Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Variable Oligomerization Modes in Coronavirus Non-structural Protein 9

Identifieur interne : 000936 ( Pmc/Corpus ); précédent : 000935; suivant : 000937

Variable Oligomerization Modes in Coronavirus Non-structural Protein 9

Auteurs : Rajesh Ponnusamy ; Ralf Moll ; Thomas Weimar ; Jeroen R. Mesters ; Rolf Hilgenfeld

Source :

RBID : PMC:7094590

Abstract

Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.


Url:
DOI: 10.1016/j.jmb.2008.07.071
PubMed: 18694760
PubMed Central: 7094590

Links to Exploration step

PMC:7094590

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Variable Oligomerization Modes in Coronavirus Non-structural Protein 9</title>
<author>
<name sortKey="Ponnusamy, Rajesh" sort="Ponnusamy, Rajesh" uniqKey="Ponnusamy R" first="Rajesh" last="Ponnusamy">Rajesh Ponnusamy</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moll, Ralf" sort="Moll, Ralf" uniqKey="Moll R" first="Ralf" last="Moll">Ralf Moll</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weimar, Thomas" sort="Weimar, Thomas" uniqKey="Weimar T" first="Thomas" last="Weimar">Thomas Weimar</name>
<affiliation>
<nlm:aff id="aff2">Institute of Chemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R." last="Mesters">Jeroen R. Mesters</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">18694760</idno>
<idno type="pmc">7094590</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094590</idno>
<idno type="RBID">PMC:7094590</idno>
<idno type="doi">10.1016/j.jmb.2008.07.071</idno>
<date when="2008">2008</date>
<idno type="wicri:Area/Pmc/Corpus">000936</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000936</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Variable Oligomerization Modes in Coronavirus Non-structural Protein 9</title>
<author>
<name sortKey="Ponnusamy, Rajesh" sort="Ponnusamy, Rajesh" uniqKey="Ponnusamy R" first="Rajesh" last="Ponnusamy">Rajesh Ponnusamy</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Moll, Ralf" sort="Moll, Ralf" uniqKey="Moll R" first="Ralf" last="Moll">Ralf Moll</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Weimar, Thomas" sort="Weimar, Thomas" uniqKey="Weimar T" first="Thomas" last="Weimar">Thomas Weimar</name>
<affiliation>
<nlm:aff id="aff2">Institute of Chemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Mesters, Jeroen R" sort="Mesters, Jeroen R" uniqKey="Mesters J" first="Jeroen R." last="Mesters">Jeroen R. Mesters</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hilgenfeld, Rolf" sort="Hilgenfeld, Rolf" uniqKey="Hilgenfeld R" first="Rolf" last="Hilgenfeld">Rolf Hilgenfeld</name>
<affiliation>
<nlm:aff id="aff1">Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Molecular Biology</title>
<idno type="ISSN">0022-2836</idno>
<idno type="eISSN">1089-8638</idno>
<imprint>
<date when="2008">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C. Drosten</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S. Gunther</name>
</author>
<author>
<name sortKey="Preiser, W" uniqKey="Preiser W">W. Preiser</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S. van der Werf</name>
</author>
<author>
<name sortKey="Brodt, H R" uniqKey="Brodt H">H.R. Brodt</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S. Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ksiazek, T G" uniqKey="Ksiazek T">T.G. Ksiazek</name>
</author>
<author>
<name sortKey="Erdman, D" uniqKey="Erdman D">D. Erdman</name>
</author>
<author>
<name sortKey="Goldsmith, C S" uniqKey="Goldsmith C">C.S. Goldsmith</name>
</author>
<author>
<name sortKey="Zaki, S R" uniqKey="Zaki S">S.R. Zaki</name>
</author>
<author>
<name sortKey="Peret, T" uniqKey="Peret T">T. Peret</name>
</author>
<author>
<name sortKey="Emery, S" uniqKey="Emery S">S. Emery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kuiken, T" uniqKey="Kuiken T">T. Kuiken</name>
</author>
<author>
<name sortKey="Fouchier, R A" uniqKey="Fouchier R">R.A. Fouchier</name>
</author>
<author>
<name sortKey="Schutten, M" uniqKey="Schutten M">M. Schutten</name>
</author>
<author>
<name sortKey="Rimmelzwaan, G F" uniqKey="Rimmelzwaan G">G.F. Rimmelzwaan</name>
</author>
<author>
<name sortKey="Van Amerongen, G" uniqKey="Van Amerongen G">G. van Amerongen</name>
</author>
<author>
<name sortKey="Van Riel, D" uniqKey="Van Riel D">D. van Riel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peiris, J S" uniqKey="Peiris J">J.S. Peiris</name>
</author>
<author>
<name sortKey="Chu, C M" uniqKey="Chu C">C.M. Chu</name>
</author>
<author>
<name sortKey="Cheng, V C" uniqKey="Cheng V">V.C. Cheng</name>
</author>
<author>
<name sortKey="Chan, K S" uniqKey="Chan K">K.S. Chan</name>
</author>
<author>
<name sortKey="Hung, I F" uniqKey="Hung I">I.F. Hung</name>
</author>
<author>
<name sortKey="Poon, L L" uniqKey="Poon L">L.L. Poon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Groneberg, D A" uniqKey="Groneberg D">D.A. Groneberg</name>
</author>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R. Hilgenfeld</name>
</author>
<author>
<name sortKey="Zabel, P" uniqKey="Zabel P">P. Zabel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Der Hoek, L" uniqKey="Van Der Hoek L">L. van der Hoek</name>
</author>
<author>
<name sortKey="Pyrc, K" uniqKey="Pyrc K">K. Pyrc</name>
</author>
<author>
<name sortKey="Jebbink, M F" uniqKey="Jebbink M">M.F. Jebbink</name>
</author>
<author>
<name sortKey="Vermeulen Oost, W" uniqKey="Vermeulen Oost W">W. Vermeulen-Oost</name>
</author>
<author>
<name sortKey="Berkhout, R J" uniqKey="Berkhout R">R.J. Berkhout</name>
</author>
<author>
<name sortKey="Wolthers, K C" uniqKey="Wolthers K">K.C. Wolthers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, P C" uniqKey="Woo P">P.C. Woo</name>
</author>
<author>
<name sortKey="Lau, S K" uniqKey="Lau S">S.K. Lau</name>
</author>
<author>
<name sortKey="Chu, C M" uniqKey="Chu C">C.M. Chu</name>
</author>
<author>
<name sortKey="Chan, K H" uniqKey="Chan K">K.H. Chan</name>
</author>
<author>
<name sortKey="Tsoi, H W" uniqKey="Tsoi H">H.W. Tsoi</name>
</author>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorbalenya, A E" uniqKey="Gorbalenya A">A.E. Gorbalenya</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E.J. Snijder</name>
</author>
<author>
<name sortKey="Spaan, W J" uniqKey="Spaan W">W.J. Spaan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cavanagh, D" uniqKey="Cavanagh D">D. Cavanagh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, M M" uniqKey="Lai M">M.M. Lai</name>
</author>
<author>
<name sortKey="Cavanagh, D" uniqKey="Cavanagh D">D. Cavanagh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herold, J" uniqKey="Herold J">J. Herold</name>
</author>
<author>
<name sortKey="Raabe, T" uniqKey="Raabe T">T. Raabe</name>
</author>
<author>
<name sortKey="Schelle Prinz, B" uniqKey="Schelle Prinz B">B. Schelle-Prinz</name>
</author>
<author>
<name sortKey="Siddell, S G" uniqKey="Siddell S">S.G. Siddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herold, J" uniqKey="Herold J">J. Herold</name>
</author>
<author>
<name sortKey="Gorbalenya, A E" uniqKey="Gorbalenya A">A.E. Gorbalenya</name>
</author>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V. Thiel</name>
</author>
<author>
<name sortKey="Schelle, B" uniqKey="Schelle B">B. Schelle</name>
</author>
<author>
<name sortKey="Siddell, S G" uniqKey="Siddell S">S.G. Siddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J. Ziebuhr</name>
</author>
<author>
<name sortKey="Siddell, S G" uniqKey="Siddell S">S.G. Siddell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anand, K" uniqKey="Anand K">K. Anand</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J. Ziebuhr</name>
</author>
<author>
<name sortKey="Wadhwani, P" uniqKey="Wadhwani P">P. Wadhwani</name>
</author>
<author>
<name sortKey="Mesters, J R" uniqKey="Mesters J">J.R. Mesters</name>
</author>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R. Hilgenfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anand, K" uniqKey="Anand K">K. Anand</name>
</author>
<author>
<name sortKey="Palm, G J" uniqKey="Palm G">G.J. Palm</name>
</author>
<author>
<name sortKey="Mesters, J R" uniqKey="Mesters J">J.R. Mesters</name>
</author>
<author>
<name sortKey="Siddell, S G" uniqKey="Siddell S">S.G. Siddell</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J. Ziebuhr</name>
</author>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R. Hilgenfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
<author>
<name sortKey="Ding, Y" uniqKey="Ding Y">Y. Ding</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y. Liu</name>
</author>
<author>
<name sortKey="Lou, Z" uniqKey="Lou Z">Z. Lou</name>
</author>
<author>
<name sortKey="Zhou, Z" uniqKey="Zhou Z">Z. Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tan, J" uniqKey="Tan J">J. Tan</name>
</author>
<author>
<name sortKey="Verschueren, K H" uniqKey="Verschueren K">K.H. Verschueren</name>
</author>
<author>
<name sortKey="Anand, K" uniqKey="Anand K">K. Anand</name>
</author>
<author>
<name sortKey="Shen, J" uniqKey="Shen J">J. Shen</name>
</author>
<author>
<name sortKey="Yang, M" uniqKey="Yang M">M. Yang</name>
</author>
<author>
<name sortKey="Xu, Y" uniqKey="Xu Y">Y. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matthes, N" uniqKey="Matthes N">N. Matthes</name>
</author>
<author>
<name sortKey="Mesters, J R" uniqKey="Mesters J">J.R. Mesters</name>
</author>
<author>
<name sortKey="Coutard, B" uniqKey="Coutard B">B. Coutard</name>
</author>
<author>
<name sortKey="Canard, B" uniqKey="Canard B">B. Canard</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E.J. Snijder</name>
</author>
<author>
<name sortKey="Moll, R" uniqKey="Moll R">R. Moll</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ponnusamy, R" uniqKey="Ponnusamy R">R. Ponnusamy</name>
</author>
<author>
<name sortKey="Mesters, J R" uniqKey="Mesters J">J.R. Mesters</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J. Ziebuhr</name>
</author>
<author>
<name sortKey="Moll, R" uniqKey="Moll R">R. Moll</name>
</author>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R. Hilgenfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, M P" uniqKey="Robertson M">M.P. Robertson</name>
</author>
<author>
<name sortKey="Igel, H" uniqKey="Igel H">H. Igel</name>
</author>
<author>
<name sortKey="Baertsch, R" uniqKey="Baertsch R">R. Baertsch</name>
</author>
<author>
<name sortKey="Haussler, D" uniqKey="Haussler D">D. Haussler</name>
</author>
<author>
<name sortKey="Ares, M" uniqKey="Ares M">M. Ares</name>
</author>
<author>
<name sortKey="Scott, W G" uniqKey="Scott W">W.G. Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imbert, I" uniqKey="Imbert I">I. Imbert</name>
</author>
<author>
<name sortKey="Guillemot, J C" uniqKey="Guillemot J">J.C. Guillemot</name>
</author>
<author>
<name sortKey="Bourhis, J M" uniqKey="Bourhis J">J.M. Bourhis</name>
</author>
<author>
<name sortKey="Bussetta, C" uniqKey="Bussetta C">C. Bussetta</name>
</author>
<author>
<name sortKey="Coutard, B" uniqKey="Coutard B">B. Coutard</name>
</author>
<author>
<name sortKey="Egloff, M P" uniqKey="Egloff M">M.P. Egloff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhai, Y" uniqKey="Zhai Y">Y. Zhai</name>
</author>
<author>
<name sortKey="Sun, F" uniqKey="Sun F">F. Sun</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Pang, H" uniqKey="Pang H">H. Pang</name>
</author>
<author>
<name sortKey="Xu, X" uniqKey="Xu X">X. Xu</name>
</author>
<author>
<name sortKey="Bartlam, M" uniqKey="Bartlam M">M. Bartlam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sutton, G" uniqKey="Sutton G">G. Sutton</name>
</author>
<author>
<name sortKey="Fry, E" uniqKey="Fry E">E. Fry</name>
</author>
<author>
<name sortKey="Carter, L" uniqKey="Carter L">L. Carter</name>
</author>
<author>
<name sortKey="Sainsbury, S" uniqKey="Sainsbury S">S. Sainsbury</name>
</author>
<author>
<name sortKey="Walter, T" uniqKey="Walter T">T. Walter</name>
</author>
<author>
<name sortKey="Nettleship, J" uniqKey="Nettleship J">J. Nettleship</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bost, A G" uniqKey="Bost A">A.G. Bost</name>
</author>
<author>
<name sortKey="Carnahan, R H" uniqKey="Carnahan R">R.H. Carnahan</name>
</author>
<author>
<name sortKey="Lu, X T" uniqKey="Lu X">X.T. Lu</name>
</author>
<author>
<name sortKey="Denison, M R" uniqKey="Denison M">M.R. Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egloff, M P" uniqKey="Egloff M">M.P. Egloff</name>
</author>
<author>
<name sortKey="Ferron, F" uniqKey="Ferron F">F. Ferron</name>
</author>
<author>
<name sortKey="Campanacci, V" uniqKey="Campanacci V">V. Campanacci</name>
</author>
<author>
<name sortKey="Longhi, S" uniqKey="Longhi S">S. Longhi</name>
</author>
<author>
<name sortKey="Rancurel, C" uniqKey="Rancurel C">C. Rancurel</name>
</author>
<author>
<name sortKey="Dutartre, H" uniqKey="Dutartre H">H. Dutartre</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laskowski, R A" uniqKey="Laskowski R">R.A. Laskowski</name>
</author>
<author>
<name sortKey="Macarthur, M W" uniqKey="Macarthur M">M.W. MacArthur</name>
</author>
<author>
<name sortKey="Moss, D S" uniqKey="Moss D">D.S. Moss</name>
</author>
<author>
<name sortKey="Thornton, J M" uniqKey="Thornton J">J.M. Thornton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Theobald, D L" uniqKey="Theobald D">D.L. Theobald</name>
</author>
<author>
<name sortKey="Mitton Fry, R M" uniqKey="Mitton Fry R">R.M. Mitton-Fry</name>
</author>
<author>
<name sortKey="Wuttke, D S" uniqKey="Wuttke D">D.S. Wuttke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webster, G" uniqKey="Webster G">G. Webster</name>
</author>
<author>
<name sortKey="Genschel, J" uniqKey="Genschel J">J. Genschel</name>
</author>
<author>
<name sortKey="Curth, U" uniqKey="Curth U">U. Curth</name>
</author>
<author>
<name sortKey="Urbanke, C" uniqKey="Urbanke C">C. Urbanke</name>
</author>
<author>
<name sortKey="Kang, C" uniqKey="Kang C">C. Kang</name>
</author>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R. Hilgenfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bochkarev, A" uniqKey="Bochkarev A">A. Bochkarev</name>
</author>
<author>
<name sortKey="Pfuetzner, R A" uniqKey="Pfuetzner R">R.A. Pfuetzner</name>
</author>
<author>
<name sortKey="Edwards, A M" uniqKey="Edwards A">A.M. Edwards</name>
</author>
<author>
<name sortKey="Frappier, L" uniqKey="Frappier L">L. Frappier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mapelli, M" uniqKey="Mapelli M">M. Mapelli</name>
</author>
<author>
<name sortKey="Panjikar, S" uniqKey="Panjikar S">S. Panjikar</name>
</author>
<author>
<name sortKey="Tucker, P A" uniqKey="Tucker P">P.A. Tucker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anand, K" uniqKey="Anand K">K. Anand</name>
</author>
<author>
<name sortKey="Pal, D" uniqKey="Pal D">D. Pal</name>
</author>
<author>
<name sortKey="Hilgenfeld, R" uniqKey="Hilgenfeld R">R. Hilgenfeld</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, B" uniqKey="Lee B">B. Lee</name>
</author>
<author>
<name sortKey="Richards, F M" uniqKey="Richards F">F.M. Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ellman, G L" uniqKey="Ellman G">G.L. Ellman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abrahams, J P" uniqKey="Abrahams J">J.P. Abrahams</name>
</author>
<author>
<name sortKey="Kraal, B" uniqKey="Kraal B">B. Kraal</name>
</author>
<author>
<name sortKey="Bosch, L" uniqKey="Bosch L">L. Bosch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bessette, P H" uniqKey="Bessette P">P.H. Bessette</name>
</author>
<author>
<name sortKey="Aslund, F" uniqKey="Aslund F">F. Aslund</name>
</author>
<author>
<name sortKey="Beckwith, J" uniqKey="Beckwith J">J. Beckwith</name>
</author>
<author>
<name sortKey="Georgiou, G" uniqKey="Georgiou G">G. Georgiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parks, D" uniqKey="Parks D">D. Parks</name>
</author>
<author>
<name sortKey="Bolinger, R" uniqKey="Bolinger R">R. Bolinger</name>
</author>
<author>
<name sortKey="Mann, K" uniqKey="Mann K">K. Mann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawrence, M C" uniqKey="Lawrence M">M.C. Lawrence</name>
</author>
<author>
<name sortKey="Colman, P M" uniqKey="Colman P">P.M. Colman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chothia, C" uniqKey="Chothia C">C. Chothia</name>
</author>
<author>
<name sortKey="Levitt, M" uniqKey="Levitt M">M. Levitt</name>
</author>
<author>
<name sortKey="Richardson, D" uniqKey="Richardson D">D. Richardson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russ, W P" uniqKey="Russ W">W.P. Russ</name>
</author>
<author>
<name sortKey="Engelman, D M" uniqKey="Engelman D">D.M. Engelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senes, A" uniqKey="Senes A">A. Senes</name>
</author>
<author>
<name sortKey="Gerstein, M" uniqKey="Gerstein M">M. Gerstein</name>
</author>
<author>
<name sortKey="Engelman, D M" uniqKey="Engelman D">D.M. Engelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C.Y. Chen</name>
</author>
<author>
<name sortKey="Chang, C K" uniqKey="Chang C">C.K. Chang</name>
</author>
<author>
<name sortKey="Chang, Y W" uniqKey="Chang Y">Y.W. Chang</name>
</author>
<author>
<name sortKey="Sue, S C" uniqKey="Sue S">S.C. Sue</name>
</author>
<author>
<name sortKey="Bai, H I" uniqKey="Bai H">H.I. Bai</name>
</author>
<author>
<name sortKey="Riang, L" uniqKey="Riang L">L. Riang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petersen, M T" uniqKey="Petersen M">M.T. Petersen</name>
</author>
<author>
<name sortKey="Jonson, P H" uniqKey="Jonson P">P.H. Jonson</name>
</author>
<author>
<name sortKey="Petersen, S B" uniqKey="Petersen S">S.B. Petersen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stevens, R" uniqKey="Stevens R">R. Stevens</name>
</author>
<author>
<name sortKey="Stevens, L" uniqKey="Stevens L">L. Stevens</name>
</author>
<author>
<name sortKey="Price, N C" uniqKey="Price N">N.C. Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="You, J S" uniqKey="You J">J.S. You</name>
</author>
<author>
<name sortKey="Wang, M" uniqKey="Wang M">M. Wang</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.H. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauer, C E" uniqKey="Bauer C">C.E. Bauer</name>
</author>
<author>
<name sortKey="Elsen, S" uniqKey="Elsen S">S. Elsen</name>
</author>
<author>
<name sortKey="Bird, T H" uniqKey="Bird T">T.H. Bird</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eleouet, J F" uniqKey="Eleouet J">J.F. Eleouet</name>
</author>
<author>
<name sortKey="Chilmonczyk, S" uniqKey="Chilmonczyk S">S. Chilmonczyk</name>
</author>
<author>
<name sortKey="Besnardeau, L" uniqKey="Besnardeau L">L. Besnardeau</name>
</author>
<author>
<name sortKey="Laude, H" uniqKey="Laude H">H. Laude</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaul, P" uniqKey="Kaul P">P. Kaul</name>
</author>
<author>
<name sortKey="Biagioli, M C" uniqKey="Biagioli M">M.C. Biagioli</name>
</author>
<author>
<name sortKey="Singh, I" uniqKey="Singh I">I. Singh</name>
</author>
<author>
<name sortKey="Turner, R B" uniqKey="Turner R">R.B. Turner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Oberley, L W" uniqKey="Oberley L">L.W. Oberley</name>
</author>
<author>
<name sortKey="Murhammer, D W" uniqKey="Murhammer D">D.W. Murhammer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mikhailov, V S" uniqKey="Mikhailov V">V.S. Mikhailov</name>
</author>
<author>
<name sortKey="Okano, K" uniqKey="Okano K">K. Okano</name>
</author>
<author>
<name sortKey="Rohrmann, G F" uniqKey="Rohrmann G">G.F. Rohrmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcbride, A A" uniqKey="Mcbride A">A.A. McBride</name>
</author>
<author>
<name sortKey="Klausner, R D" uniqKey="Klausner R">R.D. Klausner</name>
</author>
<author>
<name sortKey="Howley, P M" uniqKey="Howley P">P.M. Howley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sampson, D A" uniqKey="Sampson D">D.A. Sampson</name>
</author>
<author>
<name sortKey="Arana, M E" uniqKey="Arana M">M.E. Arana</name>
</author>
<author>
<name sortKey="Boehmer, P E" uniqKey="Boehmer P">P.E. Boehmer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knipe, D M" uniqKey="Knipe D">D.M. Knipe</name>
</author>
<author>
<name sortKey="Quinlan, M P" uniqKey="Quinlan M">M.P. Quinlan</name>
</author>
<author>
<name sortKey="Spang, A E" uniqKey="Spang A">A.E. Spang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dudas, K C" uniqKey="Dudas K">K.C. Dudas</name>
</author>
<author>
<name sortKey="Ruyechan, W T" uniqKey="Ruyechan W">W.T. Ruyechan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gosert, R" uniqKey="Gosert R">R. Gosert</name>
</author>
<author>
<name sortKey="Kanjanahaluethai, A" uniqKey="Kanjanahaluethai A">A. Kanjanahaluethai</name>
</author>
<author>
<name sortKey="Egger, D" uniqKey="Egger D">D. Egger</name>
</author>
<author>
<name sortKey="Bienz, K" uniqKey="Bienz K">K. Bienz</name>
</author>
<author>
<name sortKey="Baker, S C" uniqKey="Baker S">S.C. Baker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prentice, E" uniqKey="Prentice E">E. Prentice</name>
</author>
<author>
<name sortKey="Jerome, W G" uniqKey="Jerome W">W.G. Jerome</name>
</author>
<author>
<name sortKey="Yoshimori, T" uniqKey="Yoshimori T">T. Yoshimori</name>
</author>
<author>
<name sortKey="Mizushima, N" uniqKey="Mizushima N">N. Mizushima</name>
</author>
<author>
<name sortKey="Denison, M R" uniqKey="Denison M">M.R. Denison</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E.J. Snijder</name>
</author>
<author>
<name sortKey="Van Der Meer, Y" uniqKey="Van Der Meer Y">Y. van der Meer</name>
</author>
<author>
<name sortKey="Zevenhoven Dobbe, J" uniqKey="Zevenhoven Dobbe J">J. Zevenhoven-Dobbe</name>
</author>
<author>
<name sortKey="Onderwater, J J" uniqKey="Onderwater J">J.J. Onderwater</name>
</author>
<author>
<name sortKey="Van Der Meulen, J" uniqKey="Van Der Meulen J">J. van der Meulen</name>
</author>
<author>
<name sortKey="Koerten, H K" uniqKey="Koerten H">H.K. Koerten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Hemert, M J" uniqKey="Van Hemert M">M.J. van Hemert</name>
</author>
<author>
<name sortKey="Van Den Worm, S H E" uniqKey="Van Den Worm S">S.H.E. van den Worm</name>
</author>
<author>
<name sortKey="Knoops, K" uniqKey="Knoops K">K. Knoops</name>
</author>
<author>
<name sortKey="Mommaas, A M" uniqKey="Mommaas A">A.M. Mommaas</name>
</author>
<author>
<name sortKey="Gorbalenya, A E" uniqKey="Gorbalenya A">A.E. Gorbalenya</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E.J. Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Y H" uniqKey="Wu Y">Y.H. Wu</name>
</author>
<author>
<name sortKey="Tseng, C P" uniqKey="Tseng C">C.P. Tseng</name>
</author>
<author>
<name sortKey="Cheng, M L" uniqKey="Cheng M">M.L. Cheng</name>
</author>
<author>
<name sortKey="Ho, H Y" uniqKey="Ho H">H.Y. Ho</name>
</author>
<author>
<name sortKey="Shih, S R" uniqKey="Shih S">S.R. Shih</name>
</author>
<author>
<name sortKey="Chiu, D T" uniqKey="Chiu D">D.T. Chiu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imai, Y" uniqKey="Imai Y">Y. Imai</name>
</author>
<author>
<name sortKey="Kuba, K" uniqKey="Kuba K">K. Kuba</name>
</author>
<author>
<name sortKey="Neely, G G" uniqKey="Neely G">G.G. Neely</name>
</author>
<author>
<name sortKey="Yaghubian Malhami, R" uniqKey="Yaghubian Malhami R">R. Yaghubian-Malhami</name>
</author>
<author>
<name sortKey="Perkmann, T" uniqKey="Perkmann T">T. Perkmann</name>
</author>
<author>
<name sortKey="Van Loo, G" uniqKey="Van Loo G">G. van Loo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miseta, A" uniqKey="Miseta A">A. Miseta</name>
</author>
<author>
<name sortKey="Csutora, P" uniqKey="Csutora P">P. Csutora</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lindwall, G" uniqKey="Lindwall G">G. Lindwall</name>
</author>
<author>
<name sortKey="Chau, M" uniqKey="Chau M">M. Chau</name>
</author>
<author>
<name sortKey="Gardner, S R" uniqKey="Gardner S">S.R. Gardner</name>
</author>
<author>
<name sortKey="Kohlstaedt, L A" uniqKey="Kohlstaedt L">L.A. Kohlstaedt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Otwinowski, Z" uniqKey="Otwinowski Z">Z. Otwinowski</name>
</author>
<author>
<name sortKey="Minor, W" uniqKey="Minor W">W. Minor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Collaborative Computational Project Number" uniqKey="Collaborative Computational Project Number">Collaborative Computational Project Number 4</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccoy, A J" uniqKey="Mccoy A">A.J. McCoy</name>
</author>
<author>
<name sortKey="Grosse Kunstleve, R W" uniqKey="Grosse Kunstleve R">R.W. Grosse-Kunstleve</name>
</author>
<author>
<name sortKey="Storoni, L C" uniqKey="Storoni L">L.C. Storoni</name>
</author>
<author>
<name sortKey="Read, R J" uniqKey="Read R">R.J. Read</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emsley, P" uniqKey="Emsley P">P. Emsley</name>
</author>
<author>
<name sortKey="Cowtan, K" uniqKey="Cowtan K">K. Cowtan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Murshudov, G N" uniqKey="Murshudov G">G.N. Murshudov</name>
</author>
<author>
<name sortKey="Vagin, A A" uniqKey="Vagin A">A.A. Vagin</name>
</author>
<author>
<name sortKey="Dodson, E J" uniqKey="Dodson E">E.J. Dodson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cohen, G E" uniqKey="Cohen G">G.E. Cohen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delano, W L" uniqKey="Delano W">W.L. DeLano</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Mol Biol</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Mol. Biol</journal-id>
<journal-title-group>
<journal-title>Journal of Molecular Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-2836</issn>
<issn pub-type="epub">1089-8638</issn>
<publisher>
<publisher-name>Elsevier</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">18694760</article-id>
<article-id pub-id-type="pmc">7094590</article-id>
<article-id pub-id-type="publisher-id">S0022-2836(08)00940-6</article-id>
<article-id pub-id-type="doi">10.1016/j.jmb.2008.07.071</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Variable Oligomerization Modes in Coronavirus Non-structural Protein 9</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Ponnusamy</surname>
<given-names>Rajesh</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Moll</surname>
<given-names>Ralf</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Weimar</surname>
<given-names>Thomas</given-names>
</name>
<xref rid="aff2" ref-type="aff">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Mesters</surname>
<given-names>Jeroen R.</given-names>
</name>
<xref rid="aff1" ref-type="aff">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hilgenfeld</surname>
<given-names>Rolf</given-names>
</name>
<email>hilgenfeld@biochem.uni-luebeck.de</email>
<xref rid="aff1" ref-type="aff">1</xref>
<xref rid="aff3" ref-type="aff">3</xref>
<xref rid="cor1" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff1">
<label>1</label>
Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</aff>
<aff id="aff2">
<label>2</label>
Institute of Chemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany</aff>
<aff id="aff3">
<label>3</label>
Laboratory for Structural Biology of Infection and Inflammation, c/o DESY, Building 22a, Notkestr. 85, 22603 Hamburg, Germany</aff>
<author-notes>
<corresp id="cor1">
<label></label>
Corresponding author. Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
<email>hilgenfeld@biochem.uni-luebeck.de</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>7</month>
<year>2008</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>28</day>
<month>11</month>
<year>2008</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>7</month>
<year>2008</year>
</pub-date>
<volume>383</volume>
<issue>5</issue>
<fpage>1081</fpage>
<lpage>1096</lpage>
<history>
<date date-type="received">
<day>13</day>
<month>4</month>
<year>2008</year>
</date>
<date date-type="rev-recd">
<day>17</day>
<month>7</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>24</day>
<month>7</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2008 Elsevier Ltd. All rights reserved.</copyright-statement>
<copyright-year>2008</copyright-year>
<copyright-holder>Elsevier Ltd</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract>
<p>Non-structural protein 9 (Nsp9) of coronaviruses is believed to bind single-stranded RNA in the viral replication complex. The crystal structure of Nsp9 of human coronavirus (HCoV) 229E reveals a novel disulfide-linked homodimer, which is very different from the previously reported Nsp9 dimer of SARS coronavirus. In contrast, the structure of the Cys69Ala mutant of HCoV-229E Nsp9 shows the same dimer organization as the SARS-CoV protein. In the crystal, the wild-type HCoV-229E protein forms a trimer of dimers, whereas the mutant and SARS-CoV Nsp9 are organized in rod-like polymers. Chemical cross-linking suggests similar modes of aggregation in solution. In zone-interference gel electrophoresis assays and surface plasmon resonance experiments, the HCoV-229E wild-type protein is found to bind oligonucleotides with relatively high affinity, whereas binding by the Cys69Ala and Cys69Ser mutants is observed only for the longest oligonucleotides. The corresponding mutations in SARS-CoV Nsp9 do not hamper nucleic acid binding. From the crystal structures, a model for single-stranded RNA binding by Nsp9 is deduced. We propose that both forms of the Nsp9 dimer are biologically relevant; the occurrence of the disulfide-bonded form may be correlated with oxidative stress induced in the host cell by the viral infection.</p>
</abstract>
<kwd-group>
<title>Abbreviations</title>
<kwd>SARS-CoV, severe acute respiratory syndrome coronavirus</kwd>
<kwd>HCoV-229E, human coronavirus 229E</kwd>
<kwd>Nsp, non-structural protein</kwd>
<kwd>MPD, 2-methyl-2,4-pentanediol</kwd>
<kwd>DLS, dynamic light-scattering</kwd>
<kwd>M
<sup>pro</sup>
, main proteinase</kwd>
<kwd>r.m.s., root-mean-square</kwd>
<kwd>SSB, single-stranded DNA-binding protein</kwd>
<kwd>SPR, surface plasmon resonance</kwd>
<kwd>ssDNA, single-stranded DNA</kwd>
<kwd>ssRNA, single-stranded RNA</kwd>
<kwd>OB, oligonucleotide/oligosaccharide-binding</kwd>
<kwd>pp1a, polyprotein 1a</kwd>
<kwd>RU, resonance units</kwd>
</kwd-group>
<kwd-group>
<title>Keywords</title>
<kwd>Nsp9</kwd>
<kwd>dimerization</kwd>
<kwd>nucleic-acid binding</kwd>
<kwd>disulfide bond</kwd>
<kwd>oxidative stress</kwd>
</kwd-group>
</article-meta>
<notes>
<p>Edited by R. Huber</p>
</notes>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Since a coronavirus was identified as the causative agent of the 2003 outbreak of severe acute respiratory syndrome (SARS),
<xref rid="bib1" ref-type="bibr">1</xref>
,
<xref rid="bib2" ref-type="bibr">2</xref>
,
<xref rid="bib3" ref-type="bibr">3</xref>
,
<xref rid="bib4" ref-type="bibr">4</xref>
scientific interest in this family of viruses has increased dramatically.
<xref rid="bib5" ref-type="bibr">
<sup>5</sup>
</xref>
Coronaviruses are enveloped, positive-strand RNA viruses that cause a wide spectrum of disease in humans and animals. These viruses are divided into three distinct groups on the basis of genome organization and phylogenetic analysis. Human coronavirus 229E (HCoV 229E) causes a mild form of the common cold and belongs to group 1, which includes the recently discovered human coronavirus NL63
<xref rid="bib6" ref-type="bibr">
<sup>6</sup>
</xref>
and the porcine coronavirus, transmissible gastroenteritis virus (TGEV). Human coronaviruses belonging to group 2 are OC43 and HKU1, the latter also having been discovered very recently.
<xref rid="bib7" ref-type="bibr">
<sup>7</sup>
</xref>
The SARS coronavirus has been classified as an outlier of group 2.
<xref rid="bib8" ref-type="bibr">
<sup>8</sup>
</xref>
Coronaviruses infecting birds have been identified as a separate group (group 3).
<xref rid="bib9" ref-type="bibr">
<sup>9</sup>
</xref>
</p>
<p>The genome of HCoV 229E consists of 27,277 nucleotides, comprising a total of eight open reading frames. The entire replicase complex of the virus is encoded within two large overlapping open reading frames, ORF 1a and ORF 1b. ORF 1a codes for polyprotein 1a (pp1a) with a calculated molecular mass of 454 kDa. Involving a (−1) ribosomal frameshift, translation of ORF 1a and ORF 1b together yields the giant polypeptide 1ab (pp1ab) with a calculated molecular mass of 754 kDa.
<xref rid="bib10" ref-type="bibr">10</xref>
,
<xref rid="bib11" ref-type="bibr">11</xref>
These polyproteins are processed by two virus-encoded papain-like proteases (PL1
<sup>pro</sup>
and PL2
<sup>pro</sup>
)
<xref rid="bib12" ref-type="bibr">
<sup>12</sup>
</xref>
and the main proteinase (M
<sup>pro</sup>
, also called 3C-like protease, 3CL
<sup>pro</sup>
),
<xref rid="bib13" ref-type="bibr">
<sup>13</sup>
</xref>
resulting in 16 non-structural proteins (Nsps). The crystal structure of HCoV-229E M
<sup>pro</sup>
has been determined by our group
<xref rid="bib14" ref-type="bibr">
<sup>14</sup>
</xref>
and shown to be similar to that of the homologous enzyme from TGEV.
<xref rid="bib15" ref-type="bibr">
<sup>15</sup>
</xref>
The structure of the SARS-CoV M
<sup>pro</sup>
<xref rid="bib16" ref-type="bibr">16</xref>
,
<xref rid="bib17" ref-type="bibr">17</xref>
is also very similar.</p>
<p>The C-terminal region of pp1a comprises a set of relatively small polypeptide domains, Nsp6–Nsp11. In preliminary experiments, we have shown that Nsp10 from mouse hepatitis (corona)virus (MHV) is a double-stranded RNA-binding zinc-finger protein,
<xref rid="bib18" ref-type="bibr">
<sup>18</sup>
</xref>
and that HCoV-229E Nsp8 and Nsp9 interact with nucleic acids.
<xref rid="bib19" ref-type="bibr">
<sup>19</sup>
</xref>
Also, it has been proposed recently that Nsp9 might interact specifically with the stem–loop II motif (s2m), a well defined RNA secondary-structure element at the 3′ end of many coronavirus genomes.
<xref rid="bib20" ref-type="bibr">
<sup>20</sup>
</xref>
However, s2m does not seem to be conserved in HCoV 229E
<xref rid="fn1" ref-type="fn"></xref>
. Nsp8 of SARS-CoV has the function of an RNA primase;
<xref rid="bib21" ref-type="bibr">
<sup>21</sup>
</xref>
its 8:8 complex with Nsp7 has a three-dimensional structure reminiscent of the β
<sub>2</sub>
”sliding clamp” of bacterial DNA polymerase, with a central channel suitable for double-stranded RNA binding.
<xref rid="bib22" ref-type="bibr">
<sup>22</sup>
</xref>
It has been shown by analytical ultracentrifugation that Nsp8 also interacts with Nsp9,
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
although according to our own measurements using surface plasmon resonance, this interaction is either absent or very weak (R.P., unpublished results). Colocalization of Nsp7, Nsp8, Nsp9, and Nsp10 was observed in MHV.
<xref rid="bib24" ref-type="bibr">
<sup>24</sup>
</xref>
Very likely, these non-structural proteins are involved directly in the replication complex built around the RNA-dependent RNA polymerase (Nsp12).</p>
<p>Here, we describe the crystal structures of wild-type HCoV-229E Nsp9 at 1.75 Å resolution and its Cys69Ala mutant at 1.80 Å. In spite of 45% sequence identity between SARS-CoV and HCoV-229E Nsp9, the wild-type structure of the latter exhibits a mode of homodimerization that is entirely different from what has been observed in the crystal structure of the former.
<xref rid="bib23" ref-type="bibr">23</xref>
,
<xref rid="bib25" ref-type="bibr">25</xref>
To probe the effect of the observed intermolecular disulfide bridge on the formation of the HCoV-229E Nsp9 dimer, Cys69 was mutated to alanine. The crystal structure of this Nsp9 mutant shows a dimerization mode similar to that observed in SARS-CoV Nsp9.
<xref rid="bib23" ref-type="bibr">23</xref>
,
<xref rid="bib25" ref-type="bibr">25</xref>
However, gel mobility-shift assays and surface plasmon resonance (SPR) measurements indicate that only the wild-type HCoV-229E Nsp9, not the Cys69Ala mutant, binds strongly to single-stranded RNA and single-stranded DNA. In order to assess a possible direct role of Cys69 in nucleic acid binding, this residue was also replaced by serine. Again, the mutant showed little or no affinity to single-stranded DNA (ssDNA). Finally, the corresponding residue (Cys73) of SARS-CoV Nsp9, which did not form a disulfide bond, was replaced by alanine and serine. Both mutants showed wild-type affinity to single-stranded oligonucleotides. It is therefore concluded that Nsp9 of HCoV 229E is substantially different from its orthologue in SARS-CoV.</p>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Structure elucidation and quality of the structural models</title>
<p>Wild-type HCoV-229E Nsp9 and its Cys69Ala and Cys69Ser mutants were cloned with a His
<sub>6</sub>
tag connected to the N terminus of the protein
<italic>via</italic>
the linker sequence VKLQ. The latter tetrapeptide corresponds to the C terminus of SARS-coronavirus Nsp8 (as well as HCoV-229E Nsp8) and therefore introduces a cleavage site for the main proteinase (M
<sup>pro</sup>
) of SARS-CoV. After purification of the His
<sub>6</sub>
-tagged protein using Ni-NTA chromatography, cleavage with the M
<sup>pro</sup>
yielded Nsp9 with an authentic N terminus. The wild-type Nsp9 was crystallized using a reservoir containing 1.8–2.1 M ammonium sulfate, 0.1 M sodium acetate pH 4.0–4.5, and 5% (v/v) 2-methyl-2,4-pentanediol (MPD). Crystals were of space group
<italic>P</italic>
622, with a monomer in the asymmetric unit (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). The structure was determined by molecular replacement, using a monomer of the SARS-CoV Nsp9
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
as the search model, and refined to 1.75 Å resolution. Residues 1–7 and 33–36 could not be modeled due to lack of electron density. Alternate conformations were detected in the electron density for the side-chains of Met9 and Lys82. The final
<italic>R</italic>
-factor for the structural model is 19.0% and the
<italic>R</italic>
<sub>free</sub>
is 22.4%; 97.2% of the amino acid residues are in the most-favored regions of the Ramachandran plot and the remainder in the additionally allowed regions.
<xref rid="bib26" ref-type="bibr">
<sup>26</sup>
</xref>
<table-wrap position="float" id="tbl1">
<label>Table 1</label>
<caption>
<p>Data collection and refinement statistics</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top"></th>
<th valign="top">Nsp9 wild type</th>
<th valign="top">Nsp9 mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="3" valign="top">A.
<italic>Data collection</italic>
</td>
</tr>
<tr>
<td valign="top">Wavelength (Å)</td>
<td align="center" valign="top">0.8075</td>
<td align="center" valign="top">0.8075</td>
</tr>
<tr>
<td valign="top">Resolution (Å)</td>
<td align="center" valign="top">40.0–1.75 (1.79–1.75)</td>
<td align="center" valign="top">30.0–1.80 (1.86–1.80)</td>
</tr>
<tr>
<td valign="top">Space group</td>
<td align="center" valign="top">
<italic>P</italic>
622</td>
<td align="center" valign="top">
<italic>P</italic>
2
<sub>1</sub>
2
<sub>1</sub>
2
<sub>1</sub>
</td>
</tr>
<tr>
<td valign="top">Unit-cell parameters</td>
<td valign="top"></td>
<td valign="top"></td>
</tr>
<tr>
<td valign="top"> 
<italic>a</italic>
(Å)</td>
<td align="center" valign="top">85.63</td>
<td align="center" valign="top">26.40</td>
</tr>
<tr>
<td valign="top"> 
<italic>b</italic>
(Å)</td>
<td align="center" valign="top">85.63</td>
<td align="center" valign="top">61.38</td>
</tr>
<tr>
<td valign="top"> 
<italic>c</italic>
(Å)</td>
<td align="center" valign="top">48.69</td>
<td align="center" valign="top">107.31</td>
</tr>
<tr>
<td valign="top">Solvent content (%, v/v)</td>
<td align="center" valign="top">42.3</td>
<td align="center" valign="top">31.5</td>
</tr>
<tr>
<td valign="top">Overall reflections</td>
<td align="center" valign="top">129,656</td>
<td align="center" valign="top">139,726</td>
</tr>
<tr>
<td valign="top">Unique reflections</td>
<td align="center" valign="top">11,317 (730)</td>
<td align="center" valign="top">16,842 (1648)</td>
</tr>
<tr>
<td valign="top">Multiplicity</td>
<td align="center" valign="top">11.5 (11.5)</td>
<td align="center" valign="top">8.3 (4.7)</td>
</tr>
<tr>
<td valign="top">Completeness (%)</td>
<td align="center" valign="top">99.9 (100.0)</td>
<td align="center" valign="top">99.4 (99.7)</td>
</tr>
<tr>
<td valign="top">
<italic>R</italic>
<sub>merge</sub>
<xref rid="tblfn1" ref-type="table-fn">a</xref>
(%)</td>
<td align="center" valign="top">8.3 (60.3)</td>
<td align="center" valign="top">8.9 (35.1)</td>
</tr>
<tr>
<td valign="top">
<italic>I</italic>
/σ(
<italic>I</italic>
)</td>
<td align="center" valign="top">13.7 (4.45)</td>
<td align="center" valign="top">19.7 (3.96)</td>
</tr>
<tr>
<td colspan="3" valign="top">

</td>
</tr>
<tr>
<td colspan="3" valign="top">B.
<italic>Refinement</italic>
</td>
</tr>
<tr>
<td valign="top">Resolution (Å)</td>
<td align="center" valign="top">40.0–1.75</td>
<td align="center" valign="top">30.0–1.80</td>
</tr>
<tr>
<td valign="top">
<italic>R</italic>
<sub>cryst</sub>
<xref rid="tblfn2" ref-type="table-fn">b</xref>
</td>
<td align="center" valign="top">0.190</td>
<td align="center" valign="top">0.221</td>
</tr>
<tr>
<td valign="top">
<italic>R</italic>
<sub>free</sub>
<xref rid="tblfn2" ref-type="table-fn">b</xref>
</td>
<td align="center" valign="top">0.224</td>
<td align="center" valign="top">0.281</td>
</tr>
<tr>
<td valign="top">r.m.s.d. from ideal geometry</td>
<td valign="top"></td>
<td valign="top"></td>
</tr>
<tr>
<td valign="top"> Bond lengths (Å)</td>
<td align="center" valign="top">0.013</td>
<td align="center" valign="top">0.017</td>
</tr>
<tr>
<td valign="top"> Bond angles (°)</td>
<td align="center" valign="top">1.417</td>
<td align="center" valign="top">1.962</td>
</tr>
<tr>
<td valign="top">Protein atoms</td>
<td align="center" valign="top">778</td>
<td align="center" valign="top">1604</td>
</tr>
<tr>
<td valign="top">Solvent atoms</td>
<td align="center" valign="top">65</td>
<td align="center" valign="top">74</td>
</tr>
<tr>
<td valign="top">MPD</td>
<td align="center" valign="top">1</td>
<td align="center" valign="top"></td>
</tr>
<tr>
<td valign="top">DTT</td>
<td align="center" valign="top"></td>
<td align="center" valign="top">1</td>
</tr>
<tr>
<td valign="top">Sulfate</td>
<td align="center" valign="top">2</td>
<td align="center" valign="top"></td>
</tr>
<tr>
<td valign="top">Ramachandran plot regions</td>
<td valign="top"></td>
<td valign="top"></td>
</tr>
<tr>
<td valign="top"> Most favoured (%)</td>
<td align="center" valign="top">97.2</td>
<td align="center" valign="top">92.5</td>
</tr>
<tr>
<td valign="top"> Additionally allowed (%)</td>
<td align="center" valign="top">2.8</td>
<td align="center" valign="top">7.5</td>
</tr>
<tr>
<td valign="top"> Generously allowed (%)</td>
<td align="center" valign="top">0</td>
<td align="center" valign="top">0</td>
</tr>
<tr>
<td valign="top"> Disallowed (%)</td>
<td align="center" valign="top">0</td>
<td align="center" valign="top">0</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn>
<p>Values in parentheses are for the highest resolution shell.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tblfn1">
<label>a</label>
<p>
<italic>R</italic>
<sub>merge</sub>
 = ∑
<sub>
<italic>hkl</italic>
</sub>
<sub>
<italic>i</italic>
</sub>
|
<italic>I</italic>
(
<italic>hkl</italic>
)
<sub>
<italic>i</italic>
</sub>
–〈
<italic>I</italic>
(
<italic>hkl</italic>
)〉|/∑
<sub>
<italic>hkl</italic>
</sub>
<sub>
<italic>i</italic>
</sub>
<italic>I</italic>
(
<italic>hkl</italic>
)
<sub>
<italic>i</italic>
</sub>
, where
<italic>I</italic>
(
<italic>hkl</italic>
) is the intensity of reflection
<italic>hkl</italic>
and 〈
<italic>I</italic>
(
<italic>hkl</italic>
)〉 is the average intensity over all equivalent reflections.</p>
</fn>
</table-wrap-foot>
<table-wrap-foot>
<fn id="tblfn2">
<label>b</label>
<p>
<italic>R</italic>
<sub>cyst</sub>
 = ∑
<sub>
<italic>hkl</italic>
</sub>
|
<italic>F</italic>
<sub>o</sub>
(
<italic>hkl</italic>
)–
<italic>F</italic>
<sub>
<italic>c</italic>
</sub>
(
<italic>hkl</italic>
)|/∑
<sub>
<italic>hkl</italic>
</sub>
<italic>F</italic>
<sub>o</sub>
(
<italic>hkl</italic>
).
<italic>R</italic>
<sub>free</sub>
was calculated for a test set of reflections (5%) omitted from the refinement.</p>
</fn>
</table-wrap-foot>
</table-wrap>
</p>
<p>The Cys69Ala mutant of HCoV-229E Nsp9 was prepared by single-site PCR mutagenesis from the wild-type plasmid. Preparation of the protein was identical with wild-type Nsp9. The conditions identified for crystallization of the wild-type Nsp9 failed to yield crystals of the mutant. Instead, the following crystallization conditions were established: 0.2 M ammonium sulfate, 0.2 M sodium acetate (pH 4.6), 30% (w/v) polyethylene glycol monomethyl ether (PEG-MME) 2000. The crystals displayed space group
<italic>P</italic>
2
<sub>1</sub>
2
<sub>1</sub>
2
<sub>1</sub>
, with a dimer of the Nsp9 mutant per asymmetric unit (
<xref rid="tbl1" ref-type="table">Table 1</xref>
). Residues 1, 2 and 109 of monomer A have not been modeled due to lack of electron density; the same is true for residues 1–4 and 107–109 of monomer B. The segment comprising residues 53–56 could be built into electron density but proved to be very flexible. The structure was refined to a resolution of 1.80 Å, with
<italic>R</italic>
 = 22.1% and
<italic>R</italic>
<sub>free</sub>
 = 28.1% (see
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S1</xref>
). Of the amino acid residues in the structural model, 92.5% are in the most favored regions of the Ramachandran plot and the remainder are in the additionally allowed regions.
<xref rid="bib26" ref-type="bibr">
<sup>26</sup>
</xref>
</p>
</sec>
<sec>
<title>Overall structure of the Nsp9 monomer</title>
<p>Crystals of wild-type HCoV-229E Nsp9 contain one monomer per asymmetric unit, which forms a homodimer due to the crystallographic twofold axis (see below). The fold of the monomer is related to the oligonucleotide/oligosaccharide-binding modules (OB fold). This fold is characteristic of proteins binding to single-stranded nucleic acids
<xref rid="bib27" ref-type="bibr">
<sup>27</sup>
</xref>
and occurs, for example, in ssDNA-binding proteins from bacteria
<xref rid="bib28" ref-type="bibr">
<sup>28</sup>
</xref>
to man
<xref rid="bib29" ref-type="bibr">
<sup>29</sup>
</xref>
as well as in viruses.
<xref rid="bib30" ref-type="bibr">
<sup>30</sup>
</xref>
The canonical OB fold comprises five antiparallel β-strands that form a partial barrel, and an α-helix that packs against the bottom of the barrel, usually in an orientation along the long axis of the β-barrel cross-section.
<xref rid="bib27" ref-type="bibr">
<sup>27</sup>
</xref>
In the classical OB fold, the α-helix is interspersed between β-strands 3 and 4, but in Nsp9 the helix is appended at the C terminus of the polypeptide chain (residues 92–108). Also, Nsp9 has two extra β-strands (strands 6 and 7) forming a long hairpin (L67). Some of the loops connecting the β-strands, e.g
<italic>.</italic>
L12, L23, L45, and L67 (see
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
), are very flexible.
<fig id="fig1">
<label>Fig. 1</label>
<caption>
<p>Superimposition of monomers. Ribbon representation of HCoV-229E Nsp9 wild-type (green) and Cys69Ala mutant (red) monomers, superimposed with a C
<sup>α</sup>
r.m.s. deviation of 0.71 Å. Loop L23 of wild-type HCoV-229E Nsp9 could not be built due to the lack of electron density.</p>
</caption>
<graphic xlink:href="gr1_lrg"></graphic>
</fig>
</p>
<p>In the electron density map for wild-type HCoV-229E Nsp9, we unequivocally located an MPD molecule that fills a space between strand β2 and the C-terminal α-helix in the monomer, very much in agreement with the commonly observed binding pattern for this amphiphilic additive.
<xref rid="bib31" ref-type="bibr">
<sup>31</sup>
</xref>
The hydroxyl groups of the MPD make hydrogen bonds with Asn27 and a (half-occupied) sulfate ion, which is in turn interacting with one of two alternative sidechain conformers of Lys82 and the main-chain amide of Asn27. The hydrophobic side of the MPD interacts with Leu29 and packs against the helix near Val106 (
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S2</xref>
). This observation explains nicely why 5% MPD was an essential additive in the crystallization of HCoV-229E wild-type Nsp9, in addition to the (NH
<sub>4</sub>
)
<sub>2</sub>
SO
<sub>4</sub>
.</p>
<p>The structure of the monomer of the HCoV-229E Nsp9 Cys69Ala mutant displays an r.m.s. deviation of 0.71 Å from the wild-type monomer (for 92 C
<sup>α</sup>
atoms of chain A of the mutant; the corresponding values for chain B are 87 C
<sup>α</sup>
atoms and 0.67 Å; see
<xref rid="fig1" ref-type="fig">Fig. 1</xref>
). In this calculation, residues 1–7, 33–36 (loop L23), and 107–109 have been omitted because of weak or non-visible electron density in one or both of the two structures. Larger than average deviations occur in loops L12 (residues 19–22) and L45 (residues 55–60; the tip of this loop at residue Ser58 deviates by 4.36 Å and 2.89 Å between wild-type and mutant molecules A and B, respectively). The r.m.s. deviation between monomers A and B of the Cys69Ala mutant is 0.96 Å (for 99 C
<sup>α</sup>
atoms).</p>
<p>In contrast to the wild-type Nsp9, MPD was not a useful additive in crystallization experiments with the mutant protein. However, dithiothreitol (DTT) was essential. Again, we located extra electron density between Asn27 and the α-helix (this time near Ile102) and attributed this to a DTT molecule, although the assignment was not as unambiguous as was the identification of MPD in a nearby location in the wild-type protein.</p>
</sec>
<sec>
<title>Comparison of the Nsp9 monomer with SARS-CoV Nsp9</title>
<p>The HCoV-229E Nsp9 monomer is also very similar to the monomer of SARS-CoV Nsp9
<sup>25</sup>
(PDB code
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
), with an r.m.s. deviation of 0.75 Å for 84 C
<sup>α</sup>
atoms of wild-type Nsp9 (for chain A of
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
; the value for chain B is 0.66 Å). The values for the mutual comparisons between the individual chains of the Cys69Ala mutant and those of
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
are between 0.76 Å and 1.23 Å. Interestingly, the other available crystal structure for SARS-CoV Nsp9
<sup>23</sup>
(PDB code
<ext-link ext-link-type="gen" xlink:href="1UW7">1UW7</ext-link>
) is significantly more distant in terms of r.m.s. deviations, with 1.75 Å for 94 C
<sup>α</sup>
atoms of the wild-type HCoV-229E Nsp9, and 1.39 Å for 94 C
<sup>α</sup>
atoms of the Cys69Ala mutant.</p>
</sec>
<sec>
<title>Structure of the Nsp9 dimer</title>
<p>Wild-type HCoV-229E Nsp9 forms a disulfide-linked homodimer, with the twofold crystallographic axis of symmetry running through the disulfide bond formed between the Cys69 residues of each monomer (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
a). The α-helix of each monomer is also involved in dimerization through formation of two hydrogen bonds between the Asn92 side-chain and the main-chain of residue 74 (β-strand 6), as well as one H-bond between the Asn92 side-chain amide and the C-terminal carboxylate (residue 109;
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
b). Among the sequenced coronaviral Nsp9 proteins, this asparagine is present only in HCoV 229E and SARS-CoV; other coronaviruses have either Thr or Ser at this position. There is a fourth hydrogen bond donated by the N
<sup>η1</sup>
atom of totally conserved Arg95 (helix H1; see
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S3</xref>
for sequence alignment) to the main-chain carbonyl of residue 72 (β-strand 6). Because of the crystallographic twofold symmetry, all of these interactions are duplicated in the dimer, so that there are eight intersubunit hydrogen bonds (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
b). In spite of the presence of these favorable interactions, there seem to be a number of less ideal interactions. For example, Arg70 does not have an interaction partner proper; its side-chain makes contacts with Pro67 and Pro68. Its intersubunit contacts are in fact determined by the nearby disulfide bond (Cys A69–Cys B69). There is a weak, but favorable interaction between the side-chains of Phe A71 and Phe B86. The two α-helices (residues 92–108) that are part of the interface are in an antiparallel orientation (describing an angle of 167°,
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
a) with a close approach of 3.77 Å between the C
<sup>α</sup>
atoms of Gly A96 and Gly B103. In between these two glycines of the α-helix, there is a third one, Gly100, which also facilitates the close approach of the two helices (the distance to its symmetry mate is 4.13 Å; see
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S4</xref>
). Gly96 and Gly100 are completely conserved among the coronaviruses, and Gly103 is present in group 1 coronaviruses (
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S3</xref>
). The surface area per Nsp9 monomer buried through dimer formation
<xref rid="bib32" ref-type="bibr">
<sup>32</sup>
</xref>
is 985 Å
<sup>2</sup>
.
<fig id="fig2">
<label>Fig. 2</label>
<caption>
<p>Structural features of the homodimers of wild-type HCoV-229E Nsp9 and the Cys69Ala mutant; the two monomers are colored red and green, respectively; the disulfide, where present, is shown in yellow. N and C denote the amino and carboxy termini, respectively, of the polypeptide chains. (a) Ribbon representation of the disulfide-linked wild-type HCoV-229E Nsp9 dimer. (b) Residues involved in the dimer interface of wild-type Nsp9 (sticks; red, oxygen; blue, nitrogen; yellow, carbon). Intermolecular hydrogen bonds are indicated by broken lines. (c) HCoV-229E Cys69Ala mutant dimer. (d) Residues involved in the dimer interface of the mutant Nsp9. Color code is the same as in b. The closest approach between the C-terminal α-helices, between the C
<sup>α</sup>
atoms of Gly A100 and Ala B97, is indicated by a dotted line.</p>
</caption>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
<p>Although the residue responsible for disulfide formation in HCoV-229E Nsp9, Cys69, is conserved in SARS-CoV Nsp9, and the sequence identity is as high as 45% between the two proteins (see
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S3</xref>
), the mode of dimerization in the latter is very different from what we observe in our structure. A disulfide bond is not formed, and the dimerization interface involves mainly the α-helix of each subunit, but in a parallel rather than anti-parallel orientation.
<xref rid="bib23" ref-type="bibr">23</xref>
,
<xref rid="bib25" ref-type="bibr">25</xref>
In contrast to HCoV-229E Nsp9, which we had prepared with authentic N and C termini, the SARS-CoV protein used by Sutton
<italic>et al</italic>
.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
for crystallization carried 30 additional amino acid residues at the N terminus, due to the cloning procedure. From the structure,
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
it is evident that the additional N-terminal segment leads to formation of a β-hairpin involving residues −7 to 8, as well as an intermolecular salt bridge between GluA(−7) and ArgB111. This additional interaction might favor the dimerization mode seen in the Sutton
<italic>et al.</italic>
structure. However, the structure published by Egloff
<italic>et al</italic>
.
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
for SARS-CoV Nsp9 was derived from a protein that carried only six additional histidine residues at its N terminus (B. Canard, personal communication). These residues were not seen in the electron density maps, presumably due to disorder, and certainly are not involved in intersubunit interactions. Yet, this structure still features a mode of dimerization that is highly similar to that described by Sutton
<italic>et al</italic>
.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
and completely different from that observed by us for HCoV-229E Nsp9.</p>
<p>Disulfide bonds are rare in proteins in the cytosol, where the environment is of reducing character, and we therefore have to discuss the possibility that the dimerization mode seen in our structure of HCoV-229E Nsp9 is an artifact of disulfide bond formation, in spite of the presence of 5 mM DTT throughout protein preparation and crystallization (higher concentrations of DTT prevented crystallization of the protein). In order to assess the role of the disulfide bond in dimer formation, we replaced Cys69 in HCoV-229E Nsp9 by alanine. The structure of the mutated protein (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
c) revealed a dimer that is grossly different from that of wild-type HCoV-229E Nsp9: When superimposing monomer A of the mutant structure onto the same monomer of the wild-type protein, the centroid of monomer B deviates from its position in the wild-type protein by 23.5 Å, and the angle of rotation between the two positions of monomer B is 72°. However, this dimerization mode is identical with that of SARS-CoV Nsp9 (cf.
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
c and
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S5</xref>
). The dimer of the HCoV-229E Cys69Ala mutant can be superimposed onto the dimer of the SARS-CoV Nsp9 protein (
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
) with an r.m.s. deviation of 0.99 Å for 175 C
<sup>α</sup>
atom pairs (see
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S5</xref>
). The r.m.s. deviation is much higher (2.7 Å for 191 C
<sup>α</sup>
atom pairs) for the SARS-CoV Nsp9 structure described by Sutton
<italic>et al</italic>
.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
(
<ext-link ext-link-type="gen" xlink:href="1UW7">1UW7</ext-link>
); this is very likely due to the disturbances of the latter structure by the N-terminal tag residues. In the HCoV-229E Nsp9 mutant, dimerization appears to rely on a few interactions only. There is no single proper hydrogen bond between the two monomers, and only a few hydrophobic contacts mediate the interaction (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
d). The immediate N terminus is disordered, but residues 3–6 and 5–7 of the A and B chain, respectively, lie over the other monomer and interact weakly with conserved Phe71 (strand β6) and with the C-terminal α-helix near residues Leu99 and Gly103. The majority of the interactions between the two monomers is made by the two helices, one from each monomer, that run largely in parallel in this dimer, crossing at an angle of 48° and a closest approach of 3.96 Å (C
<sup>α</sup>
–C
<sup>α</sup>
) between Ala97 and Gly100 (
<xref rid="fig2" ref-type="fig">Fig. 2</xref>
d). But again, the hydrophobic contacts between the helices are only weak. Importantly, neither of the two helices deviates from its ideal geometry, including the intrahelical hydrogen bonds, for the benefit of the intermolecular contacts. The surface area buried upon dimer formation
<xref rid="bib32" ref-type="bibr">
<sup>32</sup>
</xref>
is 687 Å
<sup>2</sup>
for the mutant protein. This value is significantly lower than that observed for the dimerization mode seen for the wild-type HCoV-229E Nsp9 (see above). Even if a few more intermolecular interactions were made by the disordered N-terminal residues not seen in the electron density map (residues 1 and 2 of chain A and 1–4 of chain B), this value would not increase dramatically, and such interactions would very likely not be strong (otherwise these residues would not be disordered). In summary, the monomer–monomer interface of the Cys69Ala mutant of HCoV-229E Nsp9 is far from ideal and appears to be much weaker than the interface seen in the wild-type protein.</p>
</sec>
<sec>
<title>Higher oligomers in the crystal of wild-type Nsp9</title>
<p>In the crystal structure of wild-type HCoV-229E Nsp9, three dimers are arranged to form a hexamer with 32 symmetry (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
). There are multiple interactions between monomers across the hexamer, which we discuss briefly here, according to the color scheme used in the figure. At the center of the hexamer, there are two disordered sulfate ions sitting on the crystallographic threefold axis, 19.0 Å apart. They make ionic interactions (2.58 Å from the closest sulfate oxygen) with the Lys50 sidechains (N
<sup>ζ</sup>
atom) of the red, green and blue monomers (upper layer of the hexamer) and the yellow, cyan, and magenta monomers (lower layer), respectively. Also, Asp19 of each monomer forms a 2.90 Å intermolecular hydrogen bond with the Lys50 residue (e.g., red–green), as well as a 4.76 Å intramolecular salt bridge with Lys50 of the same monomer (e.g., red–red). As a result, we find a ring of ionic interactions formed by Asp19 (loop L12) and Lys50 (L34) residues along both the upper and the lower rim of the central cylinder inside the trimer of dimers (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
). Asp19 is present in most coronavirus Nsp9 sequences (not in SARS-CoV and IBV), whereas Lys50 is highly conserved across the family (see
<xref rid="app1" ref-type="sec">Supplementary Data Fig. 3</xref>
). The cylindrical hole running along the threefold axis is only about 4.4 Å wide, i.e. large enough for sulfate ions, but too small to accommodate single-stranded nucleic acid at the center of the hexamer (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
).
<fig id="fig3">
<label>Fig. 3</label>
<caption>
<p>Ribbon representation of the wild-type HCoV-229E Nsp9 hexamer. Three dimers of the protein form a hexamer through the 32 axis of symmetry. The threefold axis is at the center of the hexamer. Nsp9 monomers in the upper layer are colored red, blue and green, and those in the lower layer are colored yellow, cyan and magenta. The two sulfate ions on the threefold axis are indicated in the same colors. Each sulfate is three-fold disordered. The twofold axes run between the monomers.</p>
</caption>
<graphic xlink:href="gr3_lrg"></graphic>
</fig>
</p>
<p>Additional intermolecular interactions within the Nsp9 hexamer are listed in
<xref rid="app1" ref-type="sec">Supplementary Data Table S1</xref>
. Through the sixfold axis of the crystal, hexamers are arranged into 36-mers (
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S6</xref>
).</p>
</sec>
<sec>
<title>Nsp9 polymers in the crystal of the Cys69Ala mutant</title>
<p>In the crystal structure of the Cys69Ala mutant dimer of HCoV-229E Nsp9, a second protein–protein interface (termed M2;
<xref rid="app1" ref-type="sec">Supplementary Data Table S1</xref>
) is formed through the close approach of strands β5 of neighboring molecules, although only one hydrogen bond is formed (Ser58 O…Glu64 N, 2.62 Å). In addition, there are two hydrogen bonds donated by the guanidinium group of Arg94 (in the helix) to the carbonyl oxygen of Gly34 (L23; 2.99 and 3.14 Å). Furthermore, there is yet another H-bond between the side-chains of Asn89 (loop L7H) and Asp57 (L45; 2.99 Å). The surface area buried by formation of this dimer is 450 Å
<sup>2</sup>
. Together with the monomer-monomer interface M1 described above, M2 leads to the polymerization of the protein (see
<xref rid="sec1" ref-type="sec">Discussion</xref>
,
<xref rid="fig7" ref-type="fig">Fig. 7</xref>
c). Yet another protein–protein interface (M3) with quasi-twofold symmetry, but not involved in polymer formation, is mentioned in
<xref rid="app1" ref-type="sec">Supplementary Data Table S1</xref>
.</p>
</sec>
<sec>
<title>Oligomeric state in solution</title>
<p>In order to determine the oligomeric state of wild-type and mutant HCoV-229E Nsp9 in solution, we applied a number of biophysical and biochemical techniques. For both wild-type HCoV-229E Nsp9 (fresh preparation) and the Cys69Ala mutant, Dynamic Light-Scattering (DLS) revealed a monodisperse peak centered at a hydrodynamic radius of 28 ± 1.4 Å, indicating that the homodimer is the prevalent species in solution. A similar result was obtained by analytical gel-filtration, which showed a single peak corresponding to a molecular mass of ∼26 kDa for both wild-type and mutant (data not shown). In agreement with the crystal structure, the DLS experiment revealed the presence of higher oligomers upon addition of small amounts of sulfate ions (up to 9.7 mM; data not shown).</p>
<p>Glutaraldehyde crosslinking was done for HCoV-229E Nsp9 wild-type, the Cys69Ala mutant, and SARS-CoV Nsp9. Glutaraldehyde (0.01%, v/v) was used with different concentrations of protein ranging from 10 μM to 100 μM. The HCoV-229E Nsp9 Cys69Ala mutant and SARS-CoV wild-type Nsp9 showed similar crosslinking products corresponding to monomers, dimers, trimers, tetramers, and higher oligomers (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
). In HCoV-229E Nsp9, the wild-type showed only monomers, dimers, and trimers. The increasing presence of higher-molecular mass species correlated with increasing protein concentration. This pattern did not change in the presence of 36-mer or 51-mer ssDNA of random sequence (not shown).
<fig id="fig4">
<label>Fig. 4</label>
<caption>
<p>Nsp9 crosslinking using glutaraldehyde. Crosslinking was carried out with different concentrations of protein (10–100 μM) using 0.01% (v/v) glutaraldehyde. The molecular mass of the cross-linking products is indicated. Wild-type SARS-CoV Nsp9 and the HCoV-229E Nsp9 Cys69Ala mutant form higher oligomers at a protein concentration of 100 μM, presumably involving interactions similar to those seen in the crystal structure. In contrast, wild-type HCoV-229E Nsp9 does not form oligomers higher than trimers.</p>
</caption>
<graphic xlink:href="gr4_lrg"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Oxidation state of Cys69 in solution</title>
<p>By titration of free sulfhydryl groups with Ellman's reagent,
<xref rid="bib33" ref-type="bibr">
<sup>33</sup>
</xref>
we found that wild-type HCoV-229E Nsp9 has no free cysteine in solution; i.e. the disulfide bond exists in solution as well. However, in a more recent preparation of the wild-type protein, reaction with Ellman's reagent immediately after purification of wild-type Nsp9 did indicate the presence of one free cysteine per mole of protein. Crystallization of this sample yielded crystals overnight that were of the same habit as the original crystals obtained for the wild-type protein, with unit cell parameters
<italic>a</italic>
 = 
<italic>b</italic>
 = 85.4 Å and
<italic>c</italic>
 = 48.8 Å in space group
<italic>P</italic>
622. When we investigated this phenomenon further, we observed that the formation of the disulfide bond seemed to depend on the age of the protein preparation. It is possible that in the presence of oxygen, gradual oxidation of the protein (probably correlated with the oxidation of DTT) may lead to formation of the disulfide bond, resulting in the dimerization mode visualized by X-ray crystallography. The concentration of DTT required to reduce the disulfide bond completely was determined as 10 mM by SDS gel electrophoresis (see
<xref rid="sec2" ref-type="sec">Materials and Methods</xref>
). With concentrations of DTT up to 4 mM, the dimer was the dominant species visible on the gel, whereas above, the monomer was more pronounced. The dimer band vanished completely at 10 mM DTT. This result was the same independent of the presence or the absence of a heating step (95 °C for 5 min).</p>
<p>In contrast to HCoV-229E Nsp9, we could show by using Ellman's reagent that SARS-CoV Nsp9, which has three cysteine residues and which we had prepared the same way as its HCoV-229E orthologue (i.e., with authentic N and C termini), had three free sulfhydryl groups per mole in solution even after several weeks of storage.</p>
</sec>
<sec>
<title>Binding of nucleic acids</title>
<sec>
<title>Gel mobility-shift assay</title>
<p>Using a gel mobility-shift assay (a modified version
<xref rid="bib18" ref-type="bibr">
<sup>18</sup>
</xref>
of zone-interference gel electrophoresis, ZIGE
<xref rid="bib34" ref-type="bibr">
<sup>34</sup>
</xref>
;
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
), we found that wild-type HCoV-229E Nsp9 bound to single-stranded oligodeoxynucleotides (6-mers to 50-mers;
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
a, lanes 3–10) and, to a very limited extent (if at all), to a double-stranded oligodeoxynucleotide (24-mer;
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
a, lane 2). Nsp9 of SARS-CoV also bound to both single-stranded and, again very weakly, to double-stranded oligonucleotides (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
b). However, the effect on the gel mobility shift did not increase smoothly with oligonucleotide length; rather, there was a stepwise increase from the 13-mer (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
b, lane 3; no shift) via the 18-mer and 24-mer (lanes 4 and 5) and the 30-–45-mers (lanes 6–9) to the 50-mer (lane 10). In contrast, nucleic acid binding by the HCoV-229E Cys69Ala mutant was not detectable with this method, except for a very weak shift with the 55-mer (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
c, lane HAM 3). As the apparent inability of the Cys69Ala mutant to bind nucleic acids could depend on the lack of a direct (hydrogen bonding) interaction between the cysteine and the oligonucleotides, we also replaced the cysteine by serine. The Cys69Ser mutant did not bind short oligonucleotides either, but did show some gel shift with the 55-mer (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
c, lane HSM 3). Next, we replaced the corresponding cysteine in SARS-CoV Nsp9 by alanine and serine. Both the Cys73Ala and Cys73Ser mutants displayed a similar shift in the presence of the 55-mer oligodeoxynucleotide as the wild-type protein (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
c, lanes SAM 3 and SSM 3). Reduction (by 50 mM DTT) or oxidation (by 17.5% H
<sub>2</sub>
O
<sub>2</sub>
) of the disulfide-containing wild-type HCoV-229E Nsp9 did not change the gel mobility-shift pattern of the protein in the presence of nucleic acids (not shown).
<fig id="fig5">
<label>Fig. 5</label>
<caption>
<p>Gel mobility-shift assay (zone-interference gel electrophoresis, 1% agarose; see
<xref rid="sec2" ref-type="sec">Materials and Methods</xref>
) probing oligonucleotide binding to Nsp9. (a) Wild-type HCoV-229E Nsp9; (b) wild-type SARS-CoV Nsp9. Lane 1, protein without ssDNA; lane 2, 24-mer dsDNA; lanes 3–10, various lengths of ssDNA from 6-mer to 50-mer. Wild-type HCoV-229E Nsp9 displays a linear increase of the shift with increasing length of ssDNA, whereas the increase is step-wise for SARS-CoV Nsp9. (c) Gel mobility-shift analysis for mutant proteins, compared to the corresponding wild-type. Lanes 1, protein without ssDNA; lanes 2, 24-mer, and lanes 3, 55-mer ssDNA with protein. The HCoV-229E Nsp9 Cys69Ala mutant (HAM) and the Cys69Ser mutant (HSM) do not show any shift with the 24-mer (lane 2) and only a small shift with the 55-mer (lane 3), whereas the SARS-CoV Nsp9 Cys73Ala mutant (SAM) and the Cys73Ser mutant (SSM) exhibit shifts with the 55-mer oligonucleotide that are similar to wild-type SARS-CoV Nsp9. The upper bands (gray) in lanes 3 for HAM and HSM correspond to precipitated, unbound 55-mer oligonucleotide (not stained by Coomassie brilliant blue; see
<xref rid="sec2" ref-type="sec">Materials and Methods</xref>
).</p>
</caption>
<graphic xlink:href="gr5_lrg"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Surface plasmon resonance</title>
<p>Nsp9 binding to ssDNA was analyzed using SPR experiments. For this, a 5′-biotinylated 50-mer oligonucleotide was immobilized on a streptavidin-coated chip (SA chip). Freshly prepared Nsp9 was treated with 5 mM DTT directly before injection. We observed a signal for Nsp9 interaction with the oligonucleotide when concentrations of protein were in the micromolar range (
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S7</xref>
). Apparent
<italic>K</italic>
<sub>D</sub>
values for the wild-type Nsp9 from HCoV 229E and SARS-CoV were determined as 28 μM (χ
<sup>2</sup>
 = 1.29) and 29 μM (χ
<sup>2</sup>
 = 8.52 for a single-state binding model), respectively. In fact, the SARS-CoV Nsp9 binding profile is better explained by a two-state binding model (χ
<sup>2</sup>
 = 0.73). This is not true for HCoV-229E Nsp9, the binding profile of which agrees well with a single-state binding model. However, we could not use concentrations of HCoV-229E Nsp9 greater than 35 μM (SARS-CoV Nsp9: 85 μM), because non-specific binding appeared to govern the profile above this value and saturation was not reached. We could also not derive
<italic>K</italic>
<sub>D</sub>
values for the oxidized form of wild-type HCoV-229E Nsp9 nor for the SARS-CoV and HCoV-229E Nsp9 mutants because of the same phenomenon.</p>
<p>We compared the reduced and oxidized state (i.e. in the presence and in the absence of 5 mM DTT, respectively) of wild-type HCoV-229E Nsp9 with respect to binding the oligonucleotide in the SPR experