Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.

Identifieur interne : 000621 ( PubMed/Curation ); précédent : 000620; suivant : 000622

Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.

Auteurs : Anh-Tien Ton [Canada] ; Francesco Gentile [Canada] ; Michael Hsing [Canada] ; Fuqiang Ban [Canada] ; Artem Cherkasov [Canada]

Source :

RBID : pubmed:32162456

Abstract

The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.

DOI: 10.1002/minf.202000028
PubMed: 32162456

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:32162456

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.</title>
<author>
<name sortKey="Ton, Anh Tien" sort="Ton, Anh Tien" uniqKey="Ton A" first="Anh-Tien" last="Ton">Anh-Tien Ton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gentile, Francesco" sort="Gentile, Francesco" uniqKey="Gentile F" first="Francesco" last="Gentile">Francesco Gentile</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hsing, Michael" sort="Hsing, Michael" uniqKey="Hsing M" first="Michael" last="Hsing">Michael Hsing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ban, Fuqiang" sort="Ban, Fuqiang" uniqKey="Ban F" first="Fuqiang" last="Ban">Fuqiang Ban</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cherkasov, Artem" sort="Cherkasov, Artem" uniqKey="Cherkasov A" first="Artem" last="Cherkasov">Artem Cherkasov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32162456</idno>
<idno type="pmid">32162456</idno>
<idno type="doi">10.1002/minf.202000028</idno>
<idno type="wicri:Area/PubMed/Corpus">000621</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000621</idno>
<idno type="wicri:Area/PubMed/Curation">000621</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000621</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.</title>
<author>
<name sortKey="Ton, Anh Tien" sort="Ton, Anh Tien" uniqKey="Ton A" first="Anh-Tien" last="Ton">Anh-Tien Ton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Gentile, Francesco" sort="Gentile, Francesco" uniqKey="Gentile F" first="Francesco" last="Gentile">Francesco Gentile</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hsing, Michael" sort="Hsing, Michael" uniqKey="Hsing M" first="Michael" last="Hsing">Michael Hsing</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Ban, Fuqiang" sort="Ban, Fuqiang" uniqKey="Ban F" first="Fuqiang" last="Ban">Fuqiang Ban</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Cherkasov, Artem" sort="Cherkasov, Artem" uniqKey="Cherkasov A" first="Artem" last="Cherkasov">Artem Cherkasov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular informatics</title>
<idno type="eISSN">1868-1751</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32162456</PMID>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1868-1751</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Molecular informatics</Title>
<ISOAbbreviation>Mol Inform</ISOAbbreviation>
</Journal>
<ArticleTitle>Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/minf.202000028</ELocationID>
<Abstract>
<AbstractText>The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to effectively combat the outbreak. This urgent situation is pressing the world to respond with the development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. Along these efforts, the structure of SARS-CoV-2 main protease (Mpro) has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. Recently, our group has developed a novel deep learning platform - Deep Docking (DD) which provides fast prediction of docking scores of Glide (or any other docking program) and, hence, enables structure-based virtual screening of billions of purchasable molecules in a short time. In the current study we applied DD to all 1.3 billion compounds from ZINC15 library to identify top 1,000 potential ligands for SARS-CoV-2 Mpro protein. The compounds are made publicly available for further characterization and development by scientific community.</AbstractText>
