Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transmission dynamics and evolutionary history of 2019-nCoV.

Identifieur interne : 000B93 ( PubMed/Curation ); précédent : 000B92; suivant : 000B94

Transmission dynamics and evolutionary history of 2019-nCoV.

Auteurs : Xingguang Li [République populaire de Chine] ; Wei Wang [République populaire de Chine] ; Xiaofang Zhao [République populaire de Chine] ; Junjie Zai [République populaire de Chine] ; Qiang Zhao [République populaire de Chine] ; Yi Li [République populaire de Chine] ; Antoine Chaillon [États-Unis]

Source :

RBID : pubmed:32027035

Descripteurs français

English descriptors

Abstract

To investigate the time origin, genetic diversity, and transmission dynamics of the recent 2019-nCoV outbreak in China and beyond, a total of 32 genomes of virus strains sampled from China, Thailand, and the USA with sampling dates between 24 December 2019 and 23 January 2020 were analyzed. Phylogenetic, transmission network, and likelihood-mapping analyses of the genome sequences were performed. On the basis of the likelihood-mapping analysis, the increasing tree-like signals (from 0% to 8.2%, 18.2%, and 25.4%) over time may be indicative of increasing genetic diversity of 2019-nCoV in human hosts. We identified three phylogenetic clusters using the Bayesian inference framework and three transmission clusters using transmission network analysis, with only one cluster identified by both methods using the above genome sequences of 2019-nCoV strains. The estimated mean evolutionary rate for 2019-nCoV ranged from 1.7926 × 10-3 to 1.8266 × 10-3 substitutions per site per year. On the basis of our study, undertaking epidemiological investigations and genomic data surveillance could positively impact public health in terms of guiding prevention efforts to reduce 2019-nCOV transmission in real-time.

