Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

History and Future of Nucleic Acid Amplification Technology Blood Donor Testing.

Identifieur interne : 000C50 ( PubMed/Curation ); précédent : 000C49; suivant : 000C51

History and Future of Nucleic Acid Amplification Technology Blood Donor Testing.

Auteurs : Willi Kurt Roth [Allemagne]

Source :

RBID : pubmed:31191192

Abstract

The introduction of blood donor screening by virus nucleic acid amplification technology (NAT) in the mid to late 1990s was driven by the so-called AIDS and hepatitis C virus (HCV) epidemic, with thousands of recipients of infected blood products and components. Plasma fractionators were the first to introduce NAT testing besides pathogen reduction procedures, to reduce the virus transmission risk through their products. To achieve a similar safety standard, NAT was then also introduced for labile blood components. German transfusion centres were the first to start in-house NAT testing of their donations in pools of up to 96 samples for HCV, hepatitis B virus (HBV), and human immunodeficiency virus-1 (HIV-1). Years later the diagnostics industry provided commercial HCV and HIV-1 and later HBV NAT tests on automated platforms. NAT tests for HIV-2, hepatitis A virus, and Parvovirus B19 followed, again driven by transfusion centres with their in-house tests. When severe acute respiratory syndrome corona virus (SARS-CoV) and West Nile Virus emerged it was the NAT that enabled the manufacturers and transfusion centres to instantly introduce sensitive and specific screening tests. Subsequent automation including sample preparation has significantly reduced the costs and complexity of the procedure and made it affordable to middle income countries as well. Currently more than 60 million donations per year are NAT tested worldwide and the remaining residual risk of virus transmission by blood components and products could be reduced to almost zero. Automation rendered possible the reduction of pool size in conjunction with increased throughput and sensitivity. Thus, antibody and antigen testing may be dispensable in the long run, particularly in the combination of NAT testing with pathogen reduction. There are new technologies on the horizon like digital droplet PCR, next-generation sequencing, lab-on-a-chip, and digital antigen assays, which are comparably sensitive. However, each of these has limitations, either in throughput, costs, automation, time to result, specificity, or the need for NAT as an integral part of the technology. Thus, NAT is still the shortest and most efficient means to the result. Donor screening NAT also contributed significantly to our knowledge on how fast viruses replicate, and on the respective diagnostic window. In conjunction with animal and patient studies, we have learned more about the minimal infectious dose and the epidemics in the donor population.

