Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.

Identifieur interne : 000C86 ( PubMed/Corpus ); précédent : 000C85; suivant : 000C87

Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.

Auteurs : Andrew P. Longhini ; Regan M. Leblanc ; Owen Becette ; Carolina Salguero ; Christoph H. Wunderlich ; Bruce A. Johnson ; Victoria M. D'Souza ; Christoph Kreutz ; T Kwaku Dayie

Source :

RBID : pubmed:26657632

English descriptors

Abstract

Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.

DOI: 10.1093/nar/gkv1333
PubMed: 26657632

Links to Exploration step

pubmed:26657632

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.</title>
<author>
<name sortKey="Longhini, Andrew P" sort="Longhini, Andrew P" uniqKey="Longhini A" first="Andrew P" last="Longhini">Andrew P. Longhini</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leblanc, Regan M" sort="Leblanc, Regan M" uniqKey="Leblanc R" first="Regan M" last="Leblanc">Regan M. Leblanc</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becette, Owen" sort="Becette, Owen" uniqKey="Becette O" first="Owen" last="Becette">Owen Becette</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salguero, Carolina" sort="Salguero, Carolina" uniqKey="Salguero C" first="Carolina" last="Salguero">Carolina Salguero</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wunderlich, Christoph H" sort="Wunderlich, Christoph H" uniqKey="Wunderlich C" first="Christoph H" last="Wunderlich">Christoph H. Wunderlich</name>
<affiliation>
<nlm:affiliation>Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Bruce A" sort="Johnson, Bruce A" uniqKey="Johnson B" first="Bruce A" last="Johnson">Bruce A. Johnson</name>
<affiliation>
<nlm:affiliation>Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="D Souza, Victoria M" sort="D Souza, Victoria M" uniqKey="D Souza V" first="Victoria M" last="D'Souza">Victoria M. D'Souza</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kreutz, Christoph" sort="Kreutz, Christoph" uniqKey="Kreutz C" first="Christoph" last="Kreutz">Christoph Kreutz</name>
<affiliation>
<nlm:affiliation>Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dayie, T Kwaku" sort="Dayie, T Kwaku" uniqKey="Dayie T" first="T Kwaku" last="Dayie">T Kwaku Dayie</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi dayie@umd.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26657632</idno>
<idno type="pmid">26657632</idno>
<idno type="doi">10.1093/nar/gkv1333</idno>
<idno type="wicri:Area/PubMed/Corpus">000C86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.</title>
<author>
<name sortKey="Longhini, Andrew P" sort="Longhini, Andrew P" uniqKey="Longhini A" first="Andrew P" last="Longhini">Andrew P. Longhini</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Leblanc, Regan M" sort="Leblanc, Regan M" uniqKey="Leblanc R" first="Regan M" last="Leblanc">Regan M. Leblanc</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Becette, Owen" sort="Becette, Owen" uniqKey="Becette O" first="Owen" last="Becette">Owen Becette</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Salguero, Carolina" sort="Salguero, Carolina" uniqKey="Salguero C" first="Carolina" last="Salguero">Carolina Salguero</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wunderlich, Christoph H" sort="Wunderlich, Christoph H" uniqKey="Wunderlich C" first="Christoph H" last="Wunderlich">Christoph H. Wunderlich</name>
<affiliation>
<nlm:affiliation>Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Johnson, Bruce A" sort="Johnson, Bruce A" uniqKey="Johnson B" first="Bruce A" last="Johnson">Bruce A. Johnson</name>
<affiliation>
<nlm:affiliation>Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="D Souza, Victoria M" sort="D Souza, Victoria M" uniqKey="D Souza V" first="Victoria M" last="D'Souza">Victoria M. D'Souza</name>
<affiliation>
<nlm:affiliation>Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kreutz, Christoph" sort="Kreutz, Christoph" uniqKey="Kreutz C" first="Christoph" last="Kreutz">Christoph Kreutz</name>
<affiliation>
<nlm:affiliation>Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Dayie, T Kwaku" sort="Dayie, T Kwaku" uniqKey="Dayie T" first="T Kwaku" last="Dayie">T Kwaku Dayie</name>
<affiliation>
<nlm:affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi dayie@umd.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (chemical synthesis)</term>
<term>Bacillus anthracis (chemistry)</term>
<term>Bacillus anthracis (genetics)</term>
<term>Carbon Isotopes</term>
<term>Coronavirus 229E, Human (chemistry)</term>
<term>Coronavirus 229E, Human (genetics)</term>
<term>Creatine Kinase (chemistry)</term>
<term>Creatine Kinase (genetics)</term>
<term>Guanosine Triphosphate (chemical synthesis)</term>
<term>Isotope Labeling (methods)</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Nucleotides (chemical synthesis)</term>
<term>Pentosyltransferases (chemistry)</term>
<term>Pentosyltransferases (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (chemistry)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Response Elements</term>
<term>Ribose (chemistry)</term>
<term>Ribose-Phosphate Pyrophosphokinase (chemistry)</term>
<term>Ribose-Phosphate Pyrophosphokinase (genetics)</term>
<term>Riboswitch</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Guanosine Triphosphate</term>
<term>Nucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Bacillus anthracis</term>
<term>Coronavirus 229E, Human</term>
<term>Creatine Kinase</term>
<term>Pentosyltransferases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Recombinant Proteins</term>
<term>Ribose</term>
<term>Ribose-Phosphate Pyrophosphokinase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus anthracis</term>
<term>Coronavirus 229E, Human</term>
<term>Creatine Kinase</term>
<term>Pentosyltransferases</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Recombinant Proteins</term>
<term>Ribose-Phosphate Pyrophosphokinase</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Isotope Labeling</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Carbon Isotopes</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Response Elements</term>
<term>Riboswitch</term>
<term>Transcription, Genetic</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26657632</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2016</Year>
<Month>Apr</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.</ArticleTitle>
<Pagination>
<MedlinePgn>e52</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkv1333</ELocationID>
<Abstract>
