.,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>0.94</sup>
, 95% CI = 0.89–0.99,
<italic>P</italic>
= 0.383) and that the scaling exponent for each species was indistinguishable from 1.0 (
<italic>P</italic>
> 0.05 for five species) (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig02">2</xref>
). However, the scaling constants varied from 0.13 for
<italic>S. superb</italic>
to 0.36 for
<italic>P. bournei</italic>
, leading to a negative allometric relationship between
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
across the entire data set (i.e.,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>0.89 < 1.0</sup>
, 95% CI = 0.85–0.93) that differed significantly from 1.0 (
<italic>P</italic>
< 0.001).</p>
<fig id="fig02" position="float">
<label>Figure 2</label>
<caption>
<p>Log–log bivariate plots of leaf versus root biomass (
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
vs.
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) within and across five evergreen tree species. (A)
<italic>Pinus massoniana</italic>
; (B)
<italic>Cunninghamia lanceolata</italic>
; (C)
<italic>Machilus pauhoi</italic>
; (D)
<italic>Phoebe bournei</italic>
; (E)
<italic>Schima superb</italic>
; (F) across five species.</p>
</caption>
<graphic xlink:href="ece30004-3968-f2"></graphic>
</fig>
<p>Similarly, five species had the common slope for the relationship between stem and root biomass (i.e.,
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>1.06</sup>
, 95% CI = 1.01–1.18,
<italic>P</italic>
= 0.086) (Fig.
<xref ref-type="fig" rid="fig03">3</xref>
). Only two of five species had 95% CIs of the slopes that were slightly higher than unit (i.e., 1.01 and 1.04 for
<italic>P. massoniana</italic>
and
<italic>M. pauhoi</italic>
, respectively). Furthermore, across the entire data set,
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
scaled as 1.01-power of
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
, which was indistinguishable from 1.0 (
<italic>P</italic>
= 0.683) (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig03">3</xref>
).</p>
<fig id="fig03" position="float">
<label>Figure 3</label>
<caption>
<p>Log–log bivariate plots of stem versus root biomass (
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
vs.
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) within and across five evergreen tree species. (A)
<italic>Pinus massoniana</italic>
; (B)
<italic>Cunninghamia lanceolata</italic>
; (C)
<italic>Machilus pauhoi</italic>
; (D)
<italic>Phoebe bournei</italic>
; (E)
<italic>Schima superb</italic>
; (F) across five species.</p>
</caption>
<graphic xlink:href="ece30004-3968-f3"></graphic>
</fig>
</sec>
<sec>
<title>The scaling of
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
</title>
<p>The above-ground biomass scaled isometrically with respect to below-ground biomass for five species, with a common slope of 0.97 (95% CI = 0.92–1.01,
<italic>P</italic>
= 0.65) (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Figs.
<xref ref-type="fig" rid="fig04">4</xref>
,
<xref ref-type="fig" rid="fig05">5</xref>
). The scaling constants ranged from 0.35 for
<italic>C. lanceolata</italic>
to 0.60 for
<italic>P. bournei</italic>
. Furthermore, across five species, the above-ground biomass scaled as 0.92 power with below-ground biomass, which was close to unity based on its 95% CIs (i.e., 0.88–0.96). Therefore, the variation in scaling constants of
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
within five species did not change the isometric scaling exponent across the entire data sets.</p>
<fig id="fig04" position="float">
<label>Figure 4</label>
<caption>
<p>Log–log bivariate plots of above- versus below-ground (root) biomass (
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs.
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) within and across five evergreen tree species. (A)
<italic>Pinus massoniana</italic>
; (B)
<italic>Cunninghamia lanceolata</italic>
; (C)
<italic>Machilus pauhoi</italic>
; (D)
<italic>Phoebe bournei</italic>
; (E)
<italic>Schima superb</italic>
.</p>
</caption>
<graphic xlink:href="ece30004-3968-f4"></graphic>
</fig>
<fig id="fig05" position="float">
<label>Figure 5</label>
<caption>
<p>Log–log bivariate plots of above- versus below-ground (root) biomass (
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs.
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) across five evergreen tree saplings and the larger trees of China. The data of larger tree were taken from Luo (
<xref rid="b23" ref-type="bibr">1996</xref>
).</p>
</caption>
<graphic xlink:href="ece30004-3968-f5"></graphic>
</fig>
<p>As expected from Eq.
<xref ref-type="disp-formula" rid="m3">2</xref>
, the scaling constant for the scaling relationship of above- versus below-ground biomass should equal the sum of scaling constants of leaf and stem with respect to root (i.e.,
<inline-formula>
<inline-graphic xlink:href="ece30004-3968-mu4.jpg" mimetype="image"></inline-graphic>
</inline-formula>
, see Eq.
