Serveur d'exploration sur le patient édenté (maquette)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple

Identifieur interne : 000558 ( Pmc/Checkpoint ); précédent : 000557; suivant : 000559

Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple

Auteurs : Asghar Gholami ; Molood Baradaran-Ghahfarokhi ; Marjan Ebrahimi ; Milad Baradaran-Ghahfarokhi

Source :

RBID : PMC:3967429

Abstract

In recent years, interest in medical application of lasers especially as a surgical alternative is considerably increasing due to their distinct advantages such as non-contact intervention, bacteriostasis, less traumatization, minimal invasiveness, decreased bleeding and less heat damage. The present study aimed to evaluate the temperature changes and the consequent released thermal stress in cortical bone caused by an Erbium:yttrium aluminum garnet (Er:YAG) laser (Fideliss 320A, Fotona Inc., Deggingen, Germany) during osteotomy, using mathematical computation by means of Maple software, version 9.5 (Maplesoft, a division of Waterloo Maple Inc., Canada). The results obtained here were compared with the experimental measurements using Er:YAG laser in the osteotomy clinics. A bone slab with thickness of 1 mm was simulated in Maple software. Then, an Er:YAG laser emitting 100 μs pulses at a wavelength of 2940 nm were modeled. Two different clinical settings of the Er:YAG laser with 200 mJ and 400 mJ energies, both with 100 μs exposure and 500 μs silence were studied. To investigate the temperature distribution in the cortical bone, the time-dependent heat conduction equations were defined and solved in the Maple software. Finally, by defining the heat distribution function in the Maple, thermal stress in the bone was investigated. Results of the computations showed that, on the bone irradiated area (center of the bone surface) the maximum temperature rise was 0.8°C and 1.6°C, for 200 mJ and 400 mJ Er:YAG laser exposure, respectively. The temperature rise reached to its minimum at radial distances of 1.2 cm from the point of irradiated area for 200 mJ laser while it was 1.5 cm for 400 mJ laser. For 200 mJ laser the maximum derived radial (σrr), axial (σzz) and azimuthally (σθθ) stress components were 0.20, 0.16 and 0.08 MPa, respectively. While, for 400 mJ laser the maximum derived σrr, σzz and σθθ stress components were 0.39, 0.31 and 0.16 MPa, respectively. These results confirm that use of 100 μs Er:YAG laser pulses with 500 μs silence at 200 and 400 mJ energies minimizes thermal tissue damage for the laser osteotomies, without continued water cooling (irrigation) on the exposed area.


