Serveur d'exploration sur le patient édenté (maquette)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs

Identifieur interne : 000334 ( PascalFrancis/Corpus ); précédent : 000333; suivant : 000335

Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs

Auteurs : Ulf M. E. Wikesjö ; Andreas V. Xiropaidis ; Mohammed Qahash ; WON HEE LIM ; Rachel G. Sorensen ; Michael D. Rohrer ; John M. Wozney ; Jan Hall

Source :

RBID : Pascal:08-0513726

Descripteurs français

English descriptors

Abstract

Background: Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Material and Methods: Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. Results: TPO implants coated with rhBMP-2 exhibited dose-dependent bone re-modelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3 ± 10.8% versus 71.7 ± 7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4 ± 10.6% versus 68.2 ± 11.0%,p<0.03], Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0303-6979
A03   1    @0 J. clin. periodontol.
A05       @2 35
A06       @2 11
A08 01  1  ENG  @1 Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs
A11 01  1    @1 WIKESJÖ (Ulf M. E.)
A11 02  1    @1 XIROPAIDIS (Andreas V.)
A11 03  1    @1 QAHASH (Mohammed)
A11 04  1    @1 WON HEE LIM
A11 05  1    @1 SORENSEN (Rachel G.)
A11 06  1    @1 ROHRER (Michael D.)
A11 07  1    @1 WOZNEY (John M.)
A11 08  1    @1 HALL (Jan)
A14 01      @1 Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry @2 Augusta, GA @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut.
A14 02      @1 Women's Health and Musculoskeletal Biology, Wyeth Research @2 Cambridge, MA @3 USA @Z 5 aut. @Z 7 aut.
A14 03      @1 Division of Oral and Maxillofacial Pathology, University of Minnesota School of Dentistry @2 Minneapolis, MN @3 USA @Z 6 aut.
A14 04      @1 Research & Development, Nobel Biocare AB @2 Göteborg @3 SWE @Z 8 aut.
A20       @1 985-991
A21       @1 2008
A23 01      @0 ENG
A43 01      @1 INIST @2 16273 @5 354000184242270090
A44       @0 0000 @1 © 2008 INIST-CNRS. All rights reserved.
A45       @0 1/2 p.
A47 01  1    @0 08-0513726
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of clinical periodontology
A66 01      @0 GBR
C01 01    ENG  @0 Background: Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Material and Methods: Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. Results: TPO implants coated with rhBMP-2 exhibited dose-dependent bone re-modelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3 ± 10.8% versus 71.7 ± 7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4 ± 10.6% versus 68.2 ± 11.0%,p<0.03], Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.
C02 01  X    @0 002B25C02
C03 01  X  FRE  @0 Os @5 07
C03 01  X  ENG  @0 Bone @5 07
C03 01  X  SPA  @0 Hueso @5 07
C03 02  X  FRE  @0 Protéine recombinante @5 08
C03 02  X  ENG  @0 Recombinant protein @5 08
C03 02  X  SPA  @0 Proteína recombinante @5 08
C03 03  X  FRE  @0 Homme @5 09
C03 03  X  ENG  @0 Human @5 09
C03 03  X  SPA  @0 Hombre @5 09
C03 04  X  FRE  @0 Titane @2 NC @5 13
C03 04  X  ENG  @0 Titanium @2 NC @5 13
C03 04  X  SPA  @0 Titanio @2 NC @5 13
C03 05  X  FRE  @0 Implant @5 14
C03 05  X  ENG  @0 Implant @5 14
C03 05  X  SPA  @0 Implante @5 14
C03 06  X  FRE  @0 Postérieur @5 15
C03 06  X  ENG  @0 Posterior @5 15
C03 06  X  SPA  @0 Posterior @5 15
C03 07  X  FRE  @0 Mandibule @5 16
C03 07  X  ENG  @0 Mandible @5 16
C03 07  X  SPA  @0 Mandíbula @5 16
C03 08  X  FRE  @0 Animal @5 17
C03 08  X  ENG  @0 Animal @5 17
C03 08  X  SPA  @0 Animal @5 17
C03 09  X  FRE  @0 Chien @5 18
C03 09  X  ENG  @0 Dog @5 18
C03 09  X  SPA  @0 Perro @5 18
C03 10  X  FRE  @0 Protéine morphogénétique osseuse @5 19
C03 10  X  ENG  @0 Bone morphogenetic protein @5 19
C03 10  X  SPA  @0 Proteína morfogenética ósea @5 19
C03 11  X  FRE  @0 Dent @5 20
C03 11  X  ENG  @0 Tooth @5 20
C03 11  X  SPA  @0 Diente @5 20
C03 12  X  FRE  @0 Voie orale @5 21
C03 12  X  ENG  @0 Oral administration @5 21
C03 12  X  SPA  @0 Vía oral @5 21
C03 13  X  FRE  @0 Génie tissulaire @5 22
C03 13  X  ENG  @0 Tissue engineering @5 22
C03 13  X  SPA  @0 Ingeniería de tejidos @5 22
C03 14  X  FRE  @0 Etude expérimentale @5 23
C03 14  X  ENG  @0 Experimental study @5 23
C03 14  X  SPA  @0 Estudio experimental @5 23
C03 15  X  FRE  @0 Dentisterie @5 30
C03 15  X  ENG  @0 Dentistry @5 30
C03 15  X  SPA  @0 Odontología @5 30
C03 16  X  FRE  @0 Protéine BMP-2 @4 CD @5 96
C03 16  X  ENG  @0 Bone morphogenetic protein-2 @4 CD @5 96
C03 17  X  FRE  @0 Chirurgie maxillofaciale @4 CD @5 97
C03 17  X  ENG  @0 Maxillofacial surgery @4 CD @5 97
C07 01  X  FRE  @0 Fissipedia @2 NS
C07 01  X  ENG  @0 Fissipedia @2 NS
C07 01  X  SPA  @0 Fissipedia @2 NS
C07 02  X  FRE  @0 Carnivora @2 NS
C07 02  X  ENG  @0 Carnivora @2 NS
C07 02  X  SPA  @0 Carnivora @2 NS
C07 03  X  FRE  @0 Mammalia @2 NS
C07 03  X  ENG  @0 Mammalia @2 NS
C07 03  X  SPA  @0 Mammalia @2 NS
C07 04  X  FRE  @0 Vertebrata @2 NS
C07 04  X  ENG  @0 Vertebrata @2 NS
C07 04  X  SPA  @0 Vertebrata @2 NS
N21       @1 336

