Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization and anti-inflammation role of swine IFITM3 gene

Identifieur interne : 000969 ( Pmc/Corpus ); précédent : 000968; suivant : 000970

Characterization and anti-inflammation role of swine IFITM3 gene

Auteurs : He-Ping Li ; Pei-Ge Chen ; Fu-Tao Liu ; He-Shui Zhu ; Xian-Qin Jiao ; Kai Zhong ; Yu-Jie Guo ; Guang-Ming Zha ; Li-Qiang Han ; Wei-Fei Lu ; Yue-Ying Wang ; Guo-Yu Yang

Source :

RBID : PMC:5650283

Abstract

IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.


Url:
DOI: 10.18632/oncotarget.20568
PubMed: 29088728
PubMed Central: 5650283

Links to Exploration step

PMC:5650283

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization and anti-inflammation role of swine IFITM3 gene</title>
<author>
<name sortKey="Li, He Ping" sort="Li, He Ping" uniqKey="Li H" first="He-Ping" last="Li">He-Ping Li</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Pei Ge" sort="Chen, Pei Ge" uniqKey="Chen P" first="Pei-Ge" last="Chen">Pei-Ge Chen</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fu Tao" sort="Liu, Fu Tao" uniqKey="Liu F" first="Fu-Tao" last="Liu">Fu-Tao Liu</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, He Shui" sort="Zhu, He Shui" uniqKey="Zhu H" first="He-Shui" last="Zhu">He-Shui Zhu</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jiao, Xian Qin" sort="Jiao, Xian Qin" uniqKey="Jiao X" first="Xian-Qin" last="Jiao">Xian-Qin Jiao</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Kai" sort="Zhong, Kai" uniqKey="Zhong K" first="Kai" last="Zhong">Kai Zhong</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Yu Jie" sort="Guo, Yu Jie" uniqKey="Guo Y" first="Yu-Jie" last="Guo">Yu-Jie Guo</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zha, Guang Ming" sort="Zha, Guang Ming" uniqKey="Zha G" first="Guang-Ming" last="Zha">Guang-Ming Zha</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Han, Li Qiang" sort="Han, Li Qiang" uniqKey="Han L" first="Li-Qiang" last="Han">Li-Qiang Han</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wei Fei" sort="Lu, Wei Fei" uniqKey="Lu W" first="Wei-Fei" last="Lu">Wei-Fei Lu</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yue Ying" sort="Wang, Yue Ying" uniqKey="Wang Y" first="Yue-Ying" last="Wang">Yue-Ying Wang</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Guo Yu" sort="Yang, Guo Yu" uniqKey="Yang G" first="Guo-Yu" last="Yang">Guo-Yu Yang</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29088728</idno>
<idno type="pmc">5650283</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650283</idno>
<idno type="RBID">PMC:5650283</idno>
<idno type="doi">10.18632/oncotarget.20568</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000969</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000969</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Characterization and anti-inflammation role of swine IFITM3 gene</title>
<author>
<name sortKey="Li, He Ping" sort="Li, He Ping" uniqKey="Li H" first="He-Ping" last="Li">He-Ping Li</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chen, Pei Ge" sort="Chen, Pei Ge" uniqKey="Chen P" first="Pei-Ge" last="Chen">Pei-Ge Chen</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Liu, Fu Tao" sort="Liu, Fu Tao" uniqKey="Liu F" first="Fu-Tao" last="Liu">Fu-Tao Liu</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhu, He Shui" sort="Zhu, He Shui" uniqKey="Zhu H" first="He-Shui" last="Zhu">He-Shui Zhu</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jiao, Xian Qin" sort="Jiao, Xian Qin" uniqKey="Jiao X" first="Xian-Qin" last="Jiao">Xian-Qin Jiao</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zhong, Kai" sort="Zhong, Kai" uniqKey="Zhong K" first="Kai" last="Zhong">Kai Zhong</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Guo, Yu Jie" sort="Guo, Yu Jie" uniqKey="Guo Y" first="Yu-Jie" last="Guo">Yu-Jie Guo</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Zha, Guang Ming" sort="Zha, Guang Ming" uniqKey="Zha G" first="Guang-Ming" last="Zha">Guang-Ming Zha</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Han, Li Qiang" sort="Han, Li Qiang" uniqKey="Han L" first="Li-Qiang" last="Han">Li-Qiang Han</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lu, Wei Fei" sort="Lu, Wei Fei" uniqKey="Lu W" first="Wei-Fei" last="Lu">Wei-Fei Lu</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yue Ying" sort="Wang, Yue Ying" uniqKey="Wang Y" first="Yue-Ying" last="Wang">Yue-Ying Wang</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Yang, Guo Yu" sort="Yang, Guo Yu" uniqKey="Yang G" first="Guo-Yu" last="Yang">Guo-Yu Yang</name>
<affiliation>
<nlm:aff id="A1"> Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oncotarget</title>
<idno type="eISSN">1949-2553</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimman, Tg" uniqKey="Kimman T">TG Kimman</name>
</author>
<author>
<name sortKey="Cornelissen, La" uniqKey="Cornelissen L">LA Cornelissen</name>
</author>
<author>
<name sortKey="Moormann, Rj" uniqKey="Moormann R">RJ Moormann</name>
</author>
<author>
<name sortKey="Rebel, Jm" uniqKey="Rebel J">JM Rebel</name>
</author>
<author>
<name sortKey="Stockhofe Zurwieden, N" uniqKey="Stockhofe Zurwieden N">N Stockhofe-Zurwieden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T Taniguchi</name>
</author>
<author>
<name sortKey="Takaoka, A" uniqKey="Takaoka A">A Takaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siegrist, F" uniqKey="Siegrist F">F Siegrist</name>
</author>
<author>
<name sortKey="Ebeling, M" uniqKey="Ebeling M">M Ebeling</name>
</author>
<author>
<name sortKey="Certa, U" uniqKey="Certa U">U Certa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seyfried, Nt" uniqKey="Seyfried N">NT Seyfried</name>
</author>
<author>
<name sortKey="Huysentruyt, Lc" uniqKey="Huysentruyt L">LC Huysentruyt</name>
</author>
<author>
<name sortKey="Atwood, Ja" uniqKey="Atwood J">JA Atwood</name>
</author>
<author>
<name sortKey="Xia, Q" uniqKey="Xia Q">Q Xia</name>
</author>
<author>
<name sortKey="Seyfried, Tn" uniqKey="Seyfried T">TN Seyfried</name>
</author>
<author>
<name sortKey="Orlando, R" uniqKey="Orlando R">R Orlando</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, J" uniqKey="Fan J">J Fan</name>
</author>
<author>
<name sortKey="Peng, Z" uniqKey="Peng Z">Z Peng</name>
</author>
<author>
<name sortKey="Zhou, C" uniqKey="Zhou C">C Zhou</name>
</author>
<author>
<name sortKey="Qiu, G" uniqKey="Qiu G">G Qiu</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y Sun</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X Wang</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Le, X" uniqKey="Le X">X Le</name>
</author>
<author>
<name sortKey="Xie, K" uniqKey="Xie K">K Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hisamatsu, T" uniqKey="Hisamatsu T">T Hisamatsu</name>
</author>
<author>
<name sortKey="Watanabe, M" uniqKey="Watanabe M">M Watanabe</name>
</author>
<author>
<name sortKey="Ogata, H" uniqKey="Ogata H">H Ogata</name>
</author>
<author>
<name sortKey="Ezaki, T" uniqKey="Ezaki T">T Ezaki</name>
</author>
<author>
<name sortKey="Hozawa, S" uniqKey="Hozawa S">S Hozawa</name>
</author>
<author>
<name sortKey="Ishii, H" uniqKey="Ishii H">H Ishii</name>
</author>
<author>
<name sortKey="Kanai, T" uniqKey="Kanai T">T Kanai</name>
</author>
<author>
<name sortKey="Hibi, T" uniqKey="Hibi T">T Hibi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brass, Al" uniqKey="Brass A">AL Brass</name>
</author>
<author>
<name sortKey="Huang, Ic" uniqKey="Huang I">IC Huang</name>
</author>
<author>
<name sortKey="Benita, Y" uniqKey="Benita Y">Y Benita</name>
</author>
<author>
<name sortKey="John, Sp" uniqKey="John S">SP John</name>
</author>
<author>
<name sortKey="Krishnan, Mn" uniqKey="Krishnan M">MN Krishnan</name>
</author>
<author>
<name sortKey="Feeley, Em" uniqKey="Feeley E">EM Feeley</name>
</author>
<author>
<name sortKey="Ryan, Bj" uniqKey="Ryan B">BJ Ryan</name>
</author>
<author>
<name sortKey="Weyer, Jl" uniqKey="Weyer J">JL Weyer</name>
</author>
<author>
<name sortKey="Van Der Weyden, L" uniqKey="Van Der Weyden L">L van der Weyden</name>
</author>
<author>
<name sortKey="Fikrig, E" uniqKey="Fikrig E">E Fikrig</name>
</author>
<author>
<name sortKey="Adams, Dj" uniqKey="Adams D">DJ Adams</name>
</author>
<author>
<name sortKey="Xavier, Rj" uniqKey="Xavier R">RJ Xavier</name>
</author>
<author>
<name sortKey="Farzan, M" uniqKey="Farzan M">M Farzan</name>
</author>
<author>
<name sortKey="Elledge, Sj" uniqKey="Elledge S">SJ Elledge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, D" uniqKey="Jiang D">D Jiang</name>
</author>
<author>
<name sortKey="Weidner, Jm" uniqKey="Weidner J">JM Weidner</name>
</author>
<author>
<name sortKey="Qing, M" uniqKey="Qing M">M Qing</name>
</author>
<author>
<name sortKey="Pan, Xb" uniqKey="Pan X">XB Pan</name>
</author>
<author>
<name sortKey="Guo, H" uniqKey="Guo H">H Guo</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C Xu</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Birk, A" uniqKey="Birk A">A Birk</name>
</author>
<author>
<name sortKey="Chang, J" uniqKey="Chang J">J Chang</name>
</author>
<author>
<name sortKey="Shi, Py" uniqKey="Shi P">PY Shi</name>
</author>
<author>
<name sortKey="Block, Tm" uniqKey="Block T">TM Block</name>
</author>
<author>
<name sortKey="Guo, Jt" uniqKey="Guo J">JT Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weidner, Jm" uniqKey="Weidner J">JM Weidner</name>
</author>
<author>
<name sortKey="Jiang, D" uniqKey="Jiang D">D Jiang</name>
</author>
<author>
<name sortKey="Pan, Xb" uniqKey="Pan X">XB Pan</name>
</author>
<author>
<name sortKey="Chang, J" uniqKey="Chang J">J Chang</name>
</author>
<author>
<name sortKey="Block, Tm" uniqKey="Block T">TM Block</name>
</author>
<author>
<name sortKey="Guo, Jt" uniqKey="Guo J">JT Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feeley, Em" uniqKey="Feeley E">EM Feeley</name>
</author>
<author>
<name sortKey="Sims, Js" uniqKey="Sims J">JS Sims</name>
</author>
<author>
<name sortKey="John, Sp" uniqKey="John S">SP John</name>
</author>
<author>
<name sortKey="Chin, Cr" uniqKey="Chin C">CR Chin</name>
</author>
<author>
<name sortKey="Pertel, T" uniqKey="Pertel T">T Pertel</name>
</author>
<author>
<name sortKey="Chen, Lm" uniqKey="Chen L">LM Chen</name>
</author>
<author>
<name sortKey="Gaiha, Gd" uniqKey="Gaiha G">GD Gaiha</name>
</author>
<author>
<name sortKey="Ryan, Bj" uniqKey="Ryan B">BJ Ryan</name>
</author>
<author>
<name sortKey="Donis, Ro" uniqKey="Donis R">RO Donis</name>
</author>
<author>
<name sortKey="Elledge, Sj" uniqKey="Elledge S">SJ Elledge</name>
</author>
<author>
<name sortKey="Brass, Al" uniqKey="Brass A">AL Brass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anafu, Aa" uniqKey="Anafu A">AA Anafu</name>
</author>
<author>
<name sortKey="Bowen, Ch" uniqKey="Bowen C">CH Bowen</name>
</author>
<author>
<name sortKey="Chin, Cr" uniqKey="Chin C">CR Chin</name>
</author>
<author>
<name sortKey="Brass, Al" uniqKey="Brass A">AL Brass</name>
</author>
<author>
<name sortKey="Holm, Gh" uniqKey="Holm G">GH Holm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Ic" uniqKey="Huang I">IC Huang</name>
</author>
<author>
<name sortKey="Bailey, Cc" uniqKey="Bailey C">CC Bailey</name>
</author>
<author>
<name sortKey="Weyer, Jl" uniqKey="Weyer J">JL Weyer</name>
</author>
<author>
<name sortKey="Radoshitzky, Sr" uniqKey="Radoshitzky S">SR Radoshitzky</name>
</author>
<author>
<name sortKey="Becker, Mm" uniqKey="Becker M">MM Becker</name>
</author>
<author>
<name sortKey="Chiang, Jj" uniqKey="Chiang J">JJ Chiang</name>
</author>
<author>
<name sortKey="Brass, Al" uniqKey="Brass A">AL Brass</name>
</author>
<author>
<name sortKey="Ahmed, Aa" uniqKey="Ahmed A">AA Ahmed</name>
</author>
<author>
<name sortKey="Chi, X" uniqKey="Chi X">X Chi</name>
</author>
<author>
<name sortKey="Dong, L" uniqKey="Dong L">L Dong</name>