<xref ref-type="disp-formula" rid="m3">2</xref>
). Such relationship was verified from the five woody species (Fig.
<xref ref-type="fig" rid="fig06">6</xref>
).</p>
<fig id="fig06" position="float">
<label>Figure 6</label>
<caption>
<p>Bivariate plots of empirical and predicted scaling constants of above- versus below-ground (root) biomass (
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vs.
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
) for five evergreen species. The predicted scaling constants for
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
were calculated from the scaling constants of leaf and stem versus root biomass through Eq.
<xref ref-type="disp-formula" rid="m3">2</xref>
.</p>
</caption>
<graphic xlink:href="ece30004-3968-f6"></graphic>
</fig>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<sec>
<title>Scaling relationships among leaf, stem and root biomass</title>
<p>Allometric theory predicted that
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
should scale nearly isometrically with
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for small plants (e.g., seedlings) because of the isometric relationships existing among
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
,
<italic>M</italic>
<sub>
<italic>S,</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
(Eq.
<xref ref-type="disp-formula" rid="m2">1</xref>
). As expected, our data indicated that isometric or near-isometric scaling relationships existed for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
within five tree seedlings. However, our data did not support isometric scaling for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
in three of the five species and across the entire data sets.</p>
<p>Although RMA regression analyses of biomass allocation patterns indicated that scaling exponents of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
were indistinguishable within and across the five species (
<italic>P</italic>
= 0.295 and 0.070, respectively), the
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
scaling relationship excludes unique numerical values across five species, but not for within each species (Table
<xref ref-type="table" rid="tbl1">1</xref>
). Indeed, the five species of tree seedlings had a common slope of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
that is indistinguishable from 1.0 (Fig.
<xref ref-type="fig" rid="fig02">2</xref>
), whereas, across the entire data set,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
scaled as 0.89-power with
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, which is significantly <1.0 (
<italic>P</italic>
< 0.001) (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig02">2</xref>
). Therefore, we concluded that isometric scaling relationship between
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
holds for intraspecific seedlings, but not for interspecific relationship. Further, we argued that the difference in the scaling constants for the relationship between
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for five species (
<italic>P</italic>
< 0.01) (Table
<xref ref-type="table" rid="tbl1">1</xref>
), lead to the divergence in scaling exponents for intraspecies and interspecies.</p>
<p>The 95% CI for scaling exponents of
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for the five species include or near 1.0 (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig03">3</xref>
). Furthermore, across the entire data set,
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
scaled as 0.99-power of
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
, which is indistinguishable from 1.0 (
<italic>P</italic>
= 0.683). We conclude, therefore, that isometric scaling relationships for
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
hold true within and across five species, irrespective the difference in scaling constants.</p>
<p>Niklas (
<xref rid="b29" ref-type="bibr">2005</xref>
) reported interspecific scaling relationships among leaf, stem, root, and above- to below-ground biomass for nonwoody plant and woody plant juveniles that lack secondary tissues (i.e., seedlings). Therefore, we also compared our data with such results. Specifically, the
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
regression slopes across small plants used to compare with our seedlings slopes were 0.94 (95% CIs = 0.92–0.98) and 0.98 (95% CIs = 0.95–1.02), respectively (Table
<xref ref-type="table" rid="tbl1">1</xref>
in Niklas
<xref rid="b29" ref-type="bibr">2005</xref>
). Although the data of Niklas (
<xref rid="b29" ref-type="bibr">2005</xref>
) collected most from nonwoody species, we have shown that the interspecific scaling exponents of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for woody seedlings were numerically consistent with that reported by Niklas (
<xref rid="b29" ref-type="bibr">2005</xref>
) based on the 95% CIs (Table
<xref ref-type="table" rid="tbl1">1</xref>
).</p>
<p>Interestingly, isometric or near-isometric scaling relationship existed for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
within five species (Table
<xref ref-type="table" rid="tbl1">1</xref>
), leading us to speculate that such isometric scaling relationship might hold for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
for each species. However, our data did not support this hypothesis (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig01">1</xref>
). Prior studies have illustrated that the scaling exponents for leaf biomass and stem biomass range from 3/4 to 1.0, depending on the tree size (e.g., Enquist et al.
<xref rid="b14" ref-type="bibr">2007</xref>
). The likely explanation for the systemic departure from isometry is that plants would allocate proportionately more to conducting and supporting tissues with increasing plant size (Niklas
<xref rid="b29" ref-type="bibr">2005</xref>
; Mori et al.