DOI: 10.1159/000496749
PubMed: 31191192

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31191192

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">History and Future of Nucleic Acid Amplification Technology Blood Donor Testing.</title>
<author>
<name sortKey="Roth, Willi Kurt" sort="Roth, Willi Kurt" uniqKey="Roth W" first="Willi Kurt" last="Roth">Willi Kurt Roth</name>
<affiliation wicri:level="1">
<nlm:affiliation>GFE Blut, Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>GFE Blut, Frankfurt am Main</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31191192</idno>
<idno type="pmid">31191192</idno>
<idno type="doi">10.1159/000496749</idno>
<idno type="wicri:Area/PubMed/Corpus">000C50</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C50</idno>
<idno type="wicri:Area/PubMed/Curation">000C50</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C50</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">History and Future of Nucleic Acid Amplification Technology Blood Donor Testing.</title>
<author>
<name sortKey="Roth, Willi Kurt" sort="Roth, Willi Kurt" uniqKey="Roth W" first="Willi Kurt" last="Roth">Willi Kurt Roth</name>
<affiliation wicri:level="1">
<nlm:affiliation>GFE Blut, Frankfurt am Main, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>GFE Blut, Frankfurt am Main</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie</title>
<idno type="ISSN">1660-3796</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The introduction of blood donor screening by virus nucleic acid amplification technology (NAT) in the mid to late 1990s was driven by the so-called AIDS and hepatitis C virus (HCV) epidemic, with thousands of recipients of infected blood products and components. Plasma fractionators were the first to introduce NAT testing besides pathogen reduction procedures, to reduce the virus transmission risk through their products. To achieve a similar safety standard, NAT was then also introduced for labile blood components. German transfusion centres were the first to start in-house NAT testing of their donations in pools of up to 96 samples for HCV, hepatitis B virus (HBV), and human immunodeficiency virus-1 (HIV-1). Years later the diagnostics industry provided commercial HCV and HIV-1 and later HBV NAT tests on automated platforms. NAT tests for HIV-2, hepatitis A virus, and Parvovirus B19 followed, again driven by transfusion centres with their in-house tests. When severe acute respiratory syndrome corona virus (SARS-CoV) and West Nile Virus emerged it was the NAT that enabled the manufacturers and transfusion centres to instantly introduce sensitive and specific screening tests. Subsequent automation including sample preparation has significantly reduced the costs and complexity of the procedure and made it affordable to middle income countries as well. Currently more than 60 million donations per year are NAT tested worldwide and the remaining residual risk of virus transmission by blood components and products could be reduced to almost zero. Automation rendered possible the reduction of pool size in conjunction with increased throughput and sensitivity. Thus, antibody and antigen testing may be dispensable in the long run, particularly in the combination of NAT testing with pathogen reduction. There are new technologies on the horizon like digital droplet PCR, next-generation sequencing, lab-on-a-chip, and digital antigen assays, which are comparably sensitive. However, each of these has limitations, either in throughput, costs, automation, time to result, specificity, or the need for NAT as an integral part of the technology. Thus, NAT is still the shortest and most efficient means to the result. Donor screening NAT also contributed significantly to our knowledge on how fast viruses replicate, and on the respective diagnostic window. In conjunction with animal and patient studies, we have learned more about the minimal infectious dose and the epidemics in the donor population.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31191192</PMID>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1660-3796</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie</Title>
<ISOAbbreviation>Transfus Med Hemother</ISOAbbreviation>
</Journal>
<ArticleTitle>History and Future of Nucleic Acid Amplification Technology Blood Donor Testing.</ArticleTitle>
<Pagination>
<MedlinePgn>67-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1159/000496749</ELocationID>
<Abstract>
<AbstractText>The introduction of blood donor screening by virus nucleic acid amplification technology (NAT) in the mid to late 1990s was driven by the so-called AIDS and hepatitis C virus (HCV) epidemic, with thousands of recipients of infected blood products and components. Plasma fractionators were the first to introduce NAT testing besides pathogen reduction procedures, to reduce the virus transmission risk through their products. To achieve a similar safety standard, NAT was then also introduced for labile blood components. German transfusion centres were the first to start in-house NAT testing of their donations in pools of up to 96 samples for HCV, hepatitis B virus (HBV), and human immunodeficiency virus-1 (HIV-1). Years later the diagnostics industry provided commercial HCV and HIV-1 and later HBV NAT tests on automated platforms. NAT tests for HIV-2, hepatitis A virus, and Parvovirus B19 followed, again driven by transfusion centres with their in-house tests. When severe acute respiratory syndrome corona virus (SARS-CoV) and West Nile Virus emerged it was the NAT that enabled the manufacturers and transfusion centres to instantly introduce sensitive and specific screening tests. Subsequent automation including sample preparation has significantly reduced the costs and complexity of the procedure and made it affordable to middle income countries as well. Currently more than 60 million donations per year are NAT tested worldwide and the remaining residual risk of virus transmission by blood components and products could be reduced to almost zero. Automation rendered possible the reduction of pool size in conjunction with increased throughput and sensitivity. Thus, antibody and antigen testing may be dispensable in the long run, particularly in the combination of NAT testing with pathogen reduction. There are new technologies on the horizon like digital droplet PCR, next-generation sequencing, lab-on-a-chip, and digital antigen assays, which are comparably sensitive. However, each of these has limitations, either in throughput, costs, automation, time to result, specificity, or the need for NAT as an integral part of the technology. Thus, NAT is still the shortest and most efficient means to the result. Donor screening NAT also contributed significantly to our knowledge on how fast viruses replicate, and on the respective diagnostic window. In conjunction with animal and patient studies, we have learned more about the minimal infectious dose and the epidemics in the donor population.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roth</LastName>
<ForeName>Willi Kurt</ForeName>
<Initials>WK</Initials>
<AffiliationInfo>