</author>
<author>
<name sortKey="Longobardi, Le" uniqKey="Longobardi L">LE Longobardi</name>
</author>
<author>
<name sortKey="Boltz, D" uniqKey="Boltz D">D Boltz</name>
</author>
<author>
<name sortKey="Kuhn, Jh" uniqKey="Kuhn J">JH Kuhn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, F" uniqKey="Wu F">F Wu</name>
</author>
<author>
<name sortKey="Dassopoulos, T" uniqKey="Dassopoulos T">T Dassopoulos</name>
</author>
<author>
<name sortKey="Cope, L" uniqKey="Cope L">L Cope</name>
</author>
<author>
<name sortKey="Maitra, A" uniqKey="Maitra A">A Maitra</name>
</author>
<author>
<name sortKey="Brant, Sr" uniqKey="Brant S">SR Brant</name>
</author>
<author>
<name sortKey="Harris, Ml" uniqKey="Harris M">ML Harris</name>
</author>
<author>
<name sortKey="Bayless, Tm" uniqKey="Bayless T">TM Bayless</name>
</author>
<author>
<name sortKey="Parmigiani, G" uniqKey="Parmigiani G">G Parmigiani</name>
</author>
<author>
<name sortKey="Chakravarti, S" uniqKey="Chakravarti S">S Chakravarti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seo, Gs" uniqKey="Seo G">GS Seo</name>
</author>
<author>
<name sortKey="Lee, Jk" uniqKey="Lee J">JK Lee</name>
</author>
<author>
<name sortKey="Yu, Ji" uniqKey="Yu J">JI Yu</name>
</author>
<author>
<name sortKey="Yun, Kj" uniqKey="Yun K">KJ Yun</name>
</author>
<author>
<name sortKey="Chae, Sc" uniqKey="Chae S">SC Chae</name>
</author>
<author>
<name sortKey="Choi, Sc" uniqKey="Choi S">SC Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Andreu, P" uniqKey="Andreu P">P Andreu</name>
</author>
<author>
<name sortKey="Colnot, S" uniqKey="Colnot S">S Colnot</name>
</author>
<author>
<name sortKey="Godard, C" uniqKey="Godard C">C Godard</name>
</author>
<author>
<name sortKey="Laurent Puig, P" uniqKey="Laurent Puig P">P Laurent-Puig</name>
</author>
<author>
<name sortKey="Lamarque, D" uniqKey="Lamarque D">D Lamarque</name>
</author>
<author>
<name sortKey="Kahn, A" uniqKey="Kahn A">A Kahn</name>
</author>
<author>
<name sortKey="Perret, C" uniqKey="Perret C">C Perret</name>
</author>
<author>
<name sortKey="Romagnolo, B" uniqKey="Romagnolo B">B Romagnolo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, D" uniqKey="Li D">D Li</name>
</author>
<author>
<name sortKey="Peng, Z" uniqKey="Peng Z">Z Peng</name>
</author>
<author>
<name sortKey="Tang, H" uniqKey="Tang H">H Tang</name>
</author>
<author>
<name sortKey="Wei, P" uniqKey="Wei P">P Wei</name>
</author>
<author>
<name sortKey="Kong, X" uniqKey="Kong X">X Kong</name>
</author>
<author>
<name sortKey="Yan, D" uniqKey="Yan D">D Yan</name>
</author>
<author>
<name sortKey="Huang, F" uniqKey="Huang F">F Huang</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Le, X" uniqKey="Le X">X Le</name>
</author>
<author>
<name sortKey="Li, Q" uniqKey="Li Q">Q Li</name>
</author>
<author>
<name sortKey="Xie, K" uniqKey="Xie K">K Xie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, B" uniqKey="Zhao B">B Zhao</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Zong, G" uniqKey="Zong G">G Zong</name>
</author>
<author>
<name sortKey="Li, P" uniqKey="Li P">P Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spachidou, Mp" uniqKey="Spachidou M">MP Spachidou</name>
</author>
<author>
<name sortKey="Bourazopoulou, E" uniqKey="Bourazopoulou E">E Bourazopoulou</name>
</author>
<author>
<name sortKey="Maratheftis, Ci" uniqKey="Maratheftis C">CI Maratheftis</name>
</author>
<author>
<name sortKey="Kapsogeorgou, Ek" uniqKey="Kapsogeorgou E">EK Kapsogeorgou</name>
</author>
<author>
<name sortKey="Moutsopoulos, Hm" uniqKey="Moutsopoulos H">HM Moutsopoulos</name>
</author>
<author>
<name sortKey="Tzioufas, Ag" uniqKey="Tzioufas A">AG Tzioufas</name>
</author>
<author>
<name sortKey="Manoussakis, Mn" uniqKey="Manoussakis M">MN Manoussakis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olofsson, Km" uniqKey="Olofsson K">KM Olofsson</name>
</author>
<author>
<name sortKey="Hjertner, B" uniqKey="Hjertner B">B Hjertner</name>
</author>
<author>
<name sortKey="Fossum, C" uniqKey="Fossum C">C Fossum</name>
</author>
<author>
<name sortKey="Press, Cm" uniqKey="Press C">CM Press</name>
</author>
<author>
<name sortKey="Lindberg, R" uniqKey="Lindberg R">R Lindberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perez Ferro, M" uniqKey="Perez Ferro M">M Pérez-Ferro</name>
</author>
<author>
<name sortKey="Serrano Del Castillo, C" uniqKey="Serrano Del Castillo C">C Serrano Del Castillo</name>
</author>
<author>
<name sortKey="Sanchez Pernaute, O" uniqKey="Sanchez Pernaute O">O Sánchez-Pernaute</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Menghini, R" uniqKey="Menghini R">R Menghini</name>
</author>
<author>
<name sortKey="Campia, U" uniqKey="Campia U">U Campia</name>
</author>
<author>
<name sortKey="Tesauro, M" uniqKey="Tesauro M">M Tesauro</name>
</author>
<author>
<name sortKey="Marino, A" uniqKey="Marino A">A Marino</name>
</author>
<author>
<name sortKey="Rovella, V" uniqKey="Rovella V">V Rovella</name>
</author>
<author>
<name sortKey="Rodia, G" uniqKey="Rodia G">G Rodia</name>
</author>
<author>
<name sortKey="Schinzari, F" uniqKey="Schinzari F">F Schinzari</name>
</author>
<author>
<name sortKey="Tolusso, B" uniqKey="Tolusso B">B Tolusso</name>
</author>
<author>
<name sortKey="Di Daniele, N" uniqKey="Di Daniele N">N di Daniele</name>
</author>
<author>
<name sortKey="Federici, M" uniqKey="Federici M">M Federici</name>
</author>
<author>
<name sortKey="Zoli, A" uniqKey="Zoli A">A Zoli</name>
</author>
<author>
<name sortKey="Ferraccioli, G" uniqKey="Ferraccioli G">G Ferraccioli</name>
</author>
<author>
<name sortKey="Cardillo, C" uniqKey="Cardillo C">C Cardillo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Duperray, A" uniqKey="Duperray A">A Duperray</name>
</author>
<author>
<name sortKey="Barbe, D" uniqKey="Barbe D">D Barbe</name>
</author>
<author>
<name sortKey="Raguenez, G" uniqKey="Raguenez G">G Raguenez</name>
</author>
<author>
<name sortKey="Weksler, Bb" uniqKey="Weksler B">BB Weksler</name>
</author>
<author>
<name sortKey="Romero, Ia" uniqKey="Romero I">IA Romero</name>
</author>
<author>
<name sortKey="Couraud, Po" uniqKey="Couraud P">PO Couraud</name>
</author>
<author>
<name sortKey="Perron, H" uniqKey="Perron H">H Perron</name>
</author>
<author>
<name sortKey="Marche, Pn" uniqKey="Marche P">PN Marche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cordiglieri, C" uniqKey="Cordiglieri C">C Cordiglieri</name>
</author>
<author>
<name sortKey="Marolda, R" uniqKey="Marolda R">R Marolda</name>
</author>
<author>
<name sortKey="Franzi, S" uniqKey="Franzi S">S Franzi</name>
</author>
<author>
<name sortKey="Cappelletti, C" uniqKey="Cappelletti C">C Cappelletti</name>
</author>
<author>
<name sortKey="Giardina, C" uniqKey="Giardina C">C Giardina</name>
</author>
<author>
<name sortKey="Motta, T" uniqKey="Motta T">T Motta</name>
</author>
<author>
<name sortKey="Baggi, F" uniqKey="Baggi F">F Baggi</name>
</author>
<author>
<name sortKey="Bernasconi, P" uniqKey="Bernasconi P">P Bernasconi</name>
</author>
<author>
<name sortKey="Mantegazza, R" uniqKey="Mantegazza R">R Mantegazza</name>
</author>
<author>
<name sortKey="Cavalcante, P" uniqKey="Cavalcante P">P Cavalcante</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Uematsu, S" uniqKey="Uematsu S">S Uematsu</name>
</author>
<author>
<name sortKey="Takeuchi, O" uniqKey="Takeuchi O">O Takeuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mudhasani, R" uniqKey="Mudhasani R">R Mudhasani</name>
</author>
<author>
<name sortKey="Tran, Jp" uniqKey="Tran J">JP Tran</name>
</author>
<author>
<name sortKey="Retterer, C" uniqKey="Retterer C">C Retterer</name>
</author>
<author>
<name sortKey="Radoshitzky, Sr" uniqKey="Radoshitzky S">SR Radoshitzky</name>
</author>
<author>
<name sortKey="Kota, Kp" uniqKey="Kota K">KP Kota</name>
</author>
<author>
<name sortKey="Altamura, La" uniqKey="Altamura L">LA Altamura</name>
</author>
<author>
<name sortKey="Smith, Jm" uniqKey="Smith J">JM Smith</name>
</author>
<author>
<name sortKey="Packard, Bz" uniqKey="Packard B">BZ Packard</name>
</author>
<author>
<name sortKey="Kuhn, Jh" uniqKey="Kuhn J">JH Kuhn</name>
</author>
<author>
<name sortKey="Costantino, J" uniqKey="Costantino J">J Costantino</name>
</author>
<author>
<name sortKey="Garrison, Ar" uniqKey="Garrison A">AR Garrison</name>
</author>
<author>
<name sortKey="Schmaljohn, Cs" uniqKey="Schmaljohn C">CS Schmaljohn</name>
</author>
<author>
<name sortKey="Huang, Ic" uniqKey="Huang I">IC Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, J" uniqKey="Xu J">J Xu</name>
</author>
<author>
<name sortKey="Qian, P" uniqKey="Qian P">P Qian</name>
</author>
<author>
<name sortKey="Wu, Q" uniqKey="Wu Q">Q Wu</name>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S Liu</name>
</author>
<author>
<name sortKey="Fan, W" uniqKey="Fan W">W Fan</name>
</author>
<author>
<name sortKey="Zhang, K" uniqKey="Zhang K">K Zhang</name>
</author>
<author>
<name sortKey="Wang, R" uniqKey="Wang R">R Wang</name>
</author>
<author>
<name sortKey="Zhang, H" uniqKey="Zhang H">H Zhang</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H Chen</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Narayana, Sk" uniqKey="Narayana S">SK Narayana</name>
</author>
<author>
<name sortKey="Helbig, Kj" uniqKey="Helbig K">KJ Helbig</name>
</author>
<author>
<name sortKey="Mccartney, Em" uniqKey="Mccartney E">EM McCartney</name>
</author>
<author>
<name sortKey="Eyre, Ns" uniqKey="Eyre N">NS Eyre</name>
</author>
<author>
<name sortKey="Bull, Ra" uniqKey="Bull R">RA Bull</name>
</author>
<author>
<name sortKey="Eltahla, A" uniqKey="Eltahla A">A Eltahla</name>
</author>
<author>
<name sortKey="Lloyd, Ar" uniqKey="Lloyd A">AR Lloyd</name>
</author>
<author>
<name sortKey="Beard, Mr" uniqKey="Beard M">MR Beard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Zeng, H" uniqKey="Zeng H">H Zeng</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A Kumar</name>
</author>
<author>
<name sortKey="Belser, Ja" uniqKey="Belser J">JA Belser</name>
</author>
<author>
<name sortKey="Maines, Tr" uniqKey="Maines T">TR Maines</name>
</author>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Everitt, Ar" uniqKey="Everitt A">AR Everitt</name>
</author>
<author>
<name sortKey="Clare, S" uniqKey="Clare S">S Clare</name>
</author>
<author>
<name sortKey="Pertel, T" uniqKey="Pertel T">T Pertel</name>
</author>
<author>
<name sortKey="John, Sp" uniqKey="John S">SP John</name>
</author>
<author>
<name sortKey="Wash, Rs" uniqKey="Wash R">RS Wash</name>
</author>
<author>
<name sortKey="Smith, Se" uniqKey="Smith S">SE Smith</name>
</author>
<author>
<name sortKey="Chin, Cr" uniqKey="Chin C">CR Chin</name>
</author>
<author>
<name sortKey="Feeley, Em" uniqKey="Feeley E">EM Feeley</name>
</author>
<author>
<name sortKey="Sims, Js" uniqKey="Sims J">JS Sims</name>
</author>
<author>
<name sortKey="Adams, Dj" uniqKey="Adams D">DJ Adams</name>
</author>
<author>
<name sortKey="Wise, Hm" uniqKey="Wise H">HM Wise</name>
</author>
<author>
<name sortKey="Kane, L" uniqKey="Kane L">L Kane</name>
</author>
<author>
<name sortKey="Goulding, D" uniqKey="Goulding D">D Goulding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Everitt, Ar" uniqKey="Everitt A">AR Everitt</name>
</author>
<author>
<name sortKey="Clare, S" uniqKey="Clare S">S Clare</name>
</author>
<author>
<name sortKey="Pertel, T" uniqKey="Pertel T">T Pertel</name>
</author>
<author>
<name sortKey="John, Sp" uniqKey="John S">SP John</name>
</author>
<author>
<name sortKey="Wash, Rs" uniqKey="Wash R">RS Wash</name>
</author>
<author>
<name sortKey="Smith, Se" uniqKey="Smith S">SE Smith</name>
</author>
<author>
<name sortKey="Chin, Cr" uniqKey="Chin C">CR Chin</name>
</author>
<author>
<name sortKey="Feeley, Em" uniqKey="Feeley E">EM Feeley</name>
</author>
<author>
<name sortKey="Sims, Js" uniqKey="Sims J">JS Sims</name>