<xref rid="b25" ref-type="bibr">2010</xref>
). Our data indicated that the scaling exponents of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
within and across five species all fell within such range. However, only two of five species (i.e.,
<italic>C. lanceolata and S. superba</italic>
) exhibited isometric scaling relationship for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
as expected for seedlings. In addition, the scaling constants differed significantly among five species, resulting in a negative allometric relationship between
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
across the entire data (i.e.
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
<sup>0.88</sup>
) (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig01">1</xref>
). Indeed, the isometric hypothesis for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
is based on the suggestion of Reich et al. (
<xref rid="b38" ref-type="bibr">2006</xref>
) that scaling of metabolic rate in small plants is inherently isometric (Cheng et al.
<xref rid="b7" ref-type="bibr">2010</xref>
; Mori et al.
<xref rid="b25" ref-type="bibr">2010</xref>
; Peng et al.
<xref rid="b32" ref-type="bibr">2010</xref>
) and that leaf is the only photosynthetic organ and one of the substitutions for plant metabolic rate (West et al.
<xref rid="b48" ref-type="bibr">1999</xref>
; Enquist and Niklas
<xref rid="b13" ref-type="bibr">2002</xref>
). Therefore, the departure from isometric scaling of three species may potentially be attributed to the fact that the leaf biomass is neither the only photosynthetic organ nor the good proxy for seedlings metabolism for three of five species. Firstly, as proposed by the functional equivalence hypothesis (FEH), the isometric biomass allocation for seedlings reflects the different parts (i.e., leaf, stem, and root) are functionally equivalent (Niklas
<xref rid="b30" ref-type="bibr">2006</xref>
). Any change in one component should lead to the change in the other functional parts to maintain comparable functional levels of performance dictated by biophysically or physiologically invariant “rules”. According to FEH, it is reasonable to suspect that stem and leaf should be also functionally equivalent (i.e.,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
<sup>1.0</sup>
) for seedlings to support rapid growth. Specifically, leaf has adapted to optimize photosynthesis, and stems elevate the leaves, serving as a conduit from the roots to the leaves. However, in addition to green leaves, stems of many plant species contain active chloroplasts, which efficiently perform photosynthetic CO
<sub>2</sub>
assimilation (e.g., Aschan and Pfanz
<xref rid="b1" ref-type="bibr">2003</xref>
; Teskey et al.
<xref rid="b43" ref-type="bibr">2008</xref>
). Thus, according to FEH, a negative scaling exponent (i.e., scaling exponent <1.0) might be expected between
<italic>M</italic>
<sub>L</sub>
and
<italic>M</italic>
<sub>S</sub>
because the stem photosynthesis can contribute significantly to woody plant carbon balance. Secondly, the metabolic (e.g., respiration and photosynthesis) rates differ among different tissues and organs, as well as species (Ryan et al.
<xref rid="b40" ref-type="bibr">1994</xref>
; Zha et al.
<xref rid="b53" ref-type="bibr">2004</xref>
; Reich et al.
<xref rid="b39" ref-type="bibr">2008</xref>
; Kutschera and Niklas
<xref rid="b22" ref-type="bibr">2012</xref>
). Photosynthesis rate can vary according to resource allocation, and leaf age (Duursma et al.
<xref rid="b12" ref-type="bibr">2010</xref>
); also photosynthetic tissues are not restricted to leaves (Deng et al.
<xref rid="b10" ref-type="bibr">2008</xref>
; Koontz et al.
<xref rid="b20" ref-type="bibr">2009</xref>
). Likewise, respiration rates vary nearly 40-fold among the different tissues of
<italic>Pinus strobes</italic>
(Vose and Ryan
<xref rid="b44" ref-type="bibr">2002</xref>
). Therefore, the leaf might not be a good proxy of metabolism. Taken together, such deviations might account for the negative scaling relationships between leaf and stem for three of five species.</p>
</sec>
<sec>
<title>Scaling relationship between above- and below-ground biomass</title>
<p>The relationships observed for
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
were consistent with those predicted by the model for all five species. Unlike the invariant isometric scaling exponents, substantial variation in scaling constants was observed for five different species, indicating that absolute values of
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
vary substantially with respect to
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
across different species. That is
<italic>P. bournei</italic>
would had the highest stem to root ratio (SRR, scaling constant = 0.60) and
<italic>C. lanceolata</italic>
had the lowest SRR (scaling constant = 0.35). Our data also indicated that there is a nearly isometric relationship for
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
across the entire data, irrespective of the significant variations in allometric constant for different species (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig05">5</xref>
). In addition, such interspecific isometric scaling was consistent with the results reported by Niklas (
<xref rid="b29" ref-type="bibr">2005</xref>
) that
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
scaled as 0.96 (95% CIs = 0.93–0.97) power with
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
for nonwoody plant based on 95% CIs. Moreover, the nearly isometric relationship between
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
observed in saplings is also agreement with pattern established in China's larger trees (Luo
<xref rid="b23" ref-type="bibr">1996</xref>
) (Fig.