Url:
PubMed: 24695375
PubMed Central: 3967429


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3967429

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple</title>
<author>
<name sortKey="Gholami, Asghar" sort="Gholami, Asghar" uniqKey="Gholami A" first="Asghar" last="Gholami">Asghar Gholami</name>
<affiliation>
<nlm:aff id="aff1">
<italic>Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baradaran Ghahfarokhi, Molood" sort="Baradaran Ghahfarokhi, Molood" uniqKey="Baradaran Ghahfarokhi M" first="Molood" last="Baradaran-Ghahfarokhi">Molood Baradaran-Ghahfarokhi</name>
<affiliation>
<nlm:aff id="aff1">
<italic>Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<italic>Medical Student's Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ebrahimi, Marjan" sort="Ebrahimi, Marjan" uniqKey="Ebrahimi M" first="Marjan" last="Ebrahimi">Marjan Ebrahimi</name>
<affiliation>
<nlm:aff id="aff3">
<italic>Department of Physics, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baradaran Ghahfarokhi, Milad" sort="Baradaran Ghahfarokhi, Milad" uniqKey="Baradaran Ghahfarokhi M" first="Milad" last="Baradaran-Ghahfarokhi">Milad Baradaran-Ghahfarokhi</name>
<affiliation>
<nlm:aff id="aff4">
<italic>Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<italic>Department of Medical Radiation Engineering, Faculty of Advanced Sciences and Technologies, Isfahan University, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24695375</idno>
<idno type="pmc">3967429</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3967429</idno>
<idno type="RBID">PMC:3967429</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000260</idno>
<idno type="wicri:Area/Pmc/Curation">000260</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000260</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000558</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000558</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple</title>
<author>
<name sortKey="Gholami, Asghar" sort="Gholami, Asghar" uniqKey="Gholami A" first="Asghar" last="Gholami">Asghar Gholami</name>
<affiliation>
<nlm:aff id="aff1">
<italic>Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baradaran Ghahfarokhi, Molood" sort="Baradaran Ghahfarokhi, Molood" uniqKey="Baradaran Ghahfarokhi M" first="Molood" last="Baradaran-Ghahfarokhi">Molood Baradaran-Ghahfarokhi</name>
<affiliation>
<nlm:aff id="aff1">
<italic>Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<italic>Medical Student's Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ebrahimi, Marjan" sort="Ebrahimi, Marjan" uniqKey="Ebrahimi M" first="Marjan" last="Ebrahimi">Marjan Ebrahimi</name>
<affiliation>
<nlm:aff id="aff3">
<italic>Department of Physics, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Baradaran Ghahfarokhi, Milad" sort="Baradaran Ghahfarokhi, Milad" uniqKey="Baradaran Ghahfarokhi M" first="Milad" last="Baradaran-Ghahfarokhi">Milad Baradaran-Ghahfarokhi</name>
<affiliation>
<nlm:aff id="aff4">
<italic>Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<italic>Department of Medical Radiation Engineering, Faculty of Advanced Sciences and Technologies, Isfahan University, Isfahan, Iran</italic>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Medical Signals and Sensors</title>
<idno type="eISSN">2228-7477</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>In recent years, interest in medical application of lasers especially as a surgical alternative is considerably increasing due to their distinct advantages such as non-contact intervention, bacteriostasis, less traumatization, minimal invasiveness, decreased bleeding and less heat damage. The present study aimed to evaluate the temperature changes and the consequent released thermal stress in cortical bone caused by an Erbium:yttrium aluminum garnet (Er:YAG) laser (Fideliss 320A, Fotona Inc., Deggingen, Germany) during osteotomy, using mathematical computation by means of Maple software, version 9.5 (Maplesoft, a division of Waterloo Maple Inc., Canada). The results obtained here were compared with the experimental measurements using Er:YAG laser in the osteotomy clinics. A bone slab with thickness of 1 mm was simulated in Maple software. Then, an Er:YAG laser emitting 100 μs pulses at a wavelength of 2940 nm were modeled. Two different clinical settings of