</author>
<author>
<name sortKey="Adams, Dj" uniqKey="Adams D">DJ Adams</name>
</author>
<author>
<name sortKey="Wise, Hm" uniqKey="Wise H">HM Wise</name>
</author>
<author>
<name sortKey="Kane, L" uniqKey="Kane L">L Kane</name>
</author>
<author>
<name sortKey="Goulding, D" uniqKey="Goulding D">D Goulding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Zhang, A" uniqKey="Zhang A">A Zhang</name>
</author>
<author>
<name sortKey="Wan, Y" uniqKey="Wan Y">Y Wan</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
<author>
<name sortKey="Qiu, C" uniqKey="Qiu C">C Qiu</name>
</author>
<author>
<name sortKey="Xi, X" uniqKey="Xi X">X Xi</name>
</author>
<author>
<name sortKey="Ren, Y" uniqKey="Ren Y">Y Ren</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Dong, Y" uniqKey="Dong Y">Y Dong</name>
</author>
<author>
<name sortKey="Bao, M" uniqKey="Bao M">M Bao</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L Li</name>
</author>
<author>
<name sortKey="Zhou, M" uniqKey="Zhou M">M Zhou</name>
</author>
<author>
<name sortKey="Yuan, S" uniqKey="Yuan S">S Yuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brem, R" uniqKey="Brem R">R Brem</name>
</author>
<author>
<name sortKey="Oraszlan Szovik, K" uniqKey="Oraszlan Szovik K">K Oraszlan-Szovik</name>
</author>
<author>
<name sortKey="Foser, S" uniqKey="Foser S">S Foser</name>
</author>
<author>
<name sortKey="Bohrmann, B" uniqKey="Bohrmann B">B Bohrmann</name>
</author>
<author>
<name sortKey="Certa, U" uniqKey="Certa U">U Certa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scott, R" uniqKey="Scott R">R Scott</name>
</author>
<author>
<name sortKey="Siegrist, F" uniqKey="Siegrist F">F Siegrist</name>
</author>
<author>
<name sortKey="Foser, S" uniqKey="Foser S">S Foser</name>
</author>
<author>
<name sortKey="Certa, U" uniqKey="Certa U">U Certa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cary, Lc" uniqKey="Cary L">LC Cary</name>
</author>
<author>
<name sortKey="Goebel, M" uniqKey="Goebel M">M Goebel</name>
</author>
<author>
<name sortKey="Corsaro, Bg" uniqKey="Corsaro B">BG Corsaro</name>
</author>
<author>
<name sortKey="Wang, Hg" uniqKey="Wang H">HG Wang</name>
</author>
<author>
<name sortKey="Rosen, E" uniqKey="Rosen E">E Rosen</name>
</author>
<author>
<name sortKey="Fraser, Mj" uniqKey="Fraser M">MJ Fraser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Mayhew, D" uniqKey="Mayhew D">D Mayhew</name>
</author>
<author>
<name sortKey="Chen, X" uniqKey="Chen X">X Chen</name>
</author>
<author>
<name sortKey="Johnston, M" uniqKey="Johnston M">M Johnston</name>
</author>
<author>
<name sortKey="Mitra, Rd" uniqKey="Mitra R">RD Mitra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Ewis, H" uniqKey="Ewis H">H Ewis</name>
</author>
<author>
<name sortKey="Hice, Rh" uniqKey="Hice R">RH Hice</name>
</author>
<author>
<name sortKey="Malani, N" uniqKey="Malani N">N Malani</name>
</author>
<author>
<name sortKey="Parker, N" uniqKey="Parker N">N Parker</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L Zhou</name>
</author>
<author>
<name sortKey="Feschotte, C" uniqKey="Feschotte C">C Feschotte</name>
</author>
<author>
<name sortKey="Bushman, Fd" uniqKey="Bushman F">FD Bushman</name>
</author>
<author>
<name sortKey="Atkinson, Pw" uniqKey="Atkinson P">PW Atkinson</name>
</author>
<author>
<name sortKey="Craig, Nl" uniqKey="Craig N">NL Craig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T Taniguchi</name>
</author>
<author>
<name sortKey="Ogasawara, K" uniqKey="Ogasawara K">K Ogasawara</name>
</author>
<author>
<name sortKey="Takaoka, A" uniqKey="Takaoka A">A Takaoka</name>
</author>
<author>
<name sortKey="Tanaka, N" uniqKey="Tanaka N">N Tanaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda, K" uniqKey="Honda K">K Honda</name>
</author>
<author>
<name sortKey="Taniguchi, T" uniqKey="Taniguchi T">T Taniguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawai, T" uniqKey="Kawai T">T Kawai</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kubota, K" uniqKey="Kubota K">K Kubota</name>
</author>
<author>
<name sortKey="Sakaki, H" uniqKey="Sakaki H">H Sakaki</name>
</author>
<author>
<name sortKey="Imaizumi, T" uniqKey="Imaizumi T">T Imaizumi</name>
</author>
<author>
<name sortKey="Nakagawa, H" uniqKey="Nakagawa H">H Nakagawa</name>
</author>
<author>
<name sortKey="Kusumi, A" uniqKey="Kusumi A">A Kusumi</name>
</author>
<author>
<name sortKey="Kobayashi, W" uniqKey="Kobayashi W">W Kobayashi</name>
</author>
<author>
<name sortKey="Satoh, K" uniqKey="Satoh K">K Satoh</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H Kimura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Wu, S" uniqKey="Wu S">S Wu</name>
</author>
<author>
<name sortKey="Jin, X" uniqKey="Jin X">X Jin</name>
</author>
<author>
<name sortKey="Li, M" uniqKey="Li M">M Li</name>
</author>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S Chen</name>
</author>
<author>
<name sortKey="Teeling, Jl" uniqKey="Teeling J">JL Teeling</name>
</author>
<author>
<name sortKey="Perry, Vh" uniqKey="Perry V">VH Perry</name>
</author>
<author>
<name sortKey="Gu, J" uniqKey="Gu J">J Gu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuadrado, A" uniqKey="Cuadrado A">A Cuadrado</name>
</author>
<author>
<name sortKey="Nebreda, Ar" uniqKey="Nebreda A">AR Nebreda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cuenda, A" uniqKey="Cuenda A">A Cuenda</name>
</author>
<author>
<name sortKey="Rousseau, S" uniqKey="Rousseau S">S Rousseau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W Zhao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nakajima, A" uniqKey="Nakajima A">A Nakajima</name>
</author>
<author>
<name sortKey="Ibi, D" uniqKey="Ibi D">D Ibi</name>
</author>
<author>
<name sortKey="Nagai, T" uniqKey="Nagai T">T Nagai</name>
</author>
<author>
<name sortKey="Yamada, S" uniqKey="Yamada S">S Yamada</name>
</author>
<author>
<name sortKey="Nabeshima, T" uniqKey="Nabeshima T">T Nabeshima</name>
</author>
<author>
<name sortKey="Yamada, K" uniqKey="Yamada K">K Yamada</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Oncotarget</journal-id>
<journal-id journal-id-type="iso-abbrev">Oncotarget</journal-id>
<journal-id journal-id-type="publisher-id">Oncotarget</journal-id>
<journal-id journal-id-type="publisher-id">ImpactJ</journal-id>
<journal-title-group>
<journal-title>Oncotarget</journal-title>
</journal-title-group>
<issn pub-type="epub">1949-2553</issn>
<publisher>
<publisher-name>Impact Journals LLC</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29088728</article-id>
<article-id pub-id-type="pmc">5650283</article-id>
<article-id pub-id-type="publisher-id">20568</article-id>
<article-id pub-id-type="doi">10.18632/oncotarget.20568</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Paper: Immunology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Characterization and anti-inflammation role of swine IFITM3 gene</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>He-Ping</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="FN1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chen</surname>
<given-names>Pei-Ge</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="FN1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Liu</surname>
<given-names>Fu-Tao</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="FN1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhu</surname>
<given-names>He-Shui</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jiao</surname>
<given-names>Xian-Qin</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zhong</surname>
<given-names>Kai</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Guo</surname>
<given-names>Yu-Jie</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Zha</surname>
<given-names>Guang-Ming</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Han</surname>
<given-names>Li-Qiang</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Lu</surname>
<given-names>Wei-Fei</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wang</surname>
<given-names>Yue-Ying</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yang</surname>
<given-names>Guo-Yu</given-names>
</name>
<xref ref-type="aff" rid="A1">
<sup>1</sup>
</xref>
</contrib>
<aff id="A1">
<sup>1</sup>
Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<bold>
<italic>Correspondence to</italic>
</bold>
<italic>: Yue-Ying Wang,</italic>
<email>wangyueying2008@126.com</email>
</corresp>
<corresp id="cor2">
<italic>Guo-Yu Yang,</italic>
<email>haubiochem@163.com</email>
</corresp>
<fn fn-type="equal" id="FN1">
<label>*</label>
<p>These authors have contributed equally to this study</p>
</fn>
</author-notes>
<pub-date pub-type="collection">
<day>26</day>
<month>9</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="epub">
<day>27</day>
<month>8</month>
<year>2017</year>
</pub-date>
<volume>8</volume>
<issue>43</issue>
<fpage>73579</fpage>
<lpage>73589</lpage>
<history>
<date date-type="received">
<day>14</day>
<month>6</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>8</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright: © 2017 Li et al.</copyright-statement>
<copyright-year>2017</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open-access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">Creative Commons Attribution License</ext-link>
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</license-p>
</license>
</permissions>
<abstract>
<p>IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.</p>
</abstract>
<kwd-group>
<kwd>IFITM3</kwd>
<kwd>characterization</kwd>
<kwd>anti-inflammation</kwd>
<kwd>TLR4 signaling pathway</kwd>
<kwd>lipopolysaccharide</kwd>
<kwd>Immunology and Microbiology Section</kwd>
<kwd>Immune response</kwd>
<kwd>Immunity</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s1">
<title>INTRODUCTION</title>
<p>Swine diseases have disturbed many intensive farms heavily in economic and social losses, and aroused extensive attention to the prevention and treatment of swine diseases. Due to the complex genetic diversity, current vaccination and antiviral strategies are not valid [
<xref rid="R1" ref-type="bibr">1</xref>
]. The innate immune is the first line for host defense against infections. As one type of potent innate immunomodulators, interferons (IFNs) exert an important role in the host against infection and pathogen invasion via several diverse mechanisms. IFNs can inhibit a variety of viruses, bacteria, and parasites infections [
<xref rid="R2" ref-type="bibr">2</xref>
].</p>
<p>Interferon inducible trans-membrane protein 3 (IFITM3) is a double trans-membrane protein that belongs to the IFITM family members. IFITM3 is mainly stimulated by IFNs participating in various biological processes. Hence, IFITM3 is involved in interferon-triggered processes, such as anti-proliferative activities of different pathogenesis, antivirus infections in innate immune response, cell adhesion, cell apoptosis, and germ cell homing [
<xref rid="R2" ref-type="bibr">2</xref>
-
<xref rid="R10" ref-type="bibr">10</xref>
]. More importantly, IFITM3 is also a potent antiviral and anti-inflammatory effector in the host innate immune system [
<xref rid="R7" ref-type="bibr">7</xref>
,
<xref rid="R8" ref-type="bibr">8</xref>
,
<xref rid="R11" ref-type="bibr">11</xref>
]. At present, the characteristics and antiviral activity of human IFITM3 have been broadly investigated, and mainly focused on human-associated pathogens.</p>
<p>Currently, studies on swine IFITM3, especially regarding its function, are very few. Although previous studies on IFITMs mainly focused on their roles in embryonic development, their functions as host antiviral factors were only recently discovered by RNA interference genomic screening for host factors involved in influenza virus infection [
<xref rid="R7" ref-type="bibr">7</xref>