<xref ref-type="fig" rid="fig05">5</xref>
). Specifically, a scaling exponent of 1.02 (95% CIs = 1.02–1.03;
<italic>n</italic>
= 1524,
<italic>r</italic>
<sup>2</sup>
= 0.991) across saplings and larger trees is in agreement with isometric biomass allocation pattern expectations (e.g., Enquist and Niklas
<xref rid="b13" ref-type="bibr">2002</xref>
), given that it is slightly larger than the predicted minimum value of 1.0. Therefore, we argue that nonwoody plant and seedlings of woody plants have the similar above- to below-ground biomass allocation scaling. Likewise, because the empirical scaling constants for
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
were consistent with the predicted values within five species (Fig.
<xref ref-type="fig" rid="fig06">6</xref>
), our results provided support for FEH that above- and below-ground is be functionally equivalent (Niklas
<xref rid="b30" ref-type="bibr">2006</xref>
).</p>
<p>It has long been acknowledged that above- and below-ground biomass allocation is influenced by the environment, plant size, competition and a variety of other factors (Brouwer
<xref rid="b4" ref-type="bibr">1962</xref>
; Poorter et al.
<xref rid="b34" ref-type="bibr">2012a</xref>
). Briefly, plants will allocate relatively more biomass to root if below-ground growth is limited (e.g., nutrients), whereas plants should allocate more biomass to shoot if above-ground growth is limited (e.g., light) (e.g., Davidson
<xref rid="b9" ref-type="bibr">1969</xref>
; Hunt and Burnett
<xref rid="b19" ref-type="bibr">1973</xref>
). However, such facts are accorded well with the allometric biomass partitioning studies because that the scaling constant represents the mean ratio above- to below-ground biomass (Gayon
<xref rid="b16" ref-type="bibr">2000</xref>
). For example, previous studies indicate the plants growing under diverse environments had the nearly isometric scaling exponents between above- and below-ground biomass, but with different scaling constants (e.g., Cheng and Niklas
<xref rid="b5" ref-type="bibr">2007</xref>
). Thus, the variations of the scaling constants in this studies reflect the intrinsic below- and above-ground biomass allocation properties among different species (Table
<xref ref-type="table" rid="tbl1">1</xref>
; Fig.
<xref ref-type="fig" rid="fig04">4</xref>
,
<xref ref-type="fig" rid="fig05">5</xref>
). Further, another important factor regulating plant above- to below-ground biomass allocation is pot size effects (e.g., Bandara et al.
<xref rid="b2" ref-type="bibr">1998</xref>
; Ray and Sinclair
<xref rid="b37" ref-type="bibr">1998</xref>
; Hess and de Kroon
<xref rid="b17" ref-type="bibr">2007</xref>
). Indeed, based on the meta-analysis, Poorter et al. (
<xref rid="b35" ref-type="bibr">2012b</xref>
) demonstrate that doubling of the pot size increases biomass production by 43%. Consistent with such findings, Hess and de Kroon (
<xref rid="b17" ref-type="bibr">2007</xref>
) assume that root size increases with pot size, regardless of nutrient concentration. However, based on the detailed study of
<italic>Cakile edentula</italic>
, Murphy et al. (
<xref rid="b26" ref-type="bibr">2013</xref>
) suggest that biomass allocation show complex pattern with pot size. That is, without increasing of nutrients, root biomass would do not increase with pot size. Therefore, whether the isometric allocation of above- and below-ground biomass holds true irrespectively the pot size effects remains to be seen. Therefore, future research toward understanding the scaling of plant biomass allocation requires special consideration of pot size effects.</p>
</sec>
</sec>
<sec sec-type="conclusions">
<title>Conclusions</title>
<p>Isometric or nearly isometric scaling relationships were verified for leaf and stem with respect to root biomass, and thus above- to below-ground biomass for five woody species (i.e.,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>
<italic></italic>
1.0</sup>
,
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>
<italic></italic>
1.0</sup>
and
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>
<italic></italic>
1.0</sup>
, respectively). However, statistically significant variation exists for scaling constants among five woody species for above scaling relationships. Although ANCOVA analyses indicated that intraspecific scaling exponents of
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
,
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R,</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
were indistinguishable from the interspecific trend, the isometric scaling relationship does not hold for interspecific relationship for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, which is significantly <1.0 (i.e.,
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
<sup>0.89</sup>
). Nevertheless, variation in scaling constants leads to different scaling exponents for
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
, but nor for
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>A</italic>
</sub>
versus
<italic>M</italic>
<sub>
<italic>R</italic>
</sub>
within and across five evergreen woody species.</p>
<p>Furthermore, the negative scaling exponents were verified for three of five species and cross the entire data set for the relationship between
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
and
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
(
<italic>M</italic>
<sub>
<italic>L</italic>
</sub>
<italic>M</italic>
<sub>
<italic>S</italic>
</sub>
<sup><1.0</sup>
). We argue that stem photosynthesis violates the functional equivalence rule for plant biomass allocation, and that leaf might not be a good proxy of plant whole metabolism, resulting in the deviation from isometric scaling relationship. Thus, it requires additional data sets with which to compare our results. An investigation into how variation in the contribution of stem photosynthesis to seedling carbon balance affecting the scaling relationship between leaf and stem allocation for seedlings is particularly warranted.</p>