<Affiliation>GFE Blut, Frankfurt am Main, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Transfus Med Hemother</MedlineTA>
<NlmUniqueID>101176417</NlmUniqueID>
<ISSNLinking>1660-3796</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Blood donation</Keyword>
<Keyword MajorTopicYN="N">Future</Keyword>
<Keyword MajorTopicYN="N">History</Keyword>
<Keyword MajorTopicYN="N">Nucleic acid amplification technology</Keyword>
<Keyword MajorTopicYN="N">Safety</Keyword>
<Keyword MajorTopicYN="N">Screening</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31191192</ArticleId>
<ArticleId IdType="doi">10.1159/000496749</ArticleId>
<ArticleId IdType="pii">tmh-0046-0067</ArticleId>
<ArticleId IdType="pmc">PMC6514489</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Transfusion. 1999 Oct;39(10):1111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10532606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfus Clin Biol. 2001 Jun;8(3):200-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11499958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2001 Sep;41(9):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11552065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2001 Dec;39(12):4302-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11724836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2002 Jul;42(7):869-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12375659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2002 Aug;42(8):1037-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12385416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2003 Sep 5;17(13):1871-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12960819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1992 Apr;10(4):413-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1368485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Virol. 2004 Jan;29(1):13-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2004 Apr;44(4):470-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15043560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intervirology. 2004;47(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15044837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vox Sang. 2004 Apr;86(3):171-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2005 Jun;45(6):994-1002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15934999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Aug 4;353(5):460-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2007 Jul;47(7):1162-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17581150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2008 Feb;48(2):286-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2008 Aug;48(8):1558-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem Lab Med. 2008;46(7):963-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2008 Dec;80(12):2064-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2009 Sep;49(9):1850-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2009 Sep;49(9):1836-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2009 Nov;49(11):2454-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1990 May 12;335(8698):1117-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1971863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2010 Jul;50(7):1495-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1990 Oct 18;323(16):1107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2170839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2012 Feb;52(2):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21827506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vox Sang. 2012 Jan;102(1):82-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfus Med Hemother. 2014 Feb;41(1):45-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24659947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1989 Apr 21;244(4902):362-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2496467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blut. 1989 Oct;59(4):390-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2506955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 2015 Sep;55(9):2104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26013691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfus Med Hemother. 2016 May;43(3):183-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27403090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Feb 28;91(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28077644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2017 Apr 20;22(16):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28449730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Med (Lausanne). 2018 Feb 01;5:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29450199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1985 Dec 20;230(4732):1350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2999980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2019 Jan 2;57(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30257900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1981 Dec 10;305(24):1425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6272109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 1982 Dec 10;31(48):652-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6819440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1994 Dec 15;331(24):1607-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7526215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hepatol. 1994 Sep;21(3):455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MMWR Morb Mortal Wkly Rep. 1994 Jul 22;43(28):505-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8022396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 1994 May;43(1):72-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infusionsther Transfusionsmed. 1993 Jun;20 Suppl 2:4-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8374287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1993 Apr 1;81(7):1898-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8384899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infusionsther Transfusionsmed. 1993 Apr;20(1-2):54-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8504243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Beitr Infusionsther Transfusionsmed. 1994;32:102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9480064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transfusion. 1998 Oct;38(10):905-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9767739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biologicals. 1998 Jun;26(2):101-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1999 Jan 30;353(9150):359-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9950441</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C50 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000C50 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:31191192
   |texte=   History and Future of Nucleic Acid Amplification Technology Blood Donor Testing.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:31191192" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021