]. It was subsequently revealed that IFITMs can restrict the early stages of replication for a wide variety of viruses, including Influenza virus, West Nile viruses, Ebola viruses, and Corona virus [
<xref rid="R7" ref-type="bibr">7</xref>
,
<xref rid="R8" ref-type="bibr">8</xref>
,
<xref rid="R12" ref-type="bibr">12</xref>
]. Researchers found that IFITM3 gene was mainly isolated from severely inflamed mucosa and considered as a biomarker for ulcerative colitis [
<xref rid="R6" ref-type="bibr">6</xref>
,
<xref rid="R13" ref-type="bibr">13</xref>
]. Furthermore, IFITM3 expression increased in gastric cancer, and colorectal tumors [
<xref rid="R14" ref-type="bibr">14</xref>
-
<xref rid="R16" ref-type="bibr">16</xref>
]. There exists a positive correlation between the IFITM3 expression levels and the pathological glioma grades [
<xref rid="R17" ref-type="bibr">17</xref>
]. Previous studies have shown that toll like receptor 4 (TLR4) may play a major role in various inflammatory diseases. Literatures demonstrated that TLR4 expression up-regulated in rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis [
<xref rid="R18" ref-type="bibr">18</xref>
-
<xref rid="R23" ref-type="bibr">23</xref>
]. Bacterial lipopolysaccharide (LPS), which is recognized by host innate immune receptor TLR4 and subsequently triggers inflammation by activation of a transcriptional factor IFN regulatory factor and nuclear factor-κB (NFκB), resulting in up-regulation of various inflammatory mediators [
<xref rid="R24" ref-type="bibr">24</xref>
].</p>
<p>However, the role of swine IFITM3 in inflammation and the regulatory signal pathways is unclear. In this study, we first cloned swine IFITM3 gene from spleen tissues and examined swine IFITM3 mRNA location in tissues. To better understand IFITM3 function in inflammation, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, as well as obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. We further also detected the important molecules expression of TLR4 signaling pathway. Together, these data indicated that overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These conclusions may be helpful to understand deeply the biological function of IFITM3 in inflammation.</p>
</sec>
<sec id="s2">
<title>RESULTS</title>
<sec id="s2_1">
<title>Characterization and expression pattern of IFITM3 gene</title>
<p>We searched the predicted IFITM3 CDS (NM_001201382.1) in the NCBI database. The length of IFITM3 CDS is 438 bp, and encodes 145 amino acids. We cloned IFITM3 CDS and identified it using DNA sequencing. The data demonstrated the expected nucleotide sequence of IFITM3 as NCBI database described (Figure
<xref ref-type="fig" rid="F1">1</xref>
).</p>
<fig id="F1" orientation="portrait" position="float">
<label>Figure 1</label>
<caption>
<title>Cloning the IFITM3 gene in swine spleen tissue</title>
<p>M, DL2000 DNA marker; 1-3, PCR product for swine IFITM3; 4, negative control.</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g001"></graphic>
</fig>
<p>To illustrate the expression patterns of IFITM3 mRNA in tissues, we detected IFITM3 mRNA expression in 13 healthy swine tissues (Figure
<xref ref-type="fig" rid="F2">2</xref>
). Results showed that IFITM3 mRNA was expressed in all 13 tissues. Moreover, the IFITM3 mRNA abundance was relatively higher in spleen and lung, while the IFITM3 mRNA in heart and ileum was hardly detected (Figure
<xref ref-type="fig" rid="F2">2</xref>
). These differential expression implicated that IFITM3 might be involved in the functional regulation of immunity.</p>
<fig id="F2" orientation="portrait" position="float">
<label>Figure 2</label>
<caption>
<title>Expression patterns of the IFITM3 mRNA in various swine tissues</title>
<p>1, skin; 2, muscle; 3, adipose; 4, heart; 5, liver; 6, spleen; 7, kidney; 8, lung; 9, duodenum; 10, jejunum; 11, ileum; 12, cecum; 13, rectum.</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g002"></graphic>
</fig>
</sec>
<sec id="s2_2">
<title>Transfection efficiency and IFITM3 overexpression</title>
<p>To further evaluate the IFITM3 function
<italic>in vitro</italic>
, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, as well as obtained swine IFITM3 stable expression cell line. Based on Piggyback (PB) vector carries the green fluorescent protein (GFP) gene. When the PB vector is integrated into the host cell genome, GFP protein is expressed in the host cells, which can be seen under a fluorescence microscope. We clearly observed the green fluorescence in the transfected PBIFM3 and PBv, but not in the non-transfected PK15 cells (Figure
<xref ref-type="fig" rid="F3">3</xref>
). These results indicated that vectors with the GFP gene were successfully transfected into cells and integrated into the genome. Through screening, we obtained stable transfected cell lines. To evaluate IFITM3 expression efficiency, we further detected the expression of IFITM3 using real-time RT-PCR, combined with observation under microscope (Figure
<xref ref-type="fig" rid="F3">3</xref>
). The IFITM3 mRNA expression up-regulated significantly in PBIFM3 cells, compared with that in PBv cells (
<italic>p</italic>
< 0.0001) (Figure
<xref ref-type="fig" rid="F4">4</xref>
). Thus, IFITM3 was successfully transfected into PK15 cells and efficiently overexpressed.</p>
<fig id="F3" orientation="portrait" position="float">
<label>Figure 3</label>
<caption>
<title>Observation of green fluorescence in PK15 cells transfected with IFITM3 expression vectors</title>
<p>Green fluorescence was observed clearly using fluorescence microscopy in the PBv (
<bold>B</bold>
), and PBIFM3 (
<bold>C</bold>
) cells, but not in non-transfected PK15 cells (
<bold>A</bold>
).</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g003"></graphic>
</fig>
<fig id="F4" orientation="portrait" position="float">
<label>Figure 4</label>
<caption>
<title>Overexpression of the swine IFITM3 gene in PBIFM3 cells</title>
<p>GAPDH was used as an internal housekeeping gene. ****
<italic>P</italic>
< 0.0001 vs. PBv.</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g004"></graphic>
</fig>
</sec>
<sec id="s2_3">
<title>IFITM3 expression in inflammatory response</title>
<p>LPS is the most commonly used experimental inflammatory factor. We treated the PBIFM3 and PBv cells with or without LPS to detect IFITM3 expression in inflammatory response. As shown in Figure
<xref ref-type="fig" rid="F5">5</xref>
, compared with 0 h cells, LPS increased IFITM3 mRNA abundance in PBIFM3 and PBv, and exhibited the time-dependent effect for LPS treatment. However, IFITM3 mRNA abundance in PBIFM3 cells was notably higher than that in PBv cells (
<italic>p</italic>
< 0.0001). These data noted that the IFITM3 expression can be up-regulated in inflammatory response.</p>
<fig id="F5" orientation="portrait" position="float">
<label>Figure 5</label>
<caption>
<title>Effect of LPS on swine IFITM3 expression</title>
<p>Graphs demonstrate the expression of IFITM3 in PBIFM3 and PBv cells stimulated with or without LPS (100 μg/ml). In LPS groups, cells were incubated correspondingly with LPS (100 μg/mL) for 4, 8, 12 h. Cells in 0 h (control) group were cultured in basal medium. ****
<italic>P</italic>
< 0.0001 vs. PBv or 0 h group.</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g005"></graphic>
</fig>
</sec>
<sec id="s2_4">
<title>IFITM3 inhibits type I interferons production</title>
<p>Type I interferons are critical for blocking pathogens infection by promoting hundreds of IFN-stimulated genes production [
<xref rid="R25" ref-type="bibr">25</xref>
]. IFITM3 gene has been identified in several cellular processes mediated by IFNs, such as antivirus, cell adhesion and anti-proliferative activities [
<xref rid="R3" ref-type="bibr">3</xref>
]. We detected type I interferons production in PBIFM3 cells with or without LPS treatment. As shown in Figure
<xref ref-type="fig" rid="F6">6</xref>
, IFNɑ was significantly up-regulated in the PBIFM3 and PBv cells, as well as dependent on the time of LPS treatment. However, IFNɑ abundance in PBIFM3 cells was lower than that in PBv cells. Similar results were also observed in the change of IFNβ expression, IFNβ expression was not entirely dependent on the time of LPS treatment. Results implicated that IFITM3 decreased the IFNs production during inflammatory activity.</p>
<fig id="F6" orientation="portrait" position="float">
<label>Figure 6</label>
<caption>
<title>Effect of swine IFITM3 on the expression of IFNα and IFNβ</title>
<p>Graphs demonstrate the expression of IFNα (
<bold>a</bold>
) and IFNβ (
<bold>b</bold>
) in PBIFM3 and PBv cells stimulated with or without LPS (100 μg/ml). In LPS groups, cells were incubated correspondingly with LPS (100 μg/mL) for 4, 8, 12 h. Cells in 0 h (control) group were cultured in basal medium. **
<italic>P</italic>
< 0.01, ***
<italic>P</italic>
< 0.001, ****
<italic>P</italic>
< 0.0001 vs. PBv or 0 h group.</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g006"></graphic>
</fig>
</sec>
<sec id="s2_5">
<title>IFITM3 suppresses TLR4 signaling pathway</title>
<p>To further clarify the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway, which is the classical pathway of LPS. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling key molecules (Figure
<xref ref-type="fig" rid="F7">7</xref>
), and up-regulated the expression of TLR4, NFκB, p38 mitogen-activated protein kinases (p38 MAPK), and tumor necrosis factor alpha (TNFα), compared with 0 h treatment cultured with basal medium only (Figure
<xref ref-type="fig" rid="F7">7</xref>
). However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells (Figure
<xref ref-type="fig" rid="F7">7</xref>
), and down-regulated the expression of TLR4, NFκB, p38 MAPK, and TNFα, compared with the PBv cells treated with LPS (Figure
<xref ref-type="fig" rid="F7">7</xref>
). Consistently, the levels of TNFα and NFκB reached at peak 4 h after LPS treatment both of the PBIFM3 and PBv cells, then decreased over time. The relative expression of TLR4 and p38 MAPK were dependent on the time of LPS treatment. However, the change of TANK-binding kinase 1 (TBK1) expression had no significance correlation with LPS treatment time. Collectively, these results indicated that IFITM3 was involved in the TLR4-NFκB signaling pathway and played a pivotal role in inflammatory response.</p>
<fig id="F7" orientation="portrait" position="float">
<label>Figure 7</label>
<caption>
<title>Effect of swine IFITM3 on the expression of components of the TLR4 signaling pathway</title>
<p>Graphs demonstrate the expression of TLR4 (
<bold>a</bold>
), NFκB (
<bold>b</bold>
), TNFα (
<bold>c</bold>
), TBK1 (
<bold>d</bold>
) and p38 (
<bold>e</bold>
) in PBIFM3 and PBv cells stimulated with or without LPS (100 μg/ml). In LPS groups, cells were incubated correspondingly with LPS (100 μg/mL) for 4, 8, 12 h. Cells in 0 h (control) group were cultured in basal medium. *
<italic>P</italic>
< 0.05,**
<italic>P</italic>
< 0.01, ****
<italic>P</italic>
< 0.0001 vs. PBv or 0 h group.</p>
</caption>
<graphic xlink:href="oncotarget-08-73579-g007"></graphic>
</fig>
</sec>
</sec>
<sec id="s3">
<title>DISCUSSION</title>
<p>IFITM proteins are approximately 130 amino acids in length and are conserved in most vertebrate species [
<xref rid="R3" ref-type="bibr">3</xref>
]. Xu et al reported that the full-length cDNA of swine IFITM3 from lymph node tissue is 438 base pairs (bp), and encodes 145 amino acids residues [
<xref rid="R26" ref-type="bibr">26</xref>
]. In this study, we cloned swine IFITM3 gene, and detected the IFITM3 distribution in tissues, as well as functional characterized this gene. The results similar with Xu et al [
<xref rid="R26" ref-type="bibr">26</xref>
] were also observed. The length of swine IFITM3 gene was also 438 bp, encoding 145 amino acids. According to the gene distribution in tissues, IFITM3 gene expression abundance is higher in spleen and lungs.</p>