DOI: 10.1002/jmv.25701
PubMed: 32027035

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32027035

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transmission dynamics and evolutionary history of 2019-nCoV.</title>
<author>
<name sortKey="Li, Xingguang" sort="Li, Xingguang" uniqKey="Li X" first="Xingguang" last="Li">Xingguang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xiaofang" sort="Zhao, Xiaofang" uniqKey="Zhao X" first="Xiaofang" last="Zhao">Xiaofang Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zai, Junjie" sort="Zai, Junjie" uniqKey="Zai J" first="Junjie" last="Zai">Junjie Zai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Qiang" sort="Zhao, Qiang" uniqKey="Zhao Q" first="Qiang" last="Zhao">Qiang Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Precision Cancer Center Airport Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Precision Cancer Center Airport Center, Tianjin Cancer Hospital Airport Hospital, Tianjin</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Yi" sort="Li, Yi" uniqKey="Li Y" first="Yi" last="Li">Yi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chaillon, Antoine" sort="Chaillon, Antoine" uniqKey="Chaillon A" first="Antoine" last="Chaillon">Antoine Chaillon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, University of California San Diego, La Jolla, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Medicine, University of California San Diego, La Jolla</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32027035</idno>
<idno type="pmid">32027035</idno>
<idno type="doi">10.1002/jmv.25701</idno>
<idno type="wicri:Area/PubMed/Corpus">000B93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000B93</idno>
<idno type="wicri:Area/PubMed/Curation">000B93</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000B93</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transmission dynamics and evolutionary history of 2019-nCoV.</title>
<author>
<name sortKey="Li, Xingguang" sort="Li, Xingguang" uniqKey="Li X" first="Xingguang" last="Li">Xingguang Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei" sort="Wang, Wei" uniqKey="Wang W" first="Wei" last="Wang">Wei Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Xiaofang" sort="Zhao, Xiaofang" uniqKey="Zhao X" first="Xiaofang" last="Zhao">Xiaofang Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zai, Junjie" sort="Zai, Junjie" uniqKey="Zai J" first="Junjie" last="Zai">Junjie Zai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Qiang" sort="Zhao, Qiang" uniqKey="Zhao Q" first="Qiang" last="Zhao">Qiang Zhao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Precision Cancer Center Airport Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Precision Cancer Center Airport Center, Tianjin Cancer Hospital Airport Hospital, Tianjin</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Yi" sort="Li, Yi" uniqKey="Li Y" first="Yi" last="Li">Yi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Chaillon, Antoine" sort="Chaillon, Antoine" uniqKey="Chaillon A" first="Antoine" last="Chaillon">Antoine Chaillon</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Medicine, University of California San Diego, La Jolla, California.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Medicine, University of California San Diego, La Jolla</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of medical virology</title>
<idno type="eISSN">1096-9071</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bayes Theorem</term>
<term>Betacoronavirus (genetics)</term>
<term>China</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Disease Outbreaks</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Likelihood Functions</term>
<term>Models, Genetic</term>
<term>Mutation Rate</term>
<term>Phylogeny</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (transmission)</term>
<term>Thailand</term>
<term>United States</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chine</term>
<term>Flambées de maladies</term>
<term>Fonctions de vraisemblance</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Modèles génétiques</term>
<term>Phylogénie</term>
<term>Pneumopathie virale (transmission)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Taux de mutation</term>
<term>Thaïlande</term>
<term>Théorème de Bayes</term>
<term>États-Unis d'Amérique</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>China</term>
<term>Thailand</term>
<term>United States</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Bayes Theorem</term>
<term>Disease Outbreaks</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Likelihood Functions</term>
<term>Models, Genetic</term>
<term>Mutation Rate</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chine</term>
<term>Flambées de maladies</term>
<term>Fonctions de vraisemblance</term>
<term>Génome viral</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Phylogénie</term>
<term>Taux de mutation</term>
<term>Thaïlande</term>
<term>Théorème de Bayes</term>
<term>États-Unis d'Amérique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>République populaire de Chine</term>
<term>Thaïlande</term>
<term>États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate the time origin, genetic diversity, and transmission dynamics of the recent 2019-nCoV outbreak in China and beyond, a total of 32 genomes of virus strains sampled from China, Thailand, and the USA with sampling dates between 24 December 2019 and 23 January 2020 were analyzed. Phylogenetic, transmission network, and likelihood-mapping analyses of the genome sequences were performed. On the basis of the likelihood-mapping analysis, the increasing tree-like signals (from 0% to 8.2%, 18.2%, and 25.4%) over time may be indicative of increasing genetic diversity of 2019-nCoV in human hosts. We identified three phylogenetic clusters using the Bayesian inference framework and three transmission clusters using transmission network analysis, with only one cluster identified by both methods using the above genome sequences of 2019-nCoV strains. The estimated mean evolutionary rate for 2019-nCoV ranged from 1.7926 × 10
