Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.

Identifieur interne : 000C95 ( PubMed/Corpus ); précédent : 000C94; suivant : 000C96

Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.

Auteurs : Anirban Ghosh ; Amit S. Pithadia ; Jyotsna Bhat ; Supriyo Bera ; Anupam Midya ; Carol A. Fierke ; Ayyalusamy Ramamoorthy ; Anirban Bhunia

Source :

RBID : pubmed:25785896

English descriptors

Abstract

Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported.

DOI: 10.1021/acs.biochem.5b00061
PubMed: 25785896

Links to Exploration step

pubmed:25785896

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.</title>
<author>
<name sortKey="Ghosh, Anirban" sort="Ghosh, Anirban" uniqKey="Ghosh A" first="Anirban" last="Ghosh">Anirban Ghosh</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pithadia, Amit S" sort="Pithadia, Amit S" uniqKey="Pithadia A" first="Amit S" last="Pithadia">Amit S. Pithadia</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhat, Jyotsna" sort="Bhat, Jyotsna" uniqKey="Bhat J" first="Jyotsna" last="Bhat">Jyotsna Bhat</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bera, Supriyo" sort="Bera, Supriyo" uniqKey="Bera S" first="Supriyo" last="Bera">Supriyo Bera</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Midya, Anupam" sort="Midya, Anupam" uniqKey="Midya A" first="Anupam" last="Midya">Anupam Midya</name>
<affiliation>
<nlm:affiliation>School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fierke, Carol A" sort="Fierke, Carol A" uniqKey="Fierke C" first="Carol A" last="Fierke">Carol A. Fierke</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ramamoorthy, Ayyalusamy" sort="Ramamoorthy, Ayyalusamy" uniqKey="Ramamoorthy A" first="Ayyalusamy" last="Ramamoorthy">Ayyalusamy Ramamoorthy</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhunia, Anirban" sort="Bhunia, Anirban" uniqKey="Bhunia A" first="Anirban" last="Bhunia">Anirban Bhunia</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25785896</idno>
<idno type="pmid">25785896</idno>
<idno type="doi">10.1021/acs.biochem.5b00061</idno>
<idno type="wicri:Area/PubMed/Corpus">000C95</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C95</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.</title>
<author>
<name sortKey="Ghosh, Anirban" sort="Ghosh, Anirban" uniqKey="Ghosh A" first="Anirban" last="Ghosh">Anirban Ghosh</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Pithadia, Amit S" sort="Pithadia, Amit S" uniqKey="Pithadia A" first="Amit S" last="Pithadia">Amit S. Pithadia</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhat, Jyotsna" sort="Bhat, Jyotsna" uniqKey="Bhat J" first="Jyotsna" last="Bhat">Jyotsna Bhat</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bera, Supriyo" sort="Bera, Supriyo" uniqKey="Bera S" first="Supriyo" last="Bera">Supriyo Bera</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Midya, Anupam" sort="Midya, Anupam" uniqKey="Midya A" first="Anupam" last="Midya">Anupam Midya</name>
<affiliation>
<nlm:affiliation>School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Fierke, Carol A" sort="Fierke, Carol A" uniqKey="Fierke C" first="Carol A" last="Fierke">Carol A. Fierke</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ramamoorthy, Ayyalusamy" sort="Ramamoorthy, Ayyalusamy" uniqKey="Ramamoorthy A" first="Ayyalusamy" last="Ramamoorthy">Ayyalusamy Ramamoorthy</name>
<affiliation>
<nlm:affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bhunia, Anirban" sort="Bhunia, Anirban" uniqKey="Bhunia A" first="Anirban" last="Bhunia">Anirban Bhunia</name>
<affiliation>
<nlm:affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amyloid (chemistry)</term>
<term>Amyloid (metabolism)</term>
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Islet Amyloid Polypeptide (antagonists & inhibitors)</term>
<term>Islet Amyloid Polypeptide (metabolism)</term>
<term>Molecular Dynamics Simulation</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Peptide Fragments (chemistry)</term>
<term>Peptide Fragments (metabolism)</term>
<term>Peptide Fragments (pharmacology)</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>Spectrometry, Fluorescence</term>
<term>Viral Envelope Proteins (chemistry)</term>
<term>Viral Envelope Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Islet Amyloid Polypeptide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Amyloid</term>
<term>Peptide Fragments</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amyloid</term>
<term>Islet Amyloid Polypeptide</term>
<term>Peptide Fragments</term>
<term>Viral Envelope Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Peptide Fragments</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Molecular Dynamics Simulation</term>
<term>Nuclear Magnetic Resonance, Biomolecular</term>
<term>Protein Folding</term>
<term>Protein Structure, Secondary</term>
<term>Spectrometry, Fluorescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25785896</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>54</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.</ArticleTitle>
<Pagination>
<MedlinePgn>2249-2261</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.biochem.5b00061</ELocationID>
<Abstract>
<AbstractText>Molecular self-assembly, a phenomenon widely observed in nature, has been exploited through organic molecules, proteins, DNA, and peptides to study complex biological systems. These self-assembly systems may also be used in understanding the molecular and structural biology which can inspire the design and synthesis of increasingly complex biomaterials. Specifically, use of these building blocks to investigate protein folding and misfolding has been of particular value since it can provide tremendous insights into peptide aggregation related to a variety of protein misfolding diseases, or amyloid diseases (e.g., Alzheimer's disease, Parkinson's disease, type-II diabetes). Herein, the self-assembly of TK9, a nine-residue peptide of the extra membrane C-terminal tail of the SARS corona virus envelope, and its variants were characterized through biophysical, spectroscopic, and simulated studies, and it was confirmed that the structure of these peptides influences their aggregation propensity, hence, mimicking amyloid proteins. TK9, which forms a beta-sheet rich fibril, contains a key sequence motif that may be critical for beta-sheet formation, thus making it an interesting system to study amyloid fibrillation. TK9 aggregates were further examined through simulations to evaluate the possible intra- and interpeptide interactions at the molecular level. These self-assembly peptides can also serve as amyloid inhibitors through hydrophobic and electrophilic recognition interactions. Our results show that TK9 inhibits the fibrillation of hIAPP, a 37 amino acid peptide implicated in the pathology of type-II diabetes. Thus, biophysical and NMR experimental results have revealed a molecular level understanding of peptide folding events, as well as the inhibition of amyloid-protein aggregation are reported. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Ghosh</LastName>
<ForeName>Anirban</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Pithadia</LastName>
<ForeName>Amit S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhat</LastName>
<ForeName>Jyotsna</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bera</LastName>
<ForeName>Supriyo</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Midya</LastName>
<ForeName>Anupam</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fierke</LastName>
<ForeName>Carol A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramamoorthy</LastName>
<ForeName>Ayyalusamy</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhunia</LastName>