</sec>
</body>
<back>
<ack>
<p>The authors thank Youliang Zhan for collecting seeds and Tao Li for many helpful comments that improved this paper. This study was supported by grants from the National Natural Science Foundation of China (31170374, 31370589 and 31170596), National Basic Research Program of China (2014CB954500 and 2013CB127402), the Program for New Century Excellent Talents in Fujian Province University (JA12055), and Fujian Natural Science Funds for Distinguished Young Scholar (2013J06009).</p>
</ack>
<sec>
<title>Conflict of Interest</title>
<p>None declared.</p>
</sec>
<ref-list>
<title>References</title>
<ref id="b1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aschan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Pfanz</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Non-foliar photosynthesis: a strategy of additional carbon acquisition</article-title>
<source>Flora</source>
<year>2003</year>
<volume>198</volume>
<fpage>81</fpage>
<lpage>97</lpage>
</element-citation>
</ref>
<ref id="b2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bandara</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Tanino</surname>
<given-names>KK</given-names>
</name>
<name>
<surname>Waterer</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Effect of pot size and timing of plant growth regulator treatments on growth and tuber yield in greenhouse-grown Norland and Russet Burbank potatoes</article-title>
<source>J. Plant Growth Regul</source>
<year>1998</year>
<volume>17</volume>
<fpage>75</fpage>
<lpage>79</lpage>
</element-citation>
</ref>
<ref id="b3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binkley</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Stape</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Thinking about efficiency of resource use in forests</article-title>
<source>For. Ecol. Manage</source>
<year>2004</year>
<volume>193</volume>
<fpage>5</fpage>
<lpage>16</lpage>
</element-citation>
</ref>
<ref id="b4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brouwer</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Distribution of dry matter in the plant</article-title>
<source>Neth. J. Agric. Sci</source>
<year>1962</year>
<volume>10</volume>
<fpage>361</fpage>
<lpage>376</lpage>
</element-citation>
</ref>
<ref id="b5">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Above- and below-ground biomass relationships across 1534 forested communities</article-title>
<source>Ann. Bot</source>
<year>2007</year>
<volume>99</volume>
<fpage>95</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="pmid">17085476</pub-id>
</element-citation>
</ref>
<ref id="b6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>GX</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>QL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>QL</given-names>
</name>
</person-group>
<article-title>Invariant allometric relationship between above- and below-ground biomass along a moisture gradient in North-West China</article-title>
<source>Pol. J. Ecol</source>
<year>2009</year>
<volume>57</volume>
<fpage>669</fpage>
<lpage>675</lpage>
</element-citation>
</ref>
<ref id="b7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Zhong</surname>
<given-names>QL</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>GX</given-names>
</name>
</person-group>
<article-title>Scaling relationship between tree respiration rates and biomass</article-title>
<source>Biol. Lett</source>
<year>2010</year>
<volume>6</volume>
<fpage>715</fpage>
<lpage>717</lpage>
<pub-id pub-id-type="pmid">20356882</pub-id>
</element-citation>
</ref>
<ref id="b9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davidson</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Effect of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover</article-title>
<source>Ann. Bot</source>
<year>1969</year>
<volume>33</volume>
<fpage>561</fpage>
<lpage>569</lpage>
</element-citation>
</ref>
<ref id="b10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>GX</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>ZL</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Trade-offs between the metabolic rate and population density of plants</article-title>
<source>PLoS ONE</source>
<year>2008</year>
<volume>3</volume>
<fpage>e1799</fpage>
<pub-id pub-id-type="pmid">18350139</pub-id>
</element-citation>
</ref>
<ref id="b11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dodds</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rothman</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Weitz</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>Reexamination of the ‘‘3/4-law’’ of metabolism</article-title>
<source>J. Theor. Biol</source>
<year>2001</year>
<volume>209</volume>
<fpage>9</fpage>
<lpage>27</lpage>
<pub-id pub-id-type="pmid">11237567</pub-id>
</element-citation>
</ref>
<ref id="b12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Duursma</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Mäkelä</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Jokela</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Porté</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>Self-shading affects allometric scaling in trees</article-title>
<source>Funct. Ecol</source>
<year>2010</year>
<volume>24</volume>
<fpage>723</fpage>
<lpage>730</lpage>
</element-citation>
</ref>
<ref id="b13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enquist</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Global allocation rules for patterns of biomass partitioning in seed plants</article-title>
<source>Science</source>
<year>2002</year>
<volume>295</volume>
<fpage>1517</fpage>
<lpage>1520</lpage>
<pub-id pub-id-type="pmid">11859193</pub-id>
</element-citation>
</ref>