<AbstractText>Stable isotope labeling is central to NMR studies of nucleic acids. Development of methods that incorporate labels at specific atomic positions within each nucleotide promises to expand the size range of RNAs that can be studied by NMR. Using recombinantly expressed enzymes and chemically synthesized ribose and nucleobase, we have developed an inexpensive, rapid chemo-enzymatic method to label ATP and GTP site specifically and in high yields of up to 90%. We incorporated these nucleotides into RNAs with sizes ranging from 27 to 59 nucleotides using in vitro transcription: A-Site (27 nt), the iron responsive elements (29 nt), a fluoride riboswitch from Bacillus anthracis(48 nt), and a frame-shifting element from a human corona virus (59 nt). Finally, we showcase the improvement in spectral quality arising from reduced crowding and narrowed linewidths, and accurate analysis of NMR relaxation dispersion (CPMG) and TROSY-based CEST experiments to measure μs-ms time scale motions, and an improved NOESY strategy for resonance assignment. Applications of this selective labeling technology promises to reduce difficulties associated with chemical shift overlap and rapid signal decay that have made it challenging to study the structure and dynamics of large RNAs beyond the 50 nt median size found in the PDB.</AbstractText>
<CopyrightInformation>© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Longhini</LastName>
<ForeName>Andrew P</ForeName>
<Initials>AP</Initials>
<AffiliationInfo>
<Affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>LeBlanc</LastName>
<ForeName>Regan M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Becette</LastName>
<ForeName>Owen</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Salguero</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wunderlich</LastName>
<ForeName>Christoph H</ForeName>
<Initials>CH</Initials>
<AffiliationInfo>
<Affiliation>Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnson</LastName>
<ForeName>Bruce A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Structural Biology Initiative, CUNY Advanced Science Research Center, 85 St. Nicholas Terrace, New York, NY 10031, USA One Moon Scientific, Inc., 839 Grant Avenue, Westfield, NJ 07090-2322, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>D'Souza</LastName>
<ForeName>Victoria M</ForeName>
<Initials>VM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kreutz</LastName>
<ForeName>Christoph</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dayie</LastName>
<ForeName>T Kwaku</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USAfi dayie@umd.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P50 GM103297</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI104711</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50GM103297</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI104711</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>12</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009711">Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058928">Riboswitch</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>681HV46001</RegistryNumber>
<NameOfSubstance UI="D012266">Ribose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>86-01-1</RegistryNumber>
<NameOfSubstance UI="D006160">Guanosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.-</RegistryNumber>
<NameOfSubstance UI="D010430">Pentosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.2.22</RegistryNumber>
<NameOfSubstance UI="C024827">xanthine phosphoribosyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.15</RegistryNumber>
<NameOfSubstance UI="C022534">ribokinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.3.2</RegistryNumber>
<NameOfSubstance UI="D003402">Creatine Kinase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.6.1</RegistryNumber>
<NameOfSubstance UI="D012268">Ribose-Phosphate Pyrophosphokinase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001408" MajorTopicYN="N">Bacillus anthracis</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028941" MajorTopicYN="N">Coronavirus 229E, Human</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003402" MajorTopicYN="N">Creatine Kinase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006160" MajorTopicYN="N">Guanosine Triphosphate</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007553" MajorTopicYN="N">Isotope Labeling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009711" MajorTopicYN="N">Nucleotides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="Y">chemical synthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010430" MajorTopicYN="N">Pentosyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020218" MajorTopicYN="N">Response Elements</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012266" MajorTopicYN="N">Ribose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012268" MajorTopicYN="N">Ribose-Phosphate Pyrophosphokinase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058928" MajorTopicYN="N">Riboswitch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26657632</ArticleId>
<ArticleId IdType="pii">gkv1333</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkv1333</ArticleId>
<ArticleId IdType="pmc">PMC4824079</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):3117-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22139931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2004 Jun 14;43(24):3177-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2010 May;47(1):19-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20309608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Sep 23;426(19):3201-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24813122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Feb 1;128(4):1261-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16433544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2000 Apr;16(4):291-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10826881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Oct 31;419(6910):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Sep 29;126(38):11776-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15382896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1385-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2010 Dec;48(4):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2014 May;59(1):23-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Oct;88(20):11696-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25100834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2010 Jan;46(1):113-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19789981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2015 Feb;61(2):89-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25465387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 Dec 11;23(23):4913-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8532537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson B. 1996 Mar;110(3):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8867448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Mar 1;128(8):2506-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24474795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2005 Jun;32(2):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16034664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jul 