<p>IFITM3 has been reported to participate in adhesion, apoptosis, immune response, growth and development, and germ cell homing [
<xref rid="R3" ref-type="bibr">3</xref>
]. More importantly, IFITM3 exhibits the greatest protection against the broadest range of viruses, including influenza A virus, flaviviruses, hepaciviruses, and reoviruses, etc [
<xref rid="R11" ref-type="bibr">11</xref>
,
<xref rid="R12" ref-type="bibr">12</xref>
,
<xref rid="R25" ref-type="bibr">25</xref>
,
<xref rid="R27" ref-type="bibr">27</xref>
]. IFITM3 blocked human influenza virus infection during the early stages of virus entry, precisely, after hemifusion, likely due to the relatively high constitutive expression in the endosomal and lysosomal of host [
<xref rid="R28" ref-type="bibr">28</xref>
]. Furthermore, the single-nucleotide polymorphism of IFITM3 gene resulted in decreasing IFITM3 protein expression, which has been linked with a higher risk of virus infections [
<xref rid="R29" ref-type="bibr">29</xref>
,
<xref rid="R30" ref-type="bibr">30</xref>
]. IFITM3 knockout mice increased morbidity and mortality associated with seasonal or pandemic influenza virus infection [
<xref rid="R29" ref-type="bibr">29</xref>
,
<xref rid="R31" ref-type="bibr">31</xref>
]. Recent studies identified that IFITM3 gene was a powerful biomarker for ulcerative colitis [
<xref rid="R6" ref-type="bibr">6</xref>
,
<xref rid="R13" ref-type="bibr">13</xref>
]. Moreover, IFITM3 up-regulated in gastric cancer, and colorectal tumors [
<xref rid="R14" ref-type="bibr">14</xref>
-
<xref rid="R16" ref-type="bibr">16</xref>
]. Furthermore, study showed that there existed a positive correlation between the IFITM3 expression levels and pathological grades [
<xref rid="R17" ref-type="bibr">17</xref>
]. In this study, the IFITM3 mRNA abundance was hardly detected in ileum (Figure
<xref ref-type="fig" rid="F2">2</xref>
). We considered that different intestine and pathological grades may be the major reason resulting in the differential result. However, some studies indicated that IFITM3 was necessary to regulate the complex IFN-α response [
<xref rid="R32" ref-type="bibr">32</xref>
,
<xref rid="R33" ref-type="bibr">33</xref>
]. Therefore, we assumed that IFITM3 could be regulated by several signal pathways.</p>
<p>As we all know, TLR4-NFκB pathway participates in various inflammatory cytokines production, which is classical pathway of LPS, and subsequently triggers inflammation by activation of a transcriptional factor IFN regulatory factor and NFκB, resulting in the up-regulation of various inflammatory mediators [
<xref rid="R24" ref-type="bibr">24</xref>
]. To better understand IFITM3 function in inflammatory response, we transfected PBIFM3 vector into PK15 cells to achieve IFITM3 overexpression. PB is a DNA transposon which was originally isolated from genomes of baculoviruses that infect cabbage looper moth Trichoplusiani [
<xref rid="R34" ref-type="bibr">34</xref>
]. PB vector uses the TTAA sequence to insert into target sites, and displays little selectivity for particular regions of the genome other than a modest preference for DNase I sensitivity regions [
<xref rid="R35" ref-type="bibr">35</xref>
,
<xref rid="R36" ref-type="bibr">36</xref>
]. Others have shown that PB is distinguished by its ability to remain active when fused to a DNA binding domain and that such fusions can bias insertion toward cognate sites [
<xref rid="R37" ref-type="bibr">37</xref>
,
<xref rid="R38" ref-type="bibr">38</xref>
,
<xref rid="R39" ref-type="bibr">39</xref>
]. Hence, we used PB vector and constructed the eukaryotic expression vector PBIFM3, and then transfected into PK15 cells, as well as obtained swine IFITM3 stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited the time-dependent effect for LPS treatment.</p>
<p>TLR4-NFκB signaling has been reported to play a critical role in the LPS-induced expression of inflammatory cytokines such as TNFα and interleukin 1 beta (IL-1β) in macrophages and gingival fibroblasts [
<xref rid="R40" ref-type="bibr">40</xref>
,
<xref rid="R41" ref-type="bibr">41</xref>
]. p38 MAPK belongs to a class of serine/threonine kinases and expresses in most tissues [
<xref rid="R42" ref-type="bibr">42</xref>
]. p38 MAPK activates a wide range of transcription factors, protein kinases, cytosolic and nuclear proteins, all of which lead to diverse responses such as inflammation, cell differentiation, apoptosis, and cytokine production [
<xref rid="R43" ref-type="bibr">43</xref>
]. TBK1 plays important roles in innate immunity. TBK1 mediates the activation of interferon regulatory factor, leading to the induction of type I IFNs [
<xref rid="R44" ref-type="bibr">44</xref>
]. Furthermore, Nakajima et al has shown that the TBK1, p38 MAPK, and NFκB pathways are involved in the IFITM3 expression induced by LPS [
<xref rid="R45" ref-type="bibr">45</xref>
]. We detected type I interferon production in PBIFM3 cells with or without LPS treatment. As shown in Figure
<xref ref-type="fig" rid="F6">6</xref>
, IFITM3 down-regulated IFNs production during inflammatory activity. To further illustrate the mechanism that IFITM3 regulated type I IFNs production, we next detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS aggravated the relative expression of TLR4-NFκB signaling molecules (Figure
<xref ref-type="fig" rid="F7">7</xref>
). However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells (Figure
<xref ref-type="fig" rid="F7">7</xref>
).</p>
<p>In summary, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation.</p>
</sec>
<sec id="s4">
<title>MATERIALS AND METHODS</title>
<sec id="s4_1">
<title>Reagents</title>
<p>LPS (
<italic>E. coli</italic>
O55:B5), and puromycin were bought from Sigma (St Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were obtained from Gibco (Life Technologies, Carlsbad, CA, USA). Trizol reagent, Prime Script RT reagent kit, SYBR Premix Ex Taq, and pMD19-T were purchased from TaKaRa Bio Inc. (Shiga, Japan). PB vector and PB transposes were obtained from SBI Ltd. (Palo Alto, CA, US). Other reagents were purchased from Sino Pharm Chemical Reagent Ltd. (Shanghai, China).</p>
</sec>
<sec id="s4_2">
<title>Tissues samples</title>
<p>A total of 13 tissues samples including skin, muscle, fat, heart, liver, spleen, kidney, lung, dudens, jejunum, ileum, cecum, rectum from 5 healthy swines (Crossbred: Duroc × Landrace × Yorkshire) were collected, washed three times in phosphate buffered saline (PBS, pH 7.2) and immediately snap-frozen in liquid nitrogen before being stored at -80
<sup></sup>
C for further use.</p>
</sec>
<sec id="s4_3">
<title>Cloning IFITM3 gene</title>
<p>Swine IFITM3 genomic sequence (NM_001201382.1) was searched in the GenBank database. Using this sequence, a pair of primers (F: 5’-ACTGTCGACAT GAACTGCGCTTCCCAGCCCTTC-3’; R: 5’-ACTGCGGCCGCGTAGCCTCTGT AATCCTTTATG-3’) containing the
<italic>Sal I</italic>
and
<italic>Not I</italic>
(TaKaRa, Shiga, Japan) restriction sites were designed. Total RNA was extracted from swine tissues using Trizol reagent (TaKaRa, Shiga, Japan), and RNA was then used for cDNA synthesis. IFITM3 fragment was amplified; the final PCR product was isolated by electrophoresis using 1 % polyacrylamide gels, and purified using an agarose gel extraction kit. The purified target fragment was ligated into the plasmid pMD19-T and then transformed into competent
<italic>E.coli DH5a</italic>
cells. Recombinant plasmid was extracted from bacterial colonies and plasmid solution was subjected to agarose gel electrophoresis to confirm the presence of the correct sequence of IFITM3. The length of the amplification segment was 438 bp.</p>
</sec>
<sec id="s4_4">
<title>Expression pattern of IFITM3 mRNA in tissues</title>
<p>Total RNA was prepared from the snap-frozen tissue using Trizol reagent and real-time RT-PCR was adopted to detect the expression of IFITM3 mRNA in different tissues. The relative abundance of IFITM3 mRNA was evaluated by the melt cycle threshold method and standarded with swine GAPDH mRNA level as an inter reference with specific primers for GAPDH (listed in Table
<xref ref-type="table" rid="T1">1</xref>
).</p>
<table-wrap id="T1" orientation="portrait" position="float">
<label>Table 1</label>
<caption>
<title>Primers used for RT-PCR amplification</title>
</caption>
<table frame="box" rules="all">
<thead>
<tr>
<th align="left" valign="middle" rowspan="1" colspan="1">Gene</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Primers</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Length (bp)</th>
<th align="center" valign="middle" rowspan="1" colspan="1">Access No.</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IFITM3</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- TGGTGGGAGACATCATTGGG-3’ R: 5’- GAAAATTACCAGGGAGCCAGTG-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">134</td>
<td align="center" valign="middle" rowspan="1" colspan="1">NM_001201382.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IFNα</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- TGGTGCATGAGATGCTCCA-3’ R: 5’- GCCGAGCCCTCTGTGCT-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">55</td>
<td align="center" valign="middle" rowspan="1" colspan="1">XM_021062981.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">IFNβ</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- TCGCTCTCCTGATGTGTTTC-3’ R: 5’- TTCTGACATGCCAAATTGCT-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">94</td>
<td align="center" valign="middle" rowspan="1" colspan="1">NM_001003923.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">p38</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- CTTACGGATGACCACGTTCAGT-3’ R: 5’- GCTCACAGTCTTCATTCACAGC-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">127</td>
<td align="center" valign="middle" rowspan="1" colspan="1">XM_005318767.3</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TNFα</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- AACCCTCTGGCCCAAGGA-3’ R: 5’- GGCGACGGGCTTATCTGA-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">57</td>
<td align="center" valign="middle" rowspan="1" colspan="1">NM_214022.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TBK1</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- ACAGATTTTGGTGCAGCCAG-3’ R: 5’- CCTTATTCCTACGTGGCCCT-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">229</td>
<td align="center" valign="middle" rowspan="1" colspan="1">XM_021090854.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">NFκB</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- CCCATGTAGACAGCACCACCTATGAT-3’ R: 5’- ACAGAGGCTCAAAGTTCTCCACCA-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">132</td>
<td align="center" valign="middle" rowspan="1" colspan="1">NM_001048232.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">TLR4</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- TCAGTTCTCACCTTCCTCCTG-3’ R: 5’- GTTCATTCCTCACCCAGTCTTC-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">166</td>
<td align="center" valign="middle" rowspan="1" colspan="1">NM_001293316.1</td>
</tr>
<tr>
<td align="left" valign="middle" rowspan="1" colspan="1">GAPDH</td>
<td align="left" valign="middle" rowspan="1" colspan="1">F: 5’- TGGTGAAGGTCGGAGTGAAC-3’ R: 5’- GGAAGATGGTGATGGCCTTTC-3’</td>
<td align="center" valign="middle" rowspan="1" colspan="1">369</td>
<td align="center" valign="middle" rowspan="1" colspan="1">XM_021091114.1</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="s4_5">
<title>Vectors constructions</title>
<p>Construction of the eukaryotic expression vector PB-IFITM3 was as follows. IFITM3 cDNA (438 bp length) was subcloned from pMD19-T-IFITM3 into the PB vector (that contained GFP and puromycin resistance genes) after double restriction enzyme digestion. The obtained recombinant expression vector was called PB-IFITM3.