<sup>-3</sup>
to 1.8266 × 10
<sup>-3</sup>
substitutions per site per year. On the basis of our study, undertaking epidemiological investigations and genomic data surveillance could positively impact public health in terms of guiding prevention efforts to reduce 2019-nCOV transmission in real-time.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32027035</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-9071</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>92</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>Journal of medical virology</Title>
<ISOAbbreviation>J. Med. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transmission dynamics and evolutionary history of 2019-nCoV.</ArticleTitle>
<Pagination>
<MedlinePgn>501-511</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/jmv.25701</ELocationID>
<Abstract>
<AbstractText>To investigate the time origin, genetic diversity, and transmission dynamics of the recent 2019-nCoV outbreak in China and beyond, a total of 32 genomes of virus strains sampled from China, Thailand, and the USA with sampling dates between 24 December 2019 and 23 January 2020 were analyzed. Phylogenetic, transmission network, and likelihood-mapping analyses of the genome sequences were performed. On the basis of the likelihood-mapping analysis, the increasing tree-like signals (from 0% to 8.2%, 18.2%, and 25.4%) over time may be indicative of increasing genetic diversity of 2019-nCoV in human hosts. We identified three phylogenetic clusters using the Bayesian inference framework and three transmission clusters using transmission network analysis, with only one cluster identified by both methods using the above genome sequences of 2019-nCoV strains. The estimated mean evolutionary rate for 2019-nCoV ranged from 1.7926 × 10
<sup>-3</sup>
to 1.8266 × 10
<sup>-3</sup>
substitutions per site per year. On the basis of our study, undertaking epidemiological investigations and genomic data surveillance could positively impact public health in terms of guiding prevention efforts to reduce 2019-nCOV transmission in real-time.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xingguang</ForeName>
<Initials>X</Initials>
<Identifier Source="ORCID">0000-0002-3470-2196</Identifier>
<AffiliationInfo>
<Affiliation>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Spleen and Stomach Diseases, First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Xiaofang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Science and Technology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zai</LastName>
<ForeName>Junjie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Precision Cancer Center Airport Center, Tianjin Cancer Hospital Airport Hospital, Tianjin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Hubei Engineering Research Center of Viral Vector, Wuhan University of Bioengineering, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chaillon</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, University of California San Diego, La Jolla, California.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31470268</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>Z20191111</GrantID>
<Agency>Project of Guangxi Health Committee</Agency>
<Country>International</Country>
</Grant>
<Grant>
<GrantID>2017GXNSFAA198080</GrantID>
<Agency>Natural Science Foundation of Guangxi Province of China</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Med Virol</MedlineTA>
<NlmUniqueID>7705876</NlmUniqueID>
<ISSNLinking>0146-6615</ISSNLinking>
</MedlineJournalInfo>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001499" MajorTopicYN="N">Bayes Theorem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002681" MajorTopicYN="N" Type="Geographic">China</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004196" MajorTopicYN="N">Disease Outbreaks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="Y">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016013" MajorTopicYN="N">Likelihood Functions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059645" MajorTopicYN="N">Mutation Rate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000635" MajorTopicYN="Y">transmission</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013785" MajorTopicYN="N" Type="Geographic">Thailand</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014481" MajorTopicYN="N" Type="Geographic">United States</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">2019-nCoV</Keyword>
<Keyword MajorTopicYN="Y">TMRCA</Keyword>
<Keyword MajorTopicYN="Y">evolutionary rate</Keyword>
<Keyword MajorTopicYN="Y">phylogenetic cluster</Keyword>
<Keyword MajorTopicYN="Y">time to most recent common ancestor</Keyword>
<Keyword MajorTopicYN="Y">transmission cluster</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32027035</ArticleId>
<ArticleId IdType="doi">10.1002/jmv.25701</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)30154-9</Citation>
</Reference>
<Reference>
<Citation>Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2001316</Citation>
</Reference>
<Reference>
<Citation>Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24:490-502. https://doi.org/10.1016/j.tim.2016.03.003</Citation>
</Reference>
<Reference>
<Citation>Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:1967-1976. https://doi.org/10.1056/NEJMoa030747</Citation>
</Reference>
<Reference>
<Citation>Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953-1966. https://doi.org/10.1056/NEJMoa030781</Citation>
</Reference>
<Reference>
<Citation>Zhong N, Zheng B, Li Y, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February 2003. Lancet. 2003;362:1353-1358. https://doi.org/10.1016/s0140-6736(03)14630-2</Citation>