<CopyrightInformation>© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ton</LastName>
<ForeName>Anh-Tien</ForeName>
<Initials>AT</Initials>
<AffiliationInfo>
<Affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gentile</LastName>
<ForeName>Francesco</ForeName>
<Initials>F</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8299-1976</Identifier>
<AffiliationInfo>
<Affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hsing</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ban</LastName>
<ForeName>Fuqiang</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cherkasov</LastName>
<ForeName>Artem</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>DC0190GP</GrantID>
<Agency>CIHR Canadian 2019 Novel Coronavirus (2019-nCoV)</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mol Inform</MedlineTA>
<NlmUniqueID>101529315</NlmUniqueID>
<ISSNLinking>1868-1743</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="N">deep learning</Keyword>
<Keyword MajorTopicYN="N">protease inhibitors</Keyword>
<Keyword MajorTopicYN="N">virtual screening</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32162456</ArticleId>
<ArticleId IdType="doi">10.1002/minf.202000028</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>A. Zumla, J. F. W. Chan, E. I. Azhar, D. S. C. Hui, K.-Y. Yuen, Nat. Rev. Drug Discovery 2016, 15, 327-347.</Citation>
</Reference>
<Reference>
<Citation>E. de Wit, N. van Doremalen, D. Falzarano, V. J. Munster, Nat. Rev. Microbiol. 2016, 14, 523-534.</Citation>
</Reference>
<Reference>
<Citation>Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han, C. Qin, Viruses 2019, 11, DOI 10.3390/v11010059.</Citation>
</Reference>
<Reference>
<Citation>D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T. D. Mchugh, Z. A. Memish, C. Drosten, A. Zumla, E. Petersen, Int. J. Infect. Dis. 2020, 91, 264-266.</Citation>
</Reference>
<Reference>
<Citation>“Coronavirus latest: Chinese cases spike after changes to diagnosis method,” can be found under http://www.nature.com/articles/d41586-020-00154-w, 2020.</Citation>
</Reference>
<Reference>
<Citation>M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Cell Res 2020, DOI 10.1038/s41422-020-0282-0.</Citation>
</Reference>
<Reference>
<Citation>G. Li, E. De Clercq, Nat Rev Drug Discov 2020, d41573-020-00016-0.</Citation>
</Reference>
<Reference>
<Citation>D. P. Han, A. Penn-Nicholson, M. W. Cho, Virology 2006, 350, 15-25.</Citation>
</Reference>
<Reference>
<Citation>C. E. Cameron, C. Castro, Curr. Opin. Infect. Dis. 2001, 14, 757-764.</Citation>
</Reference>
<Reference>
<Citation>M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Cell Res 2020, 30, 269-271.</Citation>
</Reference>
<Reference>
<Citation>C. J. Gordon, E. P. Tchesnokov, J. Y. Feng, D. P. Porter, M. Gotte, J. Biol. Chem. 2020, jbc.AC120.013056.</Citation>
</Reference>
<Reference>
<Citation>“Adaptive COVID-19 Treatment Trial,” can be found under https://clinicaltrials.gov/ct2/show/NCT04280705, n.d..</Citation>
</Reference>
<Reference>
<Citation>C. M. Chu, Thorax 2004, 59, 252-256.</Citation>
</Reference>
<Reference>
<Citation>I.-L. Lu, N. Mahindroo, P.-H. Liang, Y.-H. Peng, C.-J. Kuo, K.-C. Tsai, H.-P. Hsieh, Y.-S. Chao, S.-Y. Wu, J. Med. Chem. 2006, 49, 5154-5161.</Citation>