<italic>Nhe</italic>
I and
<italic>EcoR</italic>
I were used to digest PB-IFITM3, and then identified them through agarose gel electrophoresis. Sequencing using both forward and reverse primers was performed to confirm the above recombinant vectors.</p>
</sec>
<sec id="s4_6">
<title>Cell culture, transfection, and photograph</title>
<p>PK15 porcine kidney epithelial cells were maintained in DMEM medium including 10 % FBS (v/v) and 1 % penicillin/streptomycin (v/v), and cultured at 37°C with 5 % CO
<sub>2</sub>
(MCO-5AC CO
<sub>2</sub>
Incubator, Sanyo, Tokyo, Japan). Prior to transfection experiments, PK15 cells were plated at the density 2×10
<sup>5</sup>
cells per well in six-well plates. The PK15 cells were transfected with PB-IFITM3 and correspondingly in parallel with empty vector, using lipofectamine 2000 reagent (Life Technologies), according the manufacturer’s protocol. Based on transfecting plasmids, cells were divided into three groups: PB-IFITM3, PB-vector and non-transfection. After 12 h transfecting, the images were captured using DAS microscope Leitz DM RB with a dual mode cooled charged coupled device (CCD) camera (C4880; Hamamatsu, Japan) to observe GFP expression. The transfected cells were selected for on 5 μg/mL puromycin for 2 weeks. Cells that were not transfected with the target gene were killed, and we achieved stable transfection cell lines, named PK15-PB-IFITM3 (PBIFM3), and PK15-PB vector (PBv).</p>
</sec>
<sec id="s4_7">
<title>Transfection efficiency and overexpression detection</title>
<p>The PB vector carries both the purine gene and the GFP gene. Therefore, when the PB vector was transfected into cells and integrated into the genome, GFP protein was expressed in the host cells. After 12 h of transfection, the cells were observed under the fluorescence microscope to evaluate transfection efficiency. Overexpression of target gene (IFITM3) was detected using RT-PCR.</p>
</sec>
<sec id="s4_8">
<title>Cell treatment</title>
<p>The stably transfected cell lines, PBIFM3 and PBv, were divided respectively into 2 groups: control and LPS. In LPS groups, cells were incubated correspondingly with LPS (100 μg/mL) for 4, 8, 12 h. Cells in 0 h group were cultured in basal medium. After treatment, cells were collected to carry out target genes analysis using real-time PCR.</p>
</sec>
<sec id="s4_9">
<title>cDNA synthesis and PCR</title>
<p>Cells were seeded in a 6 well plates at 2×10
<sup>5</sup>
cells/well and treated with LPS at the concentration of 100 μg/mL. After 4, 8 and 12 h incubation, total RNA was extracted from cultured cells using Trizol reagent, and cDNA was prepared using a reverse transcriptase kit. PCR analysis was performed with a SYBR Green PCR Kit using a real-time fluorescence quantitative PCR instrument (Eppendorf Mastercycler eprealplex, Hamburg, Germany), with a reaction volume of 20 μL. The PCR program was as follows: 95 °C 15 s, 60 °C 20 s, and 72 °C 20 s, for 40 cycles.</p>
<p>Swine target gene mRNA specific primers are listed in Table
<xref ref-type="table" rid="T1">1</xref>
. The synthesis of all primers was carried out by Shanghai Sangon Co. Ltd. (Shanghai, China). Each sample was analyzed in triplicate, and RT-PCR results were analyzed and evaluated using the relative quantity Ct method. Melting curve analysis was used to confirm the specificity of primers. The expression of the target genes were normalized as the ratio of target gene/GAPDH mRNA.</p>
</sec>
<sec id="s4_10">
<title>Statistical analysis</title>
<p>All results are presented as the mean ± standard deviation. SPSS (Statistical Package for the Social Sciences) statistical software (version 13.0) was used to analyze data (IBM SPSS Inc., Armonk, NY, USA). One-way analysis of variance (ANOVA) was employed to analyze the differences among groups.
<italic>P</italic>
-values less than 0.05 were taken to indicate statistically significant differences.</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn fn-type="con">
<p>
<bold>Author contributions</bold>
</p>
<p>Guo-Yu Yang and Yue-Ying Wang designed the experiments. He-Ping Li, Pei-Ge Chen and Yue-Ying Wang wrote manuscript. Fu-Tao Liu, Guang-Ming Zha, Yu-Jie Guo, Li-Qiang Han, and Xian-Qin Jiao conrtibuted to the experiments and writing. He-Shui Zhu, Kai Zhong and Wei-Fei Lu analyzed the data. All authors have read and approved the final manuscript.</p>
</fn>
</fn-group>
<ack>
<p>These authors are grateful to Yue-Ting Zheng and Jiang Wang for their suggestions in vector construction, and Chao Zhang, Bei-Bei Chu support in preparing this paper.</p>
</ack>
<fn-group>
<fn fn-type="COI-statement">
<p>
<bold>CONFLICTS OF INTEREST</bold>
</p>
<p>The authors declare no conflicts of interest.</p>
</fn>
</fn-group>
<fn-group>
<fn fn-type="supported-by">
<p>
<bold>FUNDING</bold>
</p>
<p>This work was supported by the National Key Research and Development Program of China (2016YFD0500503), the National Natural Science Fund (31470120), Genetical modified Grant from Agricultural Ministry (2014ZX0801015B) and Grant from the Ministry of Agriculture (2011-G35). This project was partially supported by the Natural Science Fund of Henan Province (17A230016, 112102310705, 15A230022, 14A230010, 152300410070, 15A230017) and Zhengzhou City Natural Science Fund (141PPTGG407). The funding sources had no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.</p>
</fn>
</fn-group>
<glossary>
<title>Abbreviations</title>
<def-list>
<def-item>
<term>IFNs</term>
<def>
<p>interferons</p>
</def>
</def-item>
<def-item>
<term>IFITM3</term>
<def>
<p>Interferon inducible trans-membrane protein 3</p>
</def>
</def-item>
<def-item>
<term>TLR4</term>
<def>
<p>toll like receptor 4</p>
</def>
</def-item>
<def-item>
<term>LPS</term>
<def>
<p>lipopolysaccharide</p>
</def>
</def-item>
<def-item>
<term>PB</term>
<def>
<p>Piggyback</p>
</def>
</def-item>
<def-item>
<term>GFP</term>
<def>
<p>green fluorescent protein</p>
</def>
</def-item>
<def-item>
<term>MyD88</term>
<def>
<p>myeloid differentiation 88</p>
</def>
</def-item>
<def-item>
<term>NFκB</term>
<def>
<p>Nuclear factor-κB</p>
</def>
</def-item>
<def-item>
<term>p38 MAPK</term>
<def>
<p>p38 mitogen-activated protein kinases</p>
</def>
</def-item>
<def-item>
<term>TNFα</term>
<def>
<p>tumor necrosis factor alpha</p>
</def>
</def-item>
<def-item>
<term>TBK1</term>
<def>
<p>TANK-binding kinase 1</p>
</def>
</def-item>
<def-item>
<term>bp</term>
<def>
<p>base pairs</p>
</def>
</def-item>
<def-item>
<term>IL-1β</term>
<def>
<p>interleukin 1 beta</p>
</def>
</def-item>
<def-item>
<term>CDS</term>
<def>
<p>coding sequence</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<title>REFERENCES</title>
<ref id="R1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kimman</surname>
<given-names>TG</given-names>
</name>
<name name-style="western">
<surname>Cornelissen</surname>
<given-names>LA</given-names>
</name>
<name name-style="western">
<surname>Moormann</surname>
<given-names>RJ</given-names>
</name>
<name name-style="western">
<surname>Rebel</surname>
<given-names>JM</given-names>
</name>
<name name-style="western">
<surname>Stockhofe-Zurwieden</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology</article-title>
<source>Vaccine</source>
<year>2009</year>
<volume>27</volume>
<fpage>3704</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2009.04.022</pub-id>
<pub-id pub-id-type="pmid">19464553</pub-id>
</element-citation>
</ref>
<ref id="R2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Taniguchi</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Takaoka</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The interferon-/ system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors</article-title>
<source>Curr Opin Immunol</source>
<year>2002</year>
<volume>14</volume>
<fpage>111</fpage>
<lpage>116</lpage>
<pub-id pub-id-type="doi">10.1016/S0952-7915(01)00305-3</pub-id>
<pub-id pub-id-type="pmid">11790540</pub-id>
</element-citation>
</ref>
<ref id="R3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Siegrist</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Ebeling</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Certa</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>The small interferon-induced transmembrane genes and proteins</article-title>
<source>J Interferon Cytokine Res</source>
<year>2011</year>
<volume>31</volume>
<fpage>183</fpage>
<lpage>97</lpage>
<pub-id pub-id-type="doi">10.1089/jir.2010.0112</pub-id>
<pub-id pub-id-type="pmid">21166591</pub-id>
</element-citation>
</ref>
<ref id="R4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Seyfried</surname>
<given-names>NT</given-names>
</name>
<name name-style="western">
<surname>Huysentruyt</surname>
<given-names>LC</given-names>
</name>
<name name-style="western">
<surname>Atwood</surname>
<given-names>JA</given-names>
<suffix>3rd</suffix>
</name>
<name name-style="western">
<surname>Xia</surname>
<given-names>Q</given-names>
</name>
<name name-style="western">
<surname>Seyfried</surname>
<given-names>TN</given-names>
</name>
<name name-style="western">
<surname>Orlando</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach</article-title>
<source>Cancer Lett</source>
<year>2008</year>
<volume>263</volume>
<fpage>243</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="doi">10.1016/j.canlet.2008.01.007</pub-id>
<pub-id pub-id-type="pmid">18281150</pub-id>
</element-citation>
</ref>
<ref id="R5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Fan</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Peng</surname>
<given-names>Z</given-names>
</name>
<name name-style="western">
<surname>Zhou</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Qiu</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Sun</surname>
<given-names>Y</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name name-style="western">
<surname>Le</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Xie</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Gene-expression profiling in Chinese patients with colon cancer by coupling experimental and bioinformatic genomewide gene-expression analyses: identification and validation of IFITM3 as a biomarker of early colon carcinogenesis</article-title>
<source>Cancer</source>
<year>2008</year>
<volume>113</volume>
<fpage>266</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1002/cncr.23551</pub-id>
<pub-id pub-id-type="pmid">18470904</pub-id>
</element-citation>
</ref>
<ref id="R6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Hisamatsu</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Watanabe</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Ogata</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Ezaki</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Hozawa</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Ishii</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Kanai</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Hibi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Interferon-inducible gene family 1-8U expression in colitis-associated colon cancer and severely inflamed mucosa in ulcerative colitis</article-title>
<source>Cancer Res</source>
<year>1999</year>
<volume>59</volume>
<fpage>5927</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">10606237</pub-id>
</element-citation>
</ref>
<ref id="R7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Brass</surname>
<given-names>AL</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>IC</given-names>
</name>
<name name-style="western">
<surname>Benita</surname>
<given-names>Y</given-names>
</name>
<name name-style="western">
<surname>John</surname>
<given-names>SP</given-names>
</name>
<name name-style="western">
<surname>Krishnan</surname>
<given-names>MN</given-names>
</name>
<name name-style="western">
<surname>Feeley</surname>
<given-names>EM</given-names>
</name>
<name name-style="western">
<surname>Ryan</surname>
<given-names>BJ</given-names>
</name>
<name name-style="western">
<surname>Weyer</surname>
<given-names>JL</given-names>
</name>
<name name-style="western">
<surname>van der Weyden</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Fikrig</surname>
<given-names>E</given-names>
</name>
<name name-style="western">
<surname>Adams</surname>
<given-names>DJ</given-names>
</name>
<name name-style="western">
<surname>Xavier</surname>
<given-names>RJ</given-names>
</name>
<name name-style="western">
<surname>Farzan</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Elledge</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus</article-title>
<source>Cell</source>
<year>2009</year>
<volume>139</volume>
<fpage>1243</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2009.12.017</pub-id>
<pub-id pub-id-type="pmid">20064371</pub-id>
</element-citation>
</ref>
<ref id="R8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Jiang</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Weidner</surname>
<given-names>JM</given-names>
</name>
<name name-style="western">
<surname>Qing</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Pan</surname>
<given-names>XB</given-names>
</name>
<name name-style="western">
<surname>Guo</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Xu</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Birk</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Chang</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Shi</surname>
<given-names>PY</given-names>
</name>
<name name-style="western">
<surname>Block</surname>
<given-names>TM</given-names>
</name>
<name name-style="western">
<surname>Guo</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Identification of five interferon-induced cellular proteins that inhibit west nile virus and dengue virus infections</article-title>
<source>J Virol</source>
<year>2010</year>
<volume>84</volume>
<fpage>8332</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02199-09</pub-id>
<pub-id pub-id-type="pmid">20534863</pub-id>
</element-citation>
</ref>
<ref id="R9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Weidner</surname>
<given-names>JM</given-names>
</name>
<name name-style="western">
<surname>Jiang</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Pan</surname>
<given-names>XB</given-names>
</name>
<name name-style="western">
<surname>Chang</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Block</surname>
<given-names>TM</given-names>
</name>
<name name-style="western">
<surname>Guo</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms</article-title>
<source>J Virol</source>
<year>2010</year>
<volume>84</volume>
<fpage>12646</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01328-10</pub-id>
<pub-id pub-id-type="pmid">20943977</pub-id>
</element-citation>
</ref>
<ref id="R10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Feeley</surname>
<given-names>EM</given-names>
</name>
<name name-style="western">
<surname>Sims</surname>
<given-names>JS</given-names>
</name>
<name name-style="western">
<surname>John</surname>
<given-names>SP</given-names>
</name>
<name name-style="western">
<surname>Chin</surname>
<given-names>CR</given-names>
</name>
<name name-style="western">
<surname>Pertel</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>LM</given-names>
</name>
<name name-style="western">
<surname>Gaiha</surname>
<given-names>GD</given-names>
</name>
<name name-style="western">
<surname>Ryan</surname>
<given-names>BJ</given-names>
</name>
<name name-style="western">
<surname>Donis</surname>
<given-names>RO</given-names>
</name>
<name name-style="western">
<surname>Elledge</surname>
<given-names>SJ</given-names>
</name>
<name name-style="western">
<surname>Brass</surname>
<given-names>AL</given-names>
</name>
</person-group>