the Er:YAG laser with 200 mJ and 400 mJ energies, both with 100 μs exposure and 500 μs silence were studied. To investigate the temperature distribution in the cortical bone, the time-dependent heat conduction equations were defined and solved in the Maple software. Finally, by defining the heat distribution function in the Maple, thermal stress in the bone was investigated. Results of the computations showed that, on the bone irradiated area (center of the bone surface) the maximum temperature rise was 0.8°C and 1.6°C, for 200 mJ and 400 mJ Er:YAG laser exposure, respectively. The temperature rise reached to its minimum at radial distances of 1.2 cm from the point of irradiated area for 200 mJ laser while it was 1.5 cm for 400 mJ laser. For 200 mJ laser the maximum derived radial (σ
<sub>
<italic>rr</italic>
</sub>
), axial (σ
<sub>
<italic>zz</italic>
</sub>
) and azimuthally (σ
<sub>
<italic>θθ</italic>
</sub>
) stress components were 0.20, 0.16 and 0.08 MPa, respectively. While, for 400 mJ laser the maximum derived σ
<sub>
<italic>rr</italic>
</sub>
, σ
<sub>
<italic>zz</italic>
</sub>
and σ
<sub>
<italic>θθ</italic>
</sub>
stress components were 0.39, 0.31 and 0.16 MPa, respectively. These results confirm that use of 100 μs Er:YAG laser pulses with 500 μs silence at 200 and 400 mJ energies minimizes thermal tissue damage for the laser osteotomies, without continued water cooling (irrigation) on the exposed area.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
<author>
<name sortKey="Rabin, Y" uniqKey="Rabin Y">Y Rabin</name>
</author>
<author>
<name sortKey="Ozdoganlar, Ob" uniqKey="Ozdoganlar O">OB Ozdoganlar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eyrich, Gk" uniqKey="Eyrich G">GK Eyrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horch, Hh" uniqKey="Horch H">HH Horch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horch, Hh" uniqKey="Horch H">HH Horch</name>
</author>
<author>
<name sortKey="Mccord, Rc" uniqKey="Mccord R">RC McCord</name>
</author>
<author>
<name sortKey="Keiditsch, E" uniqKey="Keiditsch E">E Keiditsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Chien, S" uniqKey="Chien S">S Chien</name>
</author>
<author>
<name sortKey="Br Nemark, Pi" uniqKey="Br Nemark P">PI Brånemark</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eriksson, Ar" uniqKey="Eriksson A">AR Eriksson</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eriksson, Ra" uniqKey="Eriksson R">RA Eriksson</name>
</author>
<author>
<name sortKey="Albrektsson, T" uniqKey="Albrektsson T">T Albrektsson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lundskog, J" uniqKey="Lundskog J">J Lundskog</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eriksson, Ra" uniqKey="Eriksson R">RA Eriksson</name>
</author>
<author>
<name sortKey="Adell, R" uniqKey="Adell R">R Adell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elahi, P" uniqKey="Elahi P">P Elahi</name>
</author>
<author>
<name sortKey="Farsi, B" uniqKey="Farsi B">B Farsi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zahn, H" uniqKey="Zahn H">H Zahn</name>
</author>
<author>
<name sortKey="Jungnickel, V" uniqKey="Jungnickel V">V Jungnickel</name>
</author>
<author>
<name sortKey="Ertl, T" uniqKey="Ertl T">T Ertl</name>
</author>
<author>
<name sortKey="Schmid, S" uniqKey="Schmid S">S Schmid</name>
</author>
<author>
<name sortKey="Muller, G" uniqKey="Muller G">G Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majoran, B" uniqKey="Majoran B">B Majoran</name>
</author>
<author>
<name sortKey="Sustercic, D" uniqKey="Sustercic D">D Sustercic</name>
</author>
<author>
<name sortKey="Lukac, M" uniqKey="Lukac M">M Lukac</name>
</author>
<author>
<name sortKey="Skaleric, U" uniqKey="Skaleric U">U Skaleric</name>
</author>
<author>
<name sortKey="Funduk, N" uniqKey="Funduk N">N Funduk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nair, Pn" uniqKey="Nair P">PN Nair</name>
</author>
<author>
<name sortKey="Baltensperger, Mm" uniqKey="Baltensperger M">MM Baltensperger</name>
</author>
<author>
<name sortKey="Luder, Hu" uniqKey="Luder H">HU Luder</name>
</author>
<author>
<name sortKey="Eyrich, Gk" uniqKey="Eyrich G">GK Eyrich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rho, Jy" uniqKey="Rho J">JY Rho</name>
</author>
<author>