</Reference>
<Reference>
<Citation>J. E. Blanchard, N. H. Elowe, C. Huitema, P. D. Fortin, J. D. Cechetto, L. D. Eltis, E. D. Brown, Chem. Biol. 2004, 11, 1445-1453.</Citation>
</Reference>
<Reference>
<Citation>X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, PDB 2020, DOI 10.2210/pdb6lu7/pdb.</Citation>
</Reference>
<Reference>
<Citation>A. Paasche, A. Zipper, S. Schäfer, J. Ziebuhr, T. Schirmeister, B. Engels, Biochemistry 2014, 53, 5930-5946.</Citation>
</Reference>
<Reference>
<Citation>H. Lee, A. Mittal, K. Patel, J. L. Gatuz, L. Truong, J. Torres, D. C. Mulhearn, M. E. Johnson, Bioorg. Med. Chem. 2014, 22, 167-177.</Citation>
</Reference>
<Reference>
<Citation>A. K. Ghosh, K. Xi, M. E. Johnson, S. C. Baker, A. D. Mesecar, in Annual Reports in Medicinal Chemistry, Elsevier, 2006, pp. 183-196.</Citation>
</Reference>
<Reference>
<Citation>A. Tuley, W. Fast, Biochemistry 2018, 57, 3326-3337.</Citation>
</Reference>
<Reference>
<Citation>B. Turk, Nat. Rev. Drug Discovery 2006, 5, 785-799.</Citation>
</Reference>
<Reference>
<Citation>A. K. Ghosh, G. Gong, V. Grum-Tokars, D. C. Mulhearn, S. C. Baker, M. Coughlin, B. S. Prabhakar, K. Sleeman, M. E. Johnson, A. D. Mesecar, Bioorg. Med. Chem. Lett. 2008, 18, 5684-5688.</Citation>
</Reference>
<Reference>
<Citation>T. Pillaiyar, M. Manickam, V. Namasivayam, Y. Hayashi, S.-H. Jung, J. Med. Chem. 2016, 59, 6595-6628.</Citation>
</Reference>
<Reference>
<Citation>Y. Li, J. Zhang, N. Wang, H. Li, Y. Shi, G. Guo, K. Liu, H. Zeng, Q. Zou, bioRxiv 2020, 2020.01.28.922922.</Citation>
</Reference>
<Reference>
<Citation>Z. Xu, C. Peng, Y. Shi, Z. Zhu, K. Mu, X. Wang, W. Zhu, bioRxiv 2020, 2020.01.27.921627.</Citation>
</Reference>
<Reference>
<Citation>X. Liu, X.-J. Wang, bioRxiv 2020, 2020.01.29.924100.</Citation>
</Reference>
<Reference>
<Citation>A. Zhavoronkov, V. Aladinskiy, A. Zhebrak, B. Zagribelnyy, V. Terentiev, D. S. Bezrukov, D. Polykovskiy, R. Shayakhmetov, A. Filimonov, P. Orekhov, Y. Yan, O. Popova, Q. Vanhaelen, A. Aliper, Y. Ivanenkov, 2020, DOI 10.26434/CHEMRXIV.11829102.V1.</Citation>
</Reference>
<Reference>
<Citation>H. Zhang, K. M. Saravanan, Y. Yang, Md. T. Hossain, J. Li, X. Ren, Y. Wei, Deep Learning Based Drug Screening for Novel Coronavirus 2019-NCov, Other, 2020.</Citation>
</Reference>
<Reference>
<Citation>A. Abuhammad, R. A. Al-Aqtash, B. J. Anson, A. D. Mesecar, M. O. Taha, J. Mol. Recognit. 2017, 30, e2644.</Citation>
</Reference>
<Reference>
<Citation>M. Berry, B. Fielding, J. Gamieldien, Viruses 2015, 7, 6642-6660.</Citation>
</Reference>
<Reference>
<Citation>J. Lyu, S. Wang, T. E. Balius, I. Singh, A. Levit, Y. S. Moroz, M. J. O'Meara, T. Che, E. Algaa, K. Tolmachova, A. A. Tolmachev, B. K. Shoichet, B. L. Roth, J. J. Irwin, Nature 2019, 566, 224-229.</Citation>
</Reference>
<Reference>
<Citation>H. Zhang, L. Liao, K. M. Saravanan, P. Yin, Y. Wei, PeerJ 2019, 7, e7362.</Citation>
</Reference>
<Reference>
<Citation>P. H. M. Torres, A. C. R. Sodero, P. Jofily, F. P. Silva Jr, IJMS 2019, 20, 4574.</Citation>
</Reference>
<Reference>
<Citation>M. Ragoza, J. Hochuli, E. Idrobo, J. Sunseri, D. R. Koes, J. Chem. Inf. Model. 2017, 57, 942-957.</Citation>
</Reference>
<Reference>
<Citation>H. M. Ashtawy, N. R. Mahapatra, IEEE/ACM Trans. Comput. Biol. Bioinf. 2015, 12, 335-347.</Citation>
</Reference>
<Reference>
<Citation>R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley, J. K. Perry, D. E. Shaw, P. Francis, P. S. Shenkin, J. Med. Chem. 2004, 47, 1739-49.</Citation>
</Reference>
<Reference>