<article-title>IFITM3 inhibits influenza A virus infection by preventing cytosolic entry</article-title>
<source>PLoS Pathog</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1002337</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002337</pub-id>
<pub-id pub-id-type="pmid">22046135</pub-id>
</element-citation>
</ref>
<ref id="R11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Anafu</surname>
<given-names>AA</given-names>
</name>
<name name-style="western">
<surname>Bowen</surname>
<given-names>CH</given-names>
</name>
<name name-style="western">
<surname>Chin</surname>
<given-names>CR</given-names>
</name>
<name name-style="western">
<surname>Brass</surname>
<given-names>AL</given-names>
</name>
<name name-style="western">
<surname>Holm</surname>
<given-names>GH</given-names>
</name>
</person-group>
<article-title>Interferon-inducible transmembrane protein 3 (IFITM3) restricts reovirus cell entry</article-title>
<source>J Biol Chem</source>
<year>2013</year>
<volume>288</volume>
<fpage>17261</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M112.438515</pub-id>
<pub-id pub-id-type="pmid">23649619</pub-id>
</element-citation>
</ref>
<ref id="R12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Huang</surname>
<given-names>IC</given-names>
</name>
<name name-style="western">
<surname>Bailey</surname>
<given-names>CC</given-names>
</name>
<name name-style="western">
<surname>Weyer</surname>
<given-names>JL</given-names>
</name>
<name name-style="western">
<surname>Radoshitzky</surname>
<given-names>SR</given-names>
</name>
<name name-style="western">
<surname>Becker</surname>
<given-names>MM</given-names>
</name>
<name name-style="western">
<surname>Chiang</surname>
<given-names>JJ</given-names>
</name>
<name name-style="western">
<surname>Brass</surname>
<given-names>AL</given-names>
</name>
<name name-style="western">
<surname>Ahmed</surname>
<given-names>AA</given-names>
</name>
<name name-style="western">
<surname>Chi</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Dong</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Longobardi</surname>
<given-names>LE</given-names>
</name>
<name name-style="western">
<surname>Boltz</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Kuhn</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus</article-title>
<source>PLoS Pathog</source>
<year>2011</year>
<volume>7</volume>
<fpage>e1001258</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1001258</pub-id>
<pub-id pub-id-type="pmid">21253575</pub-id>
</element-citation>
</ref>
<ref id="R13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Wu</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Dassopoulos</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Cope</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Maitra</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Brant</surname>
<given-names>SR</given-names>
</name>
<name name-style="western">
<surname>Harris</surname>
<given-names>ML</given-names>
</name>
<name name-style="western">
<surname>Bayless</surname>
<given-names>TM</given-names>
</name>
<name name-style="western">
<surname>Parmigiani</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Chakravarti</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Genome-wide gene expression differences in Crohn’s disease and ulcerative colitis from endoscopic pinch biopsies: insights into distinctive pathogenesis</article-title>
<source>Inflamm Bowel Dis</source>
<year>2007</year>
<volume>13</volume>
<fpage>807</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="doi">10.1002/ibd.20110</pub-id>
<pub-id pub-id-type="pmid">17262812</pub-id>
</element-citation>
</ref>
<ref id="R14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Seo</surname>
<given-names>GS</given-names>
</name>
<name name-style="western">
<surname>Lee</surname>
<given-names>JK</given-names>
</name>
<name name-style="western">
<surname>Yu</surname>
<given-names>JI</given-names>
</name>
<name name-style="western">
<surname>Yun</surname>
<given-names>KJ</given-names>
</name>
<name name-style="western">
<surname>Chae</surname>
<given-names>SC</given-names>
</name>
<name name-style="western">
<surname>Choi</surname>
<given-names>SC</given-names>
</name>
</person-group>
<article-title>Identification of the polymorphisms in IFITM3 gene and their association in a Korean population with ulcerative colitis</article-title>
<source>Exp Mol Med</source>
<year>2010</year>
<volume>42</volume>
<fpage>99</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.3858/emm.2010.42.2.011</pub-id>
<pub-id pub-id-type="pmid">19946179</pub-id>
</element-citation>
</ref>
<ref id="R15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Andreu</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Colnot</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Godard</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Laurent-Puig</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Lamarque</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Kahn</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Perret</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Romagnolo</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Identification of the IFITM family as a new molecular marker in human colorectal tumors</article-title>
<source>Cancer Res</source>
<year>2006</year>
<volume>66</volume>
<fpage>1949</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1158/0008-5472.CAN-05-2731</pub-id>
<pub-id pub-id-type="pmid">16488993</pub-id>
</element-citation>
</ref>
<ref id="R16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Li</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Peng</surname>
<given-names>Z</given-names>
</name>
<name name-style="western">
<surname>Tang</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Wei</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Kong</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Yan</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name name-style="western">
<surname>Le</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>Q</given-names>
</name>
<name name-style="western">
<surname>Xie</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>KLF4-mediated negative regulation of IFITM3 expression plays a critical role in colon cancer pathogenesis</article-title>
<source>Clin Cancer Res</source>
<year>2011</year>
<volume>17</volume>
<fpage>3558</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1158/1078-0432.CCR-10-2729</pub-id>
<pub-id pub-id-type="pmid">21531817</pub-id>
</element-citation>
</ref>
<ref id="R17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhao</surname>
<given-names>B</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Zong</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The role of IFITM3 in the growth and migration of human glioma cells</article-title>
<source>BMC Neurol</source>
<year>2013</year>
<volume>13</volume>
<fpage>210</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2377-13-210</pub-id>
<pub-id pub-id-type="pmid">24370119</pub-id>
</element-citation>
</ref>
<ref id="R18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Spachidou</surname>
<given-names>MP</given-names>
</name>
<name name-style="western">
<surname>Bourazopoulou</surname>
<given-names>E</given-names>
</name>
<name name-style="western">
<surname>Maratheftis</surname>
<given-names>CI</given-names>
</name>
<name name-style="western">
<surname>Kapsogeorgou</surname>
<given-names>EK</given-names>
</name>
<name name-style="western">
<surname>Moutsopoulos</surname>
<given-names>HM</given-names>
</name>
<name name-style="western">
<surname>Tzioufas</surname>
<given-names>AG</given-names>
</name>
<name name-style="western">
<surname>Manoussakis</surname>
<given-names>MN</given-names>
</name>
</person-group>
<article-title>Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjögren’s syndrome</article-title>
<source>Clin Exp Immunol</source>
<year>2007</year>
<volume>147</volume>
<fpage>497</fpage>
<lpage>503</lpage>
<pub-id pub-id-type="doi">10.1111/j.1365-2249.2006.03311.x</pub-id>
<pub-id pub-id-type="pmid">17302899</pub-id>
</element-citation>
</ref>
<ref id="R19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Olofsson</surname>
<given-names>KM</given-names>
</name>
<name name-style="western">
<surname>Hjertner</surname>
<given-names>B</given-names>
</name>
<name name-style="western">
<surname>Fossum</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Press</surname>
<given-names>CM</given-names>
</name>
<name name-style="western">
<surname>Lindberg</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Expression of T helper type 17 (Th17)-associated cytokines and toll-like receptor 4 and their correlation with Foxp3 positive cells in rectal biopsies of horses with clinical signs of inflammatory bowel disease</article-title>
<source>Vet J</source>
<year>2015</year>
<volume>206</volume>
<fpage>97</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1016/j.tvjl.2015.07.003</pub-id>
<pub-id pub-id-type="pmid">26346261</pub-id>
</element-citation>
</ref>
<ref id="R20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Pérez-Ferro</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Serrano Del Castillo</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Sánchez-Pernaute</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Cell membrane-bound TLR2 and TLR4: potential mredictors of active systemic lupus erythematosus and lupus nephritis</article-title>
<source>J Rheumatol</source>
<year>2016</year>
<volume>43</volume>
<fpage>1444</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.3899/jrheum.151386</pub-id>
<pub-id pub-id-type="pmid">27371649</pub-id>
</element-citation>
</ref>
<ref id="R21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Menghini</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Campia</surname>
<given-names>U</given-names>
</name>
<name name-style="western">
<surname>Tesauro</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Marino</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Rovella</surname>
<given-names>V</given-names>
</name>
<name name-style="western">
<surname>Rodia</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Schinzari</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Tolusso</surname>
<given-names>B</given-names>
</name>
<name name-style="western">
<surname>di Daniele</surname>
<given-names>N</given-names>
</name>
<name name-style="western">
<surname>Federici</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Zoli</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Ferraccioli</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Cardillo</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Toll-like receptor 4 mediates endothelial cell activation through NF-B but is not associated with endothelial dysfunction in patients with rheumatoid arthritis</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<fpage>e99053</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0099053</pub-id>
<pub-id pub-id-type="pmid">24918924</pub-id>
</element-citation>
</ref>
<ref id="R22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Duperray</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Barbe</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Raguenez</surname>
<given-names>G</given-names>
</name>
<name name-style="western">
<surname>Weksler</surname>
<given-names>BB</given-names>
</name>
<name name-style="western">
<surname>Romero</surname>
<given-names>IA</given-names>
</name>
<name name-style="western">
<surname>Couraud</surname>
<given-names>PO</given-names>
</name>
<name name-style="western">
<surname>Perron</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Marche</surname>
<given-names>PN</given-names>
</name>
</person-group>
<article-title>Inflammatory response of endothelial cells to a human endogenous retrovirus associated with multiple sclerosis is mediated by TLR4</article-title>
<source>Int Immunol</source>
<year>2015</year>
<volume>27</volume>
<fpage>545</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1093/intimm/dxv025</pub-id>
<pub-id pub-id-type="pmid">25957268</pub-id>
</element-citation>
</ref>
<ref id="R23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cordiglieri</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Marolda</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Franzi</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Cappelletti</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Giardina</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Motta</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Baggi</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Bernasconi</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Mantegazza</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Cavalcante</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Innate immunity in myasthenia gravis thymus: pathogenic effects of Toll-like receptor 4 signaling on autoimmunity</article-title>
<source>J Autoimmun</source>
<year>2014</year>
<volume>52</volume>
<fpage>74</fpage>
<lpage>89</lpage>
<pub-id pub-id-type="doi">10.1016/j.jaut.2013.12.013</pub-id>
<pub-id pub-id-type="pmid">24397961</pub-id>
</element-citation>
</ref>
<ref id="R24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Uematsu</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Takeuchi</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Pathogen recognition and innate immunity</article-title>
<source>Cell</source>
<year>2006</year>
<volume>124</volume>
<fpage>783</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2006.02.015</pub-id>
<pub-id pub-id-type="pmid">16497588</pub-id>
</element-citation>
</ref>
<ref id="R25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Mudhasani</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Tran</surname>
<given-names>JP</given-names>
</name>
<name name-style="western">
<surname>Retterer</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Radoshitzky</surname>
<given-names>SR</given-names>
</name>
<name name-style="western">
<surname>Kota</surname>
<given-names>KP</given-names>
</name>
<name name-style="western">
<surname>Altamura</surname>
<given-names>LA</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>JM</given-names>
</name>
<name name-style="western">
<surname>Packard</surname>
<given-names>BZ</given-names>
</name>
<name name-style="western">
<surname>Kuhn</surname>
<given-names>JH</given-names>
</name>
<name name-style="western">
<surname>Costantino</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Garrison</surname>
<given-names>AR</given-names>
</name>
<name name-style="western">
<surname>Schmaljohn</surname>
<given-names>CS</given-names>
</name>
<name name-style="western">
<surname>Huang</surname>
<given-names>IC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>IFITM-2 and IFITM-3 but not IFITM-1 restrict Rift Valley fever virus</article-title>
<source>J Virol</source>
<year>2013</year>
<volume>87</volume>
<fpage>8451</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03382-12</pub-id>
<pub-id pub-id-type="pmid">23720721</pub-id>
</element-citation>
</ref>
<ref id="R26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Qian</surname>
<given-names>P</given-names>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>Q</given-names>
</name>
<name name-style="western">
<surname>Liu</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Fan</surname>
<given-names>W</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Swine interferon-induced transmembrane protein, sIFITM3, inhibits foot-and- mouth disease virus infection
<italic>in vitro</italic>
and
<italic>in vivo</italic>
</article-title>
<source>Antiviral Res</source>
<year>2014</year>
<volume>109</volume>
<fpage>22</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/j.antiviral.2014.06.008</pub-id>