29;430(6999):586-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15282609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 May 2;134(17):7558-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22489874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2008 Jun;9(7):1214-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Dec 10;130(49):16757-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19049467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2008 Sep;42(1):35-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18762869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2014 Feb 6;426(3):763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24211467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2013 Mar;55(3):279-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23386228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Apr 1;25(7):1390-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2004 Jan;28(1):59-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 May 22;348(6237):917-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25999508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2015 Sep;21(9):1621-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26124200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Feb 27;386(3):648-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19146858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 2014 Oct 31;249C:118-125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25462955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Sep 11;20(17):4515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1383928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 May;39(10):4340-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 18;499(7458):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Chem. 2008 Aug;36(4):169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jan 9;355(6356):184-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1370345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2013 Sep 23;14(14):1709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23784752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2001;339:204-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11462813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemphyschem. 2004 Jan 23;5(1):76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14999846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Sep 11;20(17):4507-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1383927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Mar 19;337(2):427-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15003457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2012 Mar 30;417(3):224-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8820-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24889628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2006 Aug;35(4):261-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 1999 May;138(1):178-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson. 1998 Jan;130(1):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9469903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2005 Sep;6(9):1492-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16138301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2001 Feb;19(2):141-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11256810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2014 Nov 27;515(7528):591-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25209668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Jan 8;136(1):20-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24299272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):724-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23041928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9356455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Sep 1;126(34):10560-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15327312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2014 Jul 21;15(11):1573-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24954297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2008 Aug 15;3(8):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2009 Mar 25;131(11):3818-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19243182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Magn Reson B. 1994 Jul;104(3):266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8069484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2012 Apr;18(4):673-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Jan 19;127(2):713-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2008 Oct;42(2):99-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jan 13;335(6065):233-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Feb 29;134(8):3667-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12867-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23868852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Dec 17;404(5):751-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20933521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Dec;10(12):1033-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14578934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2015;558:39-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26068737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Feb 25;126(7):2247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14971961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2014;549:133-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25432748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2005 Jan-Feb;40(1):1-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15804623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2012 Jul;53(3):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22752933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Mar 27;277(2):333-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9514734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2012 Sep;54(1):9-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22833056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2003 Oct;27(2):133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2013 Apr 8;52(15):4156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23450751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 2010 Mar;66(Pt 2):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20164644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Dec 26;129(51):16072-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Aug 15;39(32):9951-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10933815</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000C86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26657632
   |texte=   Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:26657632" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021