<name sortKey="Ashman, Rb" uniqKey="Ashman R">RB Ashman</name>
</author>
<author>
<name sortKey="Turner, Ch" uniqKey="Turner C">CH Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dechow, Pc" uniqKey="Dechow P">PC Dechow</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
<author>
<name sortKey="Peterson, J" uniqKey="Peterson J">J Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranu, Hs" uniqKey="Ranu H">HS Ranu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davidson, Sr" uniqKey="Davidson S">SR Davidson</name>
</author>
<author>
<name sortKey="James, Df" uniqKey="James D">DF James</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Ys" uniqKey="Huang Y">YS Huang</name>
</author>
<author>
<name sortKey="Tsai, Hl" uniqKey="Tsai H">HL Tsai</name>
</author>
<author>
<name sortKey="Chang, Fl" uniqKey="Chang F">FL Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kotha, Sp" uniqKey="Kotha S">SP Kotha</name>
</author>
<author>
<name sortKey="Guzelsu, N" uniqKey="Guzelsu N">N Guzelsu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Berman, At" uniqKey="Berman A">AT Berman</name>
</author>
<author>
<name sortKey="Reid, Js" uniqKey="Reid J">JS Reid</name>
</author>
<author>
<name sortKey="Yanicko, Dr" uniqKey="Yanicko D">DR Yanicko</name>
</author>
<author>
<name sortKey="Sih, Gc" uniqKey="Sih G">GC Sih</name>
</author>
<author>
<name sortKey="Zimmerman, Mr" uniqKey="Zimmerman M">MR Zimmerman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krause, Ls" uniqKey="Krause L">LS Krause</name>
</author>
<author>
<name sortKey="Cobb, Cm" uniqKey="Cobb C">CM Cobb</name>
</author>
<author>
<name sortKey="Rapley, Jw" uniqKey="Rapley J">JW Rapley</name>
</author>
<author>
<name sortKey="Killoy, Wj" uniqKey="Killoy W">WJ Killoy</name>
</author>
<author>
<name sortKey="Spencer, P" uniqKey="Spencer P">P Spencer</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="other">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Med Signals Sens</journal-id>
<journal-id journal-id-type="iso-abbrev">J Med Signals Sens</journal-id>
<journal-id journal-id-type="publisher-id">JMSS</journal-id>
<journal-title-group>
<journal-title>Journal of Medical Signals and Sensors</journal-title>
</journal-title-group>
<issn pub-type="epub">2228-7477</issn>
<publisher>
<publisher-name>Medknow Publications & Media Pvt Ltd</publisher-name>
<publisher-loc>India</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24695375</article-id>
<article-id pub-id-type="pmc">3967429</article-id>
<article-id pub-id-type="publisher-id">JMSS-3-262</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Short Communication</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Gholami</surname>
<given-names>Asghar</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baradaran-Ghahfarokhi</surname>
<given-names>Molood</given-names>
</name>
<xref ref-type="aff" rid="aff1">1</xref>
<xref ref-type="aff" rid="aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ebrahimi</surname>
<given-names>Marjan</given-names>
</name>
<xref ref-type="aff" rid="aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Baradaran-Ghahfarokhi</surname>
<given-names>Milad</given-names>
</name>
<xref ref-type="aff" rid="aff4">4</xref>
<xref ref-type="aff" rid="aff5">5</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
<italic>Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran</italic>
</aff>
<aff id="aff2">
<label>2</label>
<italic>Medical Student's Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran</italic>
</aff>
<aff id="aff3">
<label>3</label>
<italic>Department of Physics, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran</italic>
</aff>
<aff id="aff4">
<label>4</label>
<italic>Department of Medical Physics and Medical Engineering, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran</italic>
</aff>
<aff id="aff5">
<label>5</label>
<italic>Department of Medical Radiation Engineering, Faculty of Advanced Sciences and Technologies, Isfahan University, Isfahan, Iran</italic>
</aff>
<author-notes>
<corresp id="cor1">
<bold>Address for correspondence:</bold>
Dr. Milad Baradaran-Ghahfarokhi, Department of Medical Physics and Medical Engineering, Isfahan University of Medical Sciences, Isfahan 81746 - 73461, Iran. E-mail:
<email xlink:href="mbaradaran@edc.mui.ac.ir">mbaradaran@edc.mui.ac.ir</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<season>Oct-Dec</season>