<ref id="b14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Enquist</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Gillooly</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Kerkhoff</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Nikla</surname>
<given-names>KJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Biological scaling: does the exception prove the rule?</article-title>
<source>Nature</source>
<year>2007</year>
<volume>445</volume>
<fpage>E9</fpage>
<lpage>E10</lpage>
<pub-id pub-id-type="pmid">17268426</pub-id>
</element-citation>
</ref>
<ref id="b15">
<element-citation publication-type="other">
<person-group person-group-type="author">
<name>
<surname>Falster</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Warton</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<year>2003</year>
<comment>(S) MATR: standardised major axis tests and routines. Version 1.0. Available at
<ext-link ext-link-type="uri" xlink:href="http://www.bio.mq.edu.au/ecology/SMATR">http://www.bio.mq.edu.au/ecology/SMATR</ext-link>
. Accessed 18, MAY 2006</comment>
</element-citation>
</ref>
<ref id="b16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gayon</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>History of the concept of allometry</article-title>
<source>Am. Zool</source>
<year>2000</year>
<volume>40</volume>
<fpage>748</fpage>
<lpage>758</lpage>
</element-citation>
</ref>
<ref id="b17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hess</surname>
<given-names>L</given-names>
</name>
<name>
<surname>de Kroon</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination</article-title>
<source>J. Ecol</source>
<year>2007</year>
<volume>95</volume>
<fpage>241</fpage>
<lpage>251</lpage>
</element-citation>
</ref>
<ref id="b18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hui</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data</article-title>
<source>New Phytol</source>
<year>2006</year>
<volume>169</volume>
<fpage>85</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="pmid">16390421</pub-id>
</element-citation>
</ref>
<ref id="b19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hunt</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Burnett</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>The effects of light intensity and external potassium level on root/shoot ratio and rates of potassium uptake in perennial ryegrass (
<italic>Lolium perenne</italic>
L.)</article-title>
<source>Ann. Bot</source>
<year>1973</year>
<volume>37</volume>
<fpage>519</fpage>
<lpage>537</lpage>
</element-citation>
</ref>
<ref id="b20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Koontz</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Petroff</surname>
<given-names>A</given-names>
</name>
<name>
<surname>West</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>Scaling relations for a functionally two-dimensional plant: Chamaesyce Setiloba (Euphorbiaceae)</article-title>
<source>Am. J. Bot</source>
<year>2009</year>
<volume>96</volume>
<fpage>877</fpage>
<lpage>884</lpage>
<pub-id pub-id-type="pmid">21628240</pub-id>
</element-citation>
</ref>
<ref id="b21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozlowski</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Konarzewski</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Is West Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant?</article-title>
<source>Funct. Ecol</source>
<year>2004</year>
<volume>18</volume>
<fpage>283</fpage>
<lpage>289</lpage>
</element-citation>
</ref>
<ref id="b22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kutschera</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Organ-specific rates of cellular respiration in developing sunflower seedlings and their bearing on metabolic scaling theory</article-title>
<source>Protoplasma</source>
<year>2012</year>
<volume>24</volume>
<fpage>1049</fpage>
<lpage>1057</lpage>
<pub-id pub-id-type="pmid">22016107</pub-id>
</element-citation>
</ref>
<ref id="b23">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Luo</surname>
<given-names>TX</given-names>
</name>
</person-group>
<source>Patterns of biological production and its mathematical models for main forest types of China (in Chinese)</source>
<year>1996</year>
<publisher-loc>Beijing</publisher-loc>
<publisher-name>Committee of Synthesis Investigation of Natural Resources, The Chinese Academy of Sciences</publisher-name>
</element-citation>
</ref>
<ref id="b24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCarthy</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Enquist</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation</article-title>
<source>Funct. Ecol</source>
<year>2007</year>
<volume>21</volume>
<fpage>713</fpage>
<lpage>720</lpage>
</element-citation>
</ref>
<ref id="b25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mori</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yamaji</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Ishida</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Prokushkin</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Masyagina</surname>
<given-names>OV</given-names>
</name>
<name>
<surname>Hagihara</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mixed-power scaling of whole-plant respiration from seedlings to giant trees</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2010</year>
<volume>107</volume>
<fpage>1447</fpage>
<lpage>1451</lpage>
<pub-id pub-id-type="pmid">20080600</pub-id>
</element-citation>
</ref>
<ref id="b26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murphy</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>File</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Dudley</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Differentiating the effects of pot size and nutrient availability on plant biomass and allocation</article-title>
<source>Botany</source>
<year>2013</year>
<volume>91</volume>
<fpage>799</fpage>
<lpage>803</lpage>