Format Inist (serveur)

NO : PASCAL 08-0513726 INIST
ET : Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs
AU : WIKESJÖ (Ulf M. E.); XIROPAIDIS (Andreas V.); QAHASH (Mohammed); WON HEE LIM; SORENSEN (Rachel G.); ROHRER (Michael D.); WOZNEY (John M.); HALL (Jan)
AF : Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry/Augusta, GA/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Women's Health and Musculoskeletal Biology, Wyeth Research/Cambridge, MA/Etats-Unis (5 aut., 7 aut.); Division of Oral and Maxillofacial Pathology, University of Minnesota School of Dentistry/Minneapolis, MN/Etats-Unis (6 aut.); Research & Development, Nobel Biocare AB/Göteborg/Suède (8 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of clinical periodontology; ISSN 0303-6979; Royaume-Uni; Da. 2008; Vol. 35; No. 11; Pp. 985-991; Bibl. 1/2 p.
LA : Anglais
EA : Background: Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Material and Methods: Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. Results: TPO implants coated with rhBMP-2 exhibited dose-dependent bone re-modelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3 ± 10.8% versus 71.7 ± 7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4 ± 10.6% versus 68.2 ± 11.0%,p<0.03], Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.
CC : 002B25C02
FD : Os; Protéine recombinante; Homme; Titane; Implant; Postérieur; Mandibule; Animal; Chien; Protéine morphogénétique osseuse; Dent; Voie orale; Génie tissulaire; Etude expérimentale; Dentisterie; Protéine BMP-2; Chirurgie maxillofaciale
FG : Fissipedia; Carnivora; Mammalia; Vertebrata
ED : Bone; Recombinant protein; Human; Titanium; Implant; Posterior; Mandible; Animal; Dog; Bone morphogenetic protein; Tooth; Oral administration; Tissue engineering; Experimental study; Dentistry; Bone morphogenetic protein-2; Maxillofacial surgery
EG : Fissipedia; Carnivora; Mammalia; Vertebrata
SD : Hueso; Proteína recombinante; Hombre; Titanio; Implante; Posterior; Mandíbula; Animal; Perro; Proteína morfogenética ósea; Diente; Vía oral; Ingeniería de tejidos; Estudio experimental; Odontología
LO : INIST-16273.354000184242270090
ID : 08-0513726