<ForeName>Anirban</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM040602</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM084018</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM084018</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000682">Amyloid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501689">E protein, SARS coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058228">Islet Amyloid Polypeptide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014759">Viral Envelope Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000682" MajorTopicYN="N">Amyloid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058228" MajorTopicYN="N">Islet Amyloid Polypeptide</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019906" MajorTopicYN="N">Nuclear Magnetic Resonance, Biomolecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="N">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017433" MajorTopicYN="N">Protein Structure, Secondary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013050" MajorTopicYN="N">Spectrometry, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014759" MajorTopicYN="N">Viral Envelope Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25785896</ArticleId>
<ArticleId IdType="doi">10.1021/acs.biochem.5b00061</ArticleId>
<ArticleId IdType="pmc">PMC4903029</ArticleId>
<ArticleId IdType="mid">NIHMS790054</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jan 11;290(1):121-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jan 18;315(3):339-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11786016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 May 28;125(21):6391-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12785778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Oct;21(10):1171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Dec 18;426(6968):884-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14685248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):87-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14691246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W500-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1656-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Jul;10 Suppl:S10-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15272267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2004 Aug;14(4):480-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15313243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2004;278:353-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2004 Dec 5;330(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15527857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2005 Jan;5(1):183-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15792436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Jul 6;127(26):9358-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15984849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2005 Jul;12(7):797-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16039527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Dec;272(23):5971-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16302962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:333-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2007 Jul 12;111(27):7812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17569554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2007 Aug;36(8):1263-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17619686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Oct;81(19):10831-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17652383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 8;321(5890):798-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prion. 2007 Jan-Mar;1(1):32-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19164892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Nov 29;254(5036):1312-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1962191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2010 Apr 30;31(6):1333-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20087907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2010 Sep;39(9):3480-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20498896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(2):675-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2011 Feb 2;100(3):685-692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21281583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jun;85(12):5794-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21450821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Jul 5;415(2):69-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2012 Mar 20;45(3):454-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21942864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Jul;87(13):5036-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2195544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2012 Mar;30(3):155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2012 May;17(9-10):505-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22210119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2012 Oct 25;432(2):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22832120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2013 Apr 4;49(26):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Mar 20;29(11):2639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2346740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2013 Jul 10;113(7):4837-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23547530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 29;8(8):e72318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 May 2;289(18):12535-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24668816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2014 Jun;10(6):1596-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24714742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 May 16;447(4):590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24747079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Jun;15(6):384-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24854788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemMedChem. 2014 Sep;9(9):2052-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25044630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemMedChem. 2014 Sep;9(9):2059-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25080019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Sep 17;136(37):12912-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2014 Dec 9;53(48):7503-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25397729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem Lett. 2014 Jun 5;5(11):1864-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26273866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2008 Mar;4(3):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26620784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1784-1788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29711196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 Mar;2(3):404-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8453378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Apr 12;271(15):8545-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8621479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 May 9;272(19):12601-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9139713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9895674</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C95 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C95 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25785896
   |texte=   Self-assembly of a nine-residue amyloid-forming peptide fragment of SARS corona virus E-protein: mechanism of self aggregation and amyloid-inhibition of hIAPP.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25785896" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021