</element-citation>
</ref>
<ref id="b27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niinemets</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Growth of young trees of Acer platanoides and Quercus robur along a gap–understory continuum: interrelationships between allometry, biomass partitioning, nitrogen, and shade tolerance</article-title>
<source>Int. J. Plant Sci</source>
<year>1998</year>
<volume>159</volume>
<fpage>318</fpage>
<lpage>330</lpage>
</element-citation>
</ref>
<ref id="b28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Plant allometry: is there a grand unifying theory?</article-title>
<source>Biol. Rev</source>
<year>2004</year>
<volume>79</volume>
<fpage>871</fpage>
<lpage>889</lpage>
<pub-id pub-id-type="pmid">15682874</pub-id>
</element-citation>
</ref>
<ref id="b29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Modelling below- and above-ground biomass for nonwoody and woody plants</article-title>
<source>Ann. Bot</source>
<year>2005</year>
<volume>95</volume>
<fpage>315</fpage>
<lpage>321</lpage>
<pub-id pub-id-type="pmid">15546927</pub-id>
</element-citation>
</ref>
<ref id="b30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>A phyletic perspective on the allometry of plant biomass and functional organ categories</article-title>
<source>New Phytol</source>
<year>2006</year>
<volume>171</volume>
<fpage>27</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">16771980</pub-id>
</element-citation>
</ref>
<ref id="b32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Ontogenetic shift in the scaling of dark respiration with whole-plant mass in seven shrub species</article-title>
<source>Funct. Ecol</source>
<year>2010</year>
<volume>24</volume>
<fpage>502</fpage>
<lpage>512</lpage>
</element-citation>
</ref>
<ref id="b33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poorter</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Light-dependent changes in biomass allocation and their importance for growth of rainforest tree species</article-title>
<source>Funct. Ecol</source>
<year>2001</year>
<volume>15</volume>
<fpage>113</fpage>
<lpage>123</lpage>
</element-citation>
</ref>
<ref id="b34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poorter</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Niklas</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Reich</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Oleksyn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Poot</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Mommer</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control</article-title>
<source>New Phytol</source>
<year>2012a</year>
<volume>193</volume>
<fpage>30</fpage>
<lpage>50</lpage>
<pub-id pub-id-type="pmid">22085245</pub-id>
</element-citation>
</ref>
<ref id="b35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poorter</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bühler</surname>
<given-names>J</given-names>
</name>
<name>
<surname>van Dusschoten</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Climent</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Postma</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Pot size matters: a meta-analysis of the effects of rooting volume on plant growth</article-title>
<source>Funct. Plant Biol</source>
<year>2012b</year>
<volume>39</volume>
<fpage>839</fpage>
<lpage>850</lpage>
</element-citation>
</ref>
<ref id="b36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Price</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Enquist</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Savage</surname>
<given-names>VM</given-names>
</name>
</person-group>
<article-title>A general model for allometric covariation in botanical form and function</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2007</year>
<volume>104</volume>
<fpage>13204</fpage>
<lpage>13209</lpage>
<pub-id pub-id-type="pmid">17664421</pub-id>
</element-citation>
</ref>
<ref id="b37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ray</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Sinclair</surname>
<given-names>TR</given-names>
</name>
</person-group>
<article-title>The effect of pot size on growth and transpiration of maize and soybean during water deficit stress</article-title>
<source>J. Exp. Bot</source>
<year>1998</year>
<volume>49</volume>
<fpage>1381</fpage>
<lpage>1386</lpage>
</element-citation>
</ref>
<ref id="b38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reich</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Tjoelker</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Oleksyn</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Universal scaling of respiratory metabolism, size and nitrogen in plants</article-title>
<source>Nature</source>
<year>2006</year>
<volume>439</volume>
<fpage>457</fpage>
<lpage>461</lpage>
<pub-id pub-id-type="pmid">16437113</pub-id>
</element-citation>
</ref>
<ref id="b39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reich</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Tjoelker</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Pregitzer</surname>
<given-names>KS</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Oleksyn</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Machado</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Scaling of respiration to nitrogen in leaves, stems, and roots of higher land plant</article-title>
<source>Ecol. Lett</source>
<year>2008</year>
<volume>173</volume>
<fpage>110</fpage>
<lpage>120</lpage>
</element-citation>
</ref>
<ref id="b40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ryan</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Linder</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vose</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Hubbard</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Dark respiration of pines</article-title>