Links to Exploration step

Pascal:08-0513726

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs</title>
<author>
<name sortKey="Wikesjo, Ulf M E" sort="Wikesjo, Ulf M E" uniqKey="Wikesjo U" first="Ulf M. E." last="Wikesjö">Ulf M. E. Wikesjö</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xiropaidis, Andreas V" sort="Xiropaidis, Andreas V" uniqKey="Xiropaidis A" first="Andreas V." last="Xiropaidis">Andreas V. Xiropaidis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Qahash, Mohammed" sort="Qahash, Mohammed" uniqKey="Qahash M" first="Mohammed" last="Qahash">Mohammed Qahash</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Won Hee Lim" sort="Won Hee Lim" uniqKey="Won Hee Lim" last="Won Hee Lim">WON HEE LIM</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sorensen, Rachel G" sort="Sorensen, Rachel G" uniqKey="Sorensen R" first="Rachel G." last="Sorensen">Rachel G. Sorensen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Women's Health and Musculoskeletal Biology, Wyeth Research</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rohrer, Michael D" sort="Rohrer, Michael D" uniqKey="Rohrer M" first="Michael D." last="Rohrer">Michael D. Rohrer</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Oral and Maxillofacial Pathology, University of Minnesota School of Dentistry</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wozney, John M" sort="Wozney, John M" uniqKey="Wozney J" first="John M." last="Wozney">John M. Wozney</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Women's Health and Musculoskeletal Biology, Wyeth Research</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hall, Jan" sort="Hall, Jan" uniqKey="Hall J" first="Jan" last="Hall">Jan Hall</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Research & Development, Nobel Biocare AB</s1>
<s2>Göteborg</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">08-0513726</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0513726 INIST</idno>
<idno type="RBID">Pascal:08-0513726</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000334</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs</title>
<author>
<name sortKey="Wikesjo, Ulf M E" sort="Wikesjo, Ulf M E" uniqKey="Wikesjo U" first="Ulf M. E." last="Wikesjö">Ulf M. E. Wikesjö</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xiropaidis, Andreas V" sort="Xiropaidis, Andreas V" uniqKey="Xiropaidis A" first="Andreas V." last="Xiropaidis">Andreas V. Xiropaidis</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Qahash, Mohammed" sort="Qahash, Mohammed" uniqKey="Qahash M" first="Mohammed" last="Qahash">Mohammed Qahash</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Won Hee Lim" sort="Won Hee Lim" uniqKey="Won Hee Lim" last="Won Hee Lim">WON HEE LIM</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sorensen, Rachel G" sort="Sorensen, Rachel G" uniqKey="Sorensen R" first="Rachel G." last="Sorensen">Rachel G. Sorensen</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Women's Health and Musculoskeletal Biology, Wyeth Research</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rohrer, Michael D" sort="Rohrer, Michael D" uniqKey="Rohrer M" first="Michael D." last="Rohrer">Michael D. Rohrer</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Division of Oral and Maxillofacial Pathology, University of Minnesota School of Dentistry</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wozney, John M" sort="Wozney, John M" uniqKey="Wozney J" first="John M." last="Wozney">John M. Wozney</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Women's Health and Musculoskeletal Biology, Wyeth Research</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hall, Jan" sort="Hall, Jan" uniqKey="Hall J" first="Jan" last="Hall">Jan Hall</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Research & Development, Nobel Biocare AB</s1>
<s2>Göteborg</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of clinical periodontology</title>
<title level="j" type="abbreviated">J. clin. periodontol.</title>
<idno type="ISSN">0303-6979</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of clinical periodontology</title>
<title level="j" type="abbreviated">J. clin. periodontol.</title>
<idno type="ISSN">0303-6979</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal</term>
<term>Bone</term>
<term>Bone morphogenetic protein</term>
<term>Bone morphogenetic protein-2</term>
<term>Dentistry</term>
<term>Dog</term>
<term>Experimental study</term>
<term>Human</term>
<term>Implant</term>
<term>Mandible</term>
<term>Maxillofacial surgery</term>
<term>Oral administration</term>
<term>Posterior</term>
<term>Recombinant protein</term>
<term>Tissue engineering</term>
<term>Titanium</term>
<term>Tooth</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Os</term>
<term>Protéine recombinante</term>
<term>Homme</term>
<term>Titane</term>
<term>Implant</term>
<term>Postérieur</term>
<term>Mandibule</term>
<term>Animal</term>
<term>Chien</term>
<term>Protéine morphogénétique osseuse</term>
<term>Dent</term>
<term>Voie orale</term>
<term>Génie tissulaire</term>