<year>2013</year>
</pub-date>
<volume>3</volume>
<issue>4</issue>
<fpage>262</fpage>
<lpage>268</lpage>
<history>
<date date-type="received">
<day>01</day>
<month>6</month>
<year>2013</year>
</date>
<date date-type="accepted">
<day>28</day>
<month>7</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © Journal of Medical Signals and Sensors</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by-nc-sa/3.0">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>In recent years, interest in medical application of lasers especially as a surgical alternative is considerably increasing due to their distinct advantages such as non-contact intervention, bacteriostasis, less traumatization, minimal invasiveness, decreased bleeding and less heat damage. The present study aimed to evaluate the temperature changes and the consequent released thermal stress in cortical bone caused by an Erbium:yttrium aluminum garnet (Er:YAG) laser (Fideliss 320A, Fotona Inc., Deggingen, Germany) during osteotomy, using mathematical computation by means of Maple software, version 9.5 (Maplesoft, a division of Waterloo Maple Inc., Canada). The results obtained here were compared with the experimental measurements using Er:YAG laser in the osteotomy clinics. A bone slab with thickness of 1 mm was simulated in Maple software. Then, an Er:YAG laser emitting 100 μs pulses at a wavelength of 2940 nm were modeled. Two different clinical settings of the Er:YAG laser with 200 mJ and 400 mJ energies, both with 100 μs exposure and 500 μs silence were studied. To investigate the temperature distribution in the cortical bone, the time-dependent heat conduction equations were defined and solved in the Maple software. Finally, by defining the heat distribution function in the Maple, thermal stress in the bone was investigated. Results of the computations showed that, on the bone irradiated area (center of the bone surface) the maximum temperature rise was 0.8°C and 1.6°C, for 200 mJ and 400 mJ Er:YAG laser exposure, respectively. The temperature rise reached to its minimum at radial distances of 1.2 cm from the point of irradiated area for 200 mJ laser while it was 1.5 cm for 400 mJ laser. For 200 mJ laser the maximum derived radial (σ
<sub>
<italic>rr</italic>
</sub>
), axial (σ
<sub>
<italic>zz</italic>
</sub>
) and azimuthally (σ
<sub>
<italic>θθ</italic>
</sub>
) stress components were 0.20, 0.16 and 0.08 MPa, respectively. While, for 400 mJ laser the maximum derived σ
<sub>
<italic>rr</italic>
</sub>
, σ
<sub>
<italic>zz</italic>
</sub>
and σ
<sub>
<italic>θθ</italic>
</sub>
stress components were 0.39, 0.31 and 0.16 MPa, respectively. These results confirm that use of 100 μs Er:YAG laser pulses with 500 μs silence at 200 and 400 mJ energies minimizes thermal tissue damage for the laser osteotomies, without continued water cooling (irrigation) on the exposed area.</p>
</abstract>
<kwd-group>
<kwd>
<italic>Erbium:yttrium aluminum garnet laser</italic>
</kwd>
<kwd>
<italic>laser-osteotomy</italic>
</kwd>
<kwd>
<italic>Maple software</italic>
</kwd>
</kwd-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Baradaran Ghahfarokhi, Milad" sort="Baradaran Ghahfarokhi, Milad" uniqKey="Baradaran Ghahfarokhi M" first="Milad" last="Baradaran-Ghahfarokhi">Milad Baradaran-Ghahfarokhi</name>
<name sortKey="Baradaran Ghahfarokhi, Molood" sort="Baradaran Ghahfarokhi, Molood" uniqKey="Baradaran Ghahfarokhi M" first="Molood" last="Baradaran-Ghahfarokhi">Molood Baradaran-Ghahfarokhi</name>
<name sortKey="Ebrahimi, Marjan" sort="Ebrahimi, Marjan" uniqKey="Ebrahimi M" first="Marjan" last="Ebrahimi">Marjan Ebrahimi</name>
<name sortKey="Gholami, Asghar" sort="Gholami, Asghar" uniqKey="Gholami A" first="Asghar" last="Gholami">Asghar Gholami</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000558 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000558 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3967429
   |texte=   Thermal Effects of Laser-osteotomy on Bone: Mathematical Computation Using Maple
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:24695375" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a EdenteV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Dec 4 11:02:15 2017. Site generation: Tue Sep 29 19:14:38 2020