<pub-id pub-id-type="pmid">24973762</pub-id>
</element-citation>
</ref>
<ref id="R27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Narayana</surname>
<given-names>SK</given-names>
</name>
<name name-style="western">
<surname>Helbig</surname>
<given-names>KJ</given-names>
</name>
<name name-style="western">
<surname>McCartney</surname>
<given-names>EM</given-names>
</name>
<name name-style="western">
<surname>Eyre</surname>
<given-names>NS</given-names>
</name>
<name name-style="western">
<surname>Bull</surname>
<given-names>RA</given-names>
</name>
<name name-style="western">
<surname>Eltahla</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Lloyd</surname>
<given-names>AR</given-names>
</name>
<name name-style="western">
<surname>Beard</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>The interferon-induced transmembrane proteins, IFITM1, IFITM2, and IFITM3 inhibit hepatitis C virus entry</article-title>
<source>J Biol Chem</source>
<year>2015</year>
<volume>290</volume>
<fpage>25946</fpage>
<lpage>59</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M115.657346</pub-id>
<pub-id pub-id-type="pmid">26354436</pub-id>
</element-citation>
</ref>
<ref id="R28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Zeng</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Kumar</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Belser</surname>
<given-names>JA</given-names>
</name>
<name name-style="western">
<surname>Maines</surname>
<given-names>TR</given-names>
</name>
<name name-style="western">
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>Constitutively expressed IFITM3 protein in human endothelial cells poses an early infection block to human influenza viruses</article-title>
<source>J Virol</source>
<year>2016</year>
<volume>90</volume>
<fpage>11157</fpage>
<lpage>11167</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01254-16</pub-id>
<pub-id pub-id-type="pmid">27707929</pub-id>
</element-citation>
</ref>
<ref id="R29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Everitt</surname>
<given-names>AR</given-names>
</name>
<name name-style="western">
<surname>Clare</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Pertel</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>John</surname>
<given-names>SP</given-names>
</name>
<name name-style="western">
<surname>Wash</surname>
<given-names>RS</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>SE</given-names>
</name>
<name name-style="western">
<surname>Chin</surname>
<given-names>CR</given-names>
</name>
<name name-style="western">
<surname>Feeley</surname>
<given-names>EM</given-names>
</name>
<name name-style="western">
<surname>Sims</surname>
<given-names>JS</given-names>
</name>
<name name-style="western">
<surname>Adams</surname>
<given-names>DJ</given-names>
</name>
<name name-style="western">
<surname>Wise</surname>
<given-names>HM</given-names>
</name>
<name name-style="western">
<surname>Kane</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Goulding</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>GenISIS Investigators; MOSAIC Investigators. IFITM3 restricts the morbidity and mortality associated with influenza</article-title>
<source>Nature</source>
<year>2012</year>
<volume>484</volume>
<fpage>519</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1038/nature10921</pub-id>
<pub-id pub-id-type="pmid">22446628</pub-id>
</element-citation>
</ref>
<ref id="R30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Everitt</surname>
<given-names>AR</given-names>
</name>
<name name-style="western">
<surname>Clare</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Pertel</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>John</surname>
<given-names>SP</given-names>
</name>
<name name-style="western">
<surname>Wash</surname>
<given-names>RS</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>SE</given-names>
</name>
<name name-style="western">
<surname>Chin</surname>
<given-names>CR</given-names>
</name>
<name name-style="western">
<surname>Feeley</surname>
<given-names>EM</given-names>
</name>
<name name-style="western">
<surname>Sims</surname>
<given-names>JS</given-names>
</name>
<name name-style="western">
<surname>Adams</surname>
<given-names>DJ</given-names>
</name>
<name name-style="western">
<surname>Wise</surname>
<given-names>HM</given-names>
</name>
<name name-style="western">
<surname>Kane</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Goulding</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>769</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1321748111</pub-id>
<pub-id pub-id-type="pmid">24367104</pub-id>
</element-citation>
</ref>
<ref id="R31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Wan</surname>
<given-names>Y</given-names>
</name>
<name name-style="western">
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Qiu</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Xi</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Ren</surname>
<given-names>Y</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Dong</surname>
<given-names>Y</given-names>
</name>
<name name-style="western">
<surname>Bao</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Zhou</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Yuan</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ifitm3 limits the severity of acute influenza in mice</article-title>
<source>PLoS Pathog</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002909</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1002909</pub-id>
<pub-id pub-id-type="pmid">22969429</pub-id>
</element-citation>
</ref>
<ref id="R32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Brem</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Oraszlan-Szovik</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Foser</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Bohrmann</surname>
<given-names>B</given-names>
</name>
<name name-style="western">
<surname>Certa</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Inhibition of proliferation by 1-8U in interferon-alpha-responsive and non-responsive cell lines</article-title>
<source>Cell Mol Life Sci</source>
<year>2003</year>
<volume>60</volume>
<fpage>1235</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1007/s00018-003-3016-9</pub-id>
<pub-id pub-id-type="pmid">12861389</pub-id>
</element-citation>
</ref>
<ref id="R33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Scott</surname>
<given-names>R</given-names>
</name>
<name name-style="western">
<surname>Siegrist</surname>
<given-names>F</given-names>
</name>
<name name-style="western">
<surname>Foser</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Certa</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Interferon-alpha induces reversible DNA demethylation of the interferon-induced transmembrane protein-3 core promoter in human melanoma cells</article-title>
<source>J Interferon Cytokine Res</source>
<year>2011</year>
<volume>31</volume>
<fpage>601</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1089/jir.2010.0134</pub-id>
<pub-id pub-id-type="pmid">21413873</pub-id>
</element-citation>
</ref>
<ref id="R34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cary</surname>
<given-names>LC</given-names>
</name>
<name name-style="western">
<surname>Goebel</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Corsaro</surname>
<given-names>BG</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>HG</given-names>
</name>
<name name-style="western">
<surname>Rosen</surname>
<given-names>E</given-names>
</name>
<name name-style="western">
<surname>Fraser</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses</article-title>
<source>Virology</source>
<year>1989</year>
<volume>172</volume>
<fpage>156</fpage>
<lpage>69</lpage>
<pub-id pub-id-type="pmid">2549707</pub-id>
</element-citation>
</ref>
<ref id="R35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Mayhew</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Johnston</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Mitra</surname>
<given-names>RD</given-names>
</name>
</person-group>
<article-title>“Calling cards” for DNA-binding proteins in mammalian cells</article-title>
<source>Genetics</source>
<year>2012</year>
<volume>190</volume>
<fpage>941</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">22214611</pub-id>
</element-citation>
</ref>
<ref id="R36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Ewis</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Hice</surname>
<given-names>RH</given-names>
</name>
<name name-style="western">
<surname>Malani</surname>
<given-names>N</given-names>
</name>
<name name-style="western">
<surname>Parker</surname>
<given-names>N</given-names>
</name>
<name name-style="western">
<surname>Zhou</surname>
<given-names>L</given-names>
</name>
<name name-style="western">
<surname>Feschotte</surname>
<given-names>C</given-names>
</name>
<name name-style="western">
<surname>Bushman</surname>
<given-names>FD</given-names>
</name>
<name name-style="western">
<surname>Atkinson</surname>
<given-names>PW</given-names>
</name>
<name name-style="western">
<surname>Craig</surname>
<given-names>NL</given-names>
</name>
</person-group>
<article-title>A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2013</year>
<volume>110</volume>
<fpage>E478</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1121543109</pub-id>
<pub-id pub-id-type="pmid">23091042</pub-id>
</element-citation>
</ref>
<ref id="R37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Taniguchi</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Ogasawara</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Takaoka</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Tanaka</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>IRF family of transcription factors as regulators of host defense</article-title>
<source>Annu Rev Immunol</source>
<year>2001</year>
<volume>19</volume>
<fpage>623</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.immunol.19.1.623</pub-id>
<pub-id pub-id-type="pmid">11244049</pub-id>
</element-citation>
</ref>
<ref id="R38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Honda</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Taniguchi</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors</article-title>
<source>Nat Rev Immunol</source>
<year>2006</year>
<volume>6</volume>
<fpage>644</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.1038/nri1900</pub-id>
<pub-id pub-id-type="pmid">16932750</pub-id>
</element-citation>
</ref>
<ref id="R39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kawai</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Akira</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors</article-title>
<source>Nat Immunol</source>
<year>2010</year>
<volume>11</volume>
<fpage>373</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1038/ni.1863</pub-id>
<pub-id pub-id-type="pmid">20404851</pub-id>
</element-citation>
</ref>
<ref id="R40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Kubota</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Sakaki</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Imaizumi</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Nakagawa</surname>
<given-names>H</given-names>
</name>
<name name-style="western">
<surname>Kusumi</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Kobayashi</surname>
<given-names>W</given-names>
</name>
<name name-style="western">
<surname>Satoh</surname>
<given-names>K</given-names>
</name>
<name name-style="western">
<surname>Kimura</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Retinoic acid-inducible gene-I is induced in gingival fibroblasts by lipopolysaccharide or poly IC: possible roles in interleukin-1beta, -6 and -8 expression</article-title>
<source>Oral Microbiol Immunol</source>
<year>2006</year>
<volume>21</volume>
<fpage>399</fpage>
<lpage>406</lpage>
<pub-id pub-id-type="doi">10.1111/j.1399-302X.2006.00326.x</pub-id>
<pub-id pub-id-type="pmid">17064399</pub-id>
</element-citation>
</ref>
<ref id="R41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name name-style="western">
<surname>Wu</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Jin</surname>
<given-names>X</given-names>
</name>
<name name-style="western">
<surname>Li</surname>
<given-names>M</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Teeling</surname>
<given-names>JL</given-names>
</name>
<name name-style="western">
<surname>Perry</surname>
<given-names>VH</given-names>
</name>
<name name-style="western">
<surname>Gu</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Retinoic acid-inducible gene-I mediates late phase induction of TNF-alpha by lipopolysaccharide</article-title>
<source>J Immunol</source>
<year>2008</year>
<volume>180</volume>
<fpage>8011</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.4049/jimmunol.180.12.8011</pub-id>
<pub-id pub-id-type="pmid">18523264</pub-id>
</element-citation>
</ref>
<ref id="R42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cuadrado</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Nebreda</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Mechanisms and functions of p38 MAPK signalling</article-title>
<source>Biochem J</source>
<year>2010</year>
<volume>429</volume>
<fpage>403</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="doi">10.1042/BJ20100323</pub-id>
<pub-id pub-id-type="pmid">20626350</pub-id>
</element-citation>
</ref>
<ref id="R43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Cuenda</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Rousseau</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>p38 MAP-kinases pathway regulation, function and role in human diseases</article-title>
<source>Biochim Biophys Acta</source>
<year>2007</year>
<volume>1773</volume>
<fpage>1358</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamcr.2007.03.010</pub-id>
<pub-id pub-id-type="pmid">17481747</pub-id>
</element-citation>
</ref>
<ref id="R44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Zhao</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Negative regulation of TBK1-mediated antiviral immunity</article-title>
<source>FEBS Lett</source>
<year>2013</year>
<volume>587</volume>
<fpage>542</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.febslet.2013.01.052</pub-id>
<pub-id pub-id-type="pmid">23395611</pub-id>
</element-citation>
</ref>
<ref id="R45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name name-style="western">
<surname>Nakajima</surname>
<given-names>A</given-names>
</name>
<name name-style="western">
<surname>Ibi</surname>
<given-names>D</given-names>
</name>
<name name-style="western">
<surname>Nagai</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Yamada</surname>
<given-names>S</given-names>
</name>
<name name-style="western">
<surname>Nabeshima</surname>
<given-names>T</given-names>
</name>
<name name-style="western">
<surname>Yamada</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Induction of interferon-induced transmembrane protein 3 gene expression by lipopolys- accharide in astrocytes</article-title>
<source>Eur J Pharmacol</source>
<year>2014</year>
<volume>745</volume>
<fpage>166</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/j.ejphar.2014.08.034</pub-id>
<pub-id pub-id-type="pmid">25218983</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000969 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000969 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5650283
   |texte=   Characterization and anti-inflammation role of swine IFITM3 gene
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:29088728" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021