</Reference>
<Reference>
<Citation>Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814-1820. https://doi.org/10.1056/NEJMoa1211721</Citation>
</Reference>
<Reference>
<Citation>de Groot RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87:7790-7792. https://doi.org/10.1128/JVI.01244-13</Citation>
</Reference>
<Reference>
<Citation>Lau SKP, Li KSM, Huang Y, et al. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol. 2010;84:2808-2819. https://doi.org/10.1128/JVI.02219-09</Citation>
</Reference>
<Reference>
<Citation>Guan Y, Zheng BJ, He YQ, et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276-278. https://doi.org/10.1126/science.1087139</Citation>
</Reference>
<Reference>
<Citation>Lau SKP, Woo PCY, Li KSM, et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA. 2005;102:14040-14045. https://doi.org/10.1073/pnas.0506735102</Citation>
</Reference>
<Reference>
<Citation>Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676-679. https://doi.org/10.1126/science.1118391</Citation>
</Reference>
<Reference>
<Citation>Song HD, Tu CC, Zhang GW, et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A. 2005;102:2430-2435. https://doi.org/10.1073/pnas.0409608102</Citation>
</Reference>
<Reference>
<Citation>Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004;303:1666-1669. https://doi.org/10.1126/science.1092002</Citation>
</Reference>
<Reference>
<Citation>Wang M, Yan M, Xu H, et al. SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005;11:1860-1865. https://doi.org/10.3201/eid1112.041293</Citation>
</Reference>
<Reference>
<Citation>Müller MA, Corman VM, Jores J, et al. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997. Emerg Infect Dis. 2014;20:2093-2095. https://doi.org/10.3201/eid2012.141026</Citation>
</Reference>
<Reference>
<Citation>Chu DKW, Poon LLM, Gomaa MM, et al. MERS coronaviruses in dromedary camels, Egypt. Emerg Infect Dis. 2014;20:1049-1053. https://doi.org/10.3201/eid2006.140299</Citation>
</Reference>
<Reference>
<Citation>Zhou P, Yang XL, Wang XG, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. BioRxiv. 2020. https://doi.org/10.1101/2020.01.22.914952</Citation>
</Reference>
<Reference>
<Citation>Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)30251-8</Citation>
</Reference>
<Reference>
<Citation>Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob Chall. 2017;1:33-46. https://doi.org/10.1002/gch2.1018</Citation>
</Reference>
<Reference>
<Citation>Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772-780. https://doi.org/10.1093/molbev/mst010</Citation>
</Reference>
<Reference>
<Citation>Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-98. https://doi.org/citeulike-article-id:691774</Citation>
</Reference>
<Reference>
<Citation>Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254-267. https://doi.org/10.1093/molbev/msj030</Citation>
</Reference>
<Reference>
<Citation>Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. https://doi.org/10.1038/nmeth.2109</Citation>
</Reference>
<Reference>
<Citation>Schmidt HA, von Haeseler A. Maximum-likelihood analysis using TREE-PUZZLE. Curr Protoc Bioinformatics. 2007;1:6.6.1-6.6.23.</Citation>
</Reference>
<Reference>
<Citation>Schmidt HA, Strimmer K, Vingron M, von Haeseler A. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002;18:502-504. https://doi.org/10.1093/bioinformatics/18.3.502</Citation>
</Reference>
<Reference>
<Citation>Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307-321. https://doi.org/10.1093/sysbio/syq010</Citation>
</Reference>
<Reference>
<Citation>Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2:vew007. https://doi.org/10.1093/ve/vew007</Citation>
</Reference>
<Reference>
<Citation>Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969-1973. https://doi.org/10.1093/molbev/mss075</Citation>
</Reference>
<Reference>
<Citation>Suchard MA, Rambaut A. Many-core algorithms for statistical phylogenetics. Bioinformatics. 2009;25:1370-1376. https://doi.org/10.1093/bioinformatics/btp244</Citation>
</Reference>
<Reference>
<Citation>Zhao Z, Li H, Wu X, et al. Moderate mutation rate in the SARS coronavirus genome and its implications. BMC Evol Biol. 2004;4:21. https://doi.org/10.1186/1471-2148-4-21</Citation>
</Reference>
<Reference>
<Citation>Cotten M, Watson SJ, Kellam P, et al. Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. Lancet. 2013;382:1993-2002. https://doi.org/10.1016/S0140-6736(13)61887-5</Citation>
</Reference>
<Reference>
<Citation>Cotten M, Watson SJ, Zumla AI, et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. mBio. 2014;5, https://doi.org/10.1128/mBio.01062-13</Citation>
</Reference>
<Reference>
<Citation>Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901-904. https://doi.org/10.1093/sysbio/syy032</Citation>
</Reference>
<Reference>
<Citation>Kosakovsky Pond SL, Weaver S, Leigh Brown AJ, Wertheim JO. HIV-TRACE (TRAnsmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens. Mol Biol Evol. 2018;35:1812-1819. https://doi.org/10.1093/molbev/msy016</Citation>
</Reference>
<Reference>
<Citation>Li X, Zai J, Wang X, Li Y. Potential of large 'first generation' human-to-human transmission of 2019-nCoV. J Med Virol. 2020. https://doi.org/10.1002/jmv.25693</Citation>
</Reference>
<Reference>
<Citation>Muth D, Corman VM, Roth H, et al. Attenuation of replication by a 29 nucleotide deletion in SARS-coronavirus acquired during the early stages of human-to-human transmission. Sci Rep. 2018;8:15177. https://doi.org/10.1038/s41598-018-33487-8</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000B93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32027035
   |texte=   Transmission dynamics and evolutionary history of 2019-nCoV.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32027035" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021