<Citation>T. Pillaiyar, M. Manickam, V. Namasivayam, Y. Hayashi, S.-H. Jung, J. Med. Chem. 2016, 59, 6595-6628.</Citation>
</Reference>
<Reference>
<Citation>M. Turlington, A. Chun, S. Tomar, A. Eggler, V. Grum-Tokars, J. Jacobs, J. S. Daniels, E. Dawson, A. Saldanha, P. Chase, Y. M. Baez-Santos, C. W. Lindsley, P. Hodder, A. Mesecar, S. R. Stauffer, Bioorg. Med. Chem. Lett. 2013, 23, 6172-6177.</Citation>
</Reference>
<Reference>
<Citation>M. M. Mysinger, M. Carchia, J. J. Irwin, B. K. Shoichet, J. Med. Chem. 2012, 55, 6582-6594.</Citation>
</Reference>
<Reference>
<Citation>OpenEye Scientific Software, 2019.</Citation>
</Reference>
<Reference>
<Citation>P. C. D. Hawkins, A. G. Skillman, G. L. Warren, B. A. Ellingson, M. T. Stahl, J. Chem. Inf. Model. 2010, 50, 572-584.</Citation>
</Reference>
<Reference>
<Citation>H. M. Berman, Nucleic Acids Res. 2000, 28, 235-242.</Citation>
</Reference>
<Reference>
<Citation>Schrödinger LLC, 2019.</Citation>
</Reference>
<Reference>
<Citation>T. Sterling, J. J. Irwin, J. Chem. Inf. Model. 2015, 55, 2324-2337.</Citation>
</Reference>
<Reference>
<Citation>X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, RCSB Protein Data Bank 2020, DOI 10.2210/PDB6LU7/PDB.</Citation>
</Reference>
<Reference>
<Citation>T. Liu, Y. Lin, X. Wen, R. N. Jorissen, M. K. Gilson, Nucleic Acids Res. 2007, 35, D198-D201.</Citation>
</Reference>
<Reference>
<Citation>Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, T. You, X. Liu, X. Yang, F. Bai1, H. Liu, X. Liu, L. W. Guddat, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, bioRxiv 2020, DOI 10.1101/2020.02.26.964882.</Citation>
</Reference>
<Reference>
<Citation>F. Shah, P. Mukherjee, J. Gut, J. Legac, P. J. Rosenthal, B. L. Tekwani, M. A. Avery, J. Chem. Inf. Model. 2011, 51, 852-864.</Citation>
</Reference>
<Reference>
<Citation>P. K. Das, L. Puusepp, F. S. Varghese, A. Utt, T. Ahola, D. G. Kananovich, M. Lopp, A. Merits, M. Karelson, Antimicrob. Agents Chemother. 2016, 60, 7382-7395.</Citation>
</Reference>
<Reference>
<Citation>N. S. Pagadala, K. Syed, J. Tuszynski, Biophys. Rev. Lett. 2017, 9, 91-102.</Citation>
</Reference>
<Reference>
<Citation>L. Chaput, J. Martinez-Sanz, N. Saettel, L. Mouawad, J. Cheminf. 2016, 8, 56.</Citation>
</Reference>
<Reference>
<Citation>F. Gentile, V. Agrawal, M. Hsing, F. Ban, U. Norinder, M. E. Gleave, A. Cherkasov, bioRxiv 2019, 2019.12.15.877316.</Citation>
</Reference>
<Reference>
<Citation>T. Muramatsu, C. Takemoto, Y.-T. Kim, H. Wang, W. Nishii, T. Terada, M. Shirouzu, S. Yokoyama, Proc. Natl. Acad. Sci. USA 2016, 113, 12997-13002.</Citation>
</Reference>
<Reference>
<Citation>L. Kiemer, O. Lund, S. Brunak, N. Blom, BMC Bioinf. 2004, 5, 72.</Citation>
</Reference>
<Reference>
<Citation>J. E. Blanchard, N. H. Elowe, C. Huitema, P. D. Fortin, J. D. Cechetto, L. D. Eltis, E. D. Brown, Chem. Biol. 2004, 11, 1445-1453.</Citation>
</Reference>
<Reference>
<Citation>K. Anand, Science 2003, 300, 1763-1767.</Citation>
</Reference>
<Reference>
<Citation>H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G. F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, Proc. Natl. Acad. Sci. USA 2003, 100, 13190-13195.</Citation>
</Reference>
<Reference>
<Citation>G. W. Bemis, M. A. Murcko, J. Med. Chem. 1996, 39, 2887-2893.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000621 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000621 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:32162456
   |texte=   Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:32162456" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021