<source>Ecol. Bull</source>
<year>1994</year>
<volume>43</volume>
<fpage>50</fpage>
<lpage>63</lpage>
</element-citation>
</ref>
<ref id="b41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sack</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Marañón</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Grubb</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>Global allocation rules for patterns of biomass partitioning</article-title>
<source>Science</source>
<year>2002</year>
<volume>296</volume>
<fpage>1923</fpage>
<pub-id pub-id-type="pmid">12065803</pub-id>
</element-citation>
</ref>
<ref id="b42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Savage</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Deeds</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Fontana</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Sizing up allometric scaling theory</article-title>
<source>PLoS Comput. Biol</source>
<year>2008</year>
<volume>4</volume>
<fpage>1</fpage>
<lpage>17</lpage>
</element-citation>
</ref>
<ref id="b43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Teskey</surname>
<given-names>RO</given-names>
</name>
<name>
<surname>Saveyn</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Steppe</surname>
<given-names>K</given-names>
</name>
<name>
<surname>McGuire</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>Origin, fate and significance of CO
<sub>2</sub>
in tree stems</article-title>
<source>New Phytol</source>
<year>2008</year>
<volume>177</volume>
<fpage>17</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="pmid">18028298</pub-id>
</element-citation>
</ref>
<ref id="b44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vose</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Seasonal respiration of foliage, fine roots and woody tissues in relation to growth, tissue N, and photosynthesis</article-title>
<source>Glob. Chang. Biol</source>
<year>2002</year>
<volume>8</volume>
<fpage>182</fpage>
<lpage>193</lpage>
</element-citation>
</ref>
<ref id="b45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Taub</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>Interactive effects of elevated carbon dioxide and environmental stresses on root mass fraction in plants: a meta-analytical synthesis using pairwise techniques</article-title>
<source>Oecologia</source>
<year>2010</year>
<volume>163</volume>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="pmid">20155287</pub-id>
</element-citation>
</ref>
<ref id="b46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Warton</surname>
<given-names>DI</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>NC</given-names>
</name>
</person-group>
<article-title>Common slope tests for bivariate errors-in-variables</article-title>
<source>Biom. J</source>
<year>2002</year>
<volume>44</volume>
<fpage>161</fpage>
<lpage>174</lpage>
</element-citation>
</ref>
<ref id="b47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiner</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Allocation, plasticity and allometry in plants</article-title>
<source>Perspect. Plant Ecol</source>
<year>2004</year>
<volume>6</volume>
<fpage>207</fpage>
<lpage>215</lpage>
</element-citation>
</ref>
<ref id="b48">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>West</surname>
<given-names>GB</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Enquist</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>A general model for the structure and allometry of plant vascular systems</article-title>
<source>Nature</source>
<year>1999</year>
<volume>400</volume>
<fpage>664</fpage>
<lpage>667</lpage>
</element-citation>
</ref>
<ref id="b49">
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>West-Eberhard</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<source>Developmental plasticity and evolution</source>
<year>2003</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="b50">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xue</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lie</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Allometric scaling among tree components in
<italic>Pinus massoniana</italic>
stands with different sites</article-title>
<source>Ecol. Res</source>
<year>2013</year>
<volume>28</volume>
<fpage>327</fpage>
<lpage>333</lpage>
</element-citation>
</ref>
<ref id="b51">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>YQ</given-names>
</name>
</person-group>
<article-title>Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development</article-title>
<source>J. Ecol</source>
<year>2011</year>
<volume>99</volume>
<fpage>431</fpage>
<lpage>437</lpage>
</element-citation>
</ref>
<ref id="b52">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Mohammat</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Large-scale pattern of biomass partitioning across China's grasslands</article-title>
<source>Glob. Ecol. Biogeogr</source>
<year>2010</year>
<volume>19</volume>
<fpage>268</fpage>
<lpage>277</lpage>
</element-citation>
</ref>
<ref id="b53">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zha</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Kellomaki</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Ryyppo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Niinisto</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Seasonal and annual stem respiration of Scots pine trees under boreal conditions</article-title>
<source>Ann. Bot</source>
<year>2004</year>
<volume>94</volume>
<fpage>889</fpage>
<lpage>896</lpage>
<pub-id pub-id-type="pmid">15469943</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000533 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000533 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4242579
   |texte=   Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25505524" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Dec 4 11:02:15 2017. Site generation: Tue Sep 29 19:14:38 2020