<term>Etude expérimentale</term>
<term>Dentisterie</term>
<term>Protéine BMP-2</term>
<term>Chirurgie maxillofaciale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Material and Methods: Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. Results: TPO implants coated with rhBMP-2 exhibited dose-dependent bone re-modelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3 ± 10.8% versus 71.7 ± 7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4 ± 10.6% versus 68.2 ± 11.0%,p<0.03], Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0303-6979</s0>
</fA01>
<fA03 i2="1">
<s0>J. clin. periodontol.</s0>
</fA03>
<fA05>
<s2>35</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WIKESJÖ (Ulf M. E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIROPAIDIS (Andreas V.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>QAHASH (Mohammed)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WON HEE LIM</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SORENSEN (Rachel G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ROHRER (Michael D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WOZNEY (John M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HALL (Jan)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry</s1>
<s2>Augusta, GA</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Women's Health and Musculoskeletal Biology, Wyeth Research</s1>
<s2>Cambridge, MA</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Division of Oral and Maxillofacial Pathology, University of Minnesota School of Dentistry</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Research & Development, Nobel Biocare AB</s1>
<s2>Göteborg</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>985-991</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16273</s2>
<s5>354000184242270090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/2 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0513726</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of clinical periodontology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Background: Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Material and Methods: Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. Results: TPO implants coated with rhBMP-2 exhibited dose-dependent bone re-modelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3 ± 10.8% versus 71.7 ± 7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4 ± 10.6% versus 68.2 ± 11.0%,p<0.03], Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B25C02</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Os</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Bone</s0>
<s5>07</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hueso</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Protéine recombinante</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Recombinant protein</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Proteína recombinante</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Homme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Human</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Titane</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Titanium</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Titanio</s0>
<s2>NC</s2>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Implant</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Implant</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Implante</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Postérieur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Posterior</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Posterior</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mandibule</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Mandible</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mandíbula</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Animal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Animal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Animal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Chien</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Dog</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Perro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Protéine morphogénétique osseuse</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Bone morphogenetic protein</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Proteína morfogenética ósea</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Dent</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tooth</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Diente</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Voie orale</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Oral administration</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Vía oral</s0>
<s5>21</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Génie tissulaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Tissue engineering</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ingeniería de tejidos</s0>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Dentisterie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Dentistry</s0>
<s5>30</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Odontología</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Protéine BMP-2</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Bone morphogenetic protein-2</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Chirurgie maxillofaciale</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Maxillofacial surgery</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Fissipedia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Fissipedia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Fissipedia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Carnivora</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Carnivora</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Carnivora</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Mammalia</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Vertebrata</s0>
<s2>NS</s2>
</fC07>
<fN21>
<s1>336</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 08-0513726 INIST</NO>
<ET>Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs</ET>
<AU>WIKESJÖ (Ulf M. E.); XIROPAIDIS (Andreas V.); QAHASH (Mohammed); WON HEE LIM; SORENSEN (Rachel G.); ROHRER (Michael D.); WOZNEY (John M.); HALL (Jan)</AU>
<AF>Laboratory for Applied Periodontal & Craniofacial Regeneration, Departments of Periodontics and Oral Biology & Maxillofacial Pathology, Medical College of Georgia School of Dentistry/Augusta, GA/Etats-Unis (1 aut., 2 aut., 3 aut., 4 aut.); Women's Health and Musculoskeletal Biology, Wyeth Research/Cambridge, MA/Etats-Unis (5 aut., 7 aut.); Division of Oral and Maxillofacial Pathology, University of Minnesota School of Dentistry/Minneapolis, MN/Etats-Unis (6 aut.); Research & Development, Nobel Biocare AB/Göteborg/Suède (8 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of clinical periodontology; ISSN 0303-6979; Royaume-Uni; Da. 2008; Vol. 35; No. 11; Pp. 985-991; Bibl. 1/2 p.</SO>
<LA>Anglais</LA>
<EA>Background: Conventional oral/maxillofacial implants reach osseointegration over several months during which the titanium fixtures interact with alveolar bone. The objective of this study was to determine if adsorbing recombinant human bone morphogenetic protein-2 (rhBMP-2) onto a titanium porous oxide (TPO) implant surface might enhance or accelerate local bone formation and support osseointegration in a large animal oral/maxillofacial orthotopic model. Material and Methods: Endosseous implants with a TPO surface were installed into the edentulated posterior mandible in eight adult Hound Labrador mongrel dogs. The implant surface had been adsorbed with rhBMP-2 at 0.2 or 4.0 mg/ml. TPO implants without rhBMP-2 served as control. Treatments were randomized between jaw quadrants. Mucosal flaps were advanced and sutured leaving the implants submerged. Clinical and radiographic evaluations were made immediately post-surgery, at day 10 (suture removal), and week 4 and 8 post-surgery. The animals received fluorescent bone markers at week 3, 4, and at week 8 post-surgery, when they were euthanized for histologic analysis. Results: TPO implants coated with rhBMP-2 exhibited dose-dependent bone re-modelling including immediate resorption and formation of implant adjacent bone, and early establishment of clinically relevant osseointegration. The resulting bone-implant contact, although clinically respectable, appeared significantly lower for rhBMP-2-coated implants compared with the control [rhBMP-2 (0.2 mg/ml) 43.3 ± 10.8% versus 71.7 ± 7.8%, p<0.02; rhBMP-2 (4.0 mg/ml) 35.4 ± 10.6% versus 68.2 ± 11.0%,p<0.03], Conclusions: rhBMP-2 adsorbed onto TPO implant surfaces initiates dose-dependent peri-implant bone re-modelling resulting in the formation of normal, physiologic bone and clinically relevant osseointegration within 8 weeks.</EA>
<CC>002B25C02</CC>
<FD>Os; Protéine recombinante; Homme; Titane; Implant; Postérieur; Mandibule; Animal; Chien; Protéine morphogénétique osseuse; Dent; Voie orale; Génie tissulaire; Etude expérimentale; Dentisterie; Protéine BMP-2; Chirurgie maxillofaciale</FD>
<FG>Fissipedia; Carnivora; Mammalia; Vertebrata</FG>
<ED>Bone; Recombinant protein; Human; Titanium; Implant; Posterior; Mandible; Animal; Dog; Bone morphogenetic protein; Tooth; Oral administration; Tissue engineering; Experimental study; Dentistry; Bone morphogenetic protein-2; Maxillofacial surgery</ED>
<EG>Fissipedia; Carnivora; Mammalia; Vertebrata</EG>
<SD>Hueso; Proteína recombinante; Hombre; Titanio; Implante; Posterior; Mandíbula; Animal; Perro; Proteína morfogenética ósea; Diente; Vía oral; Ingeniería de tejidos; Estudio experimental; Odontología</SD>
<LO>INIST-16273.354000184242270090</LO>
<ID>08-0513726</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000334 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000334 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:08-0513726
   |texte=   Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Dec 4 11:02:15 2017. Site generation: Tue Sep 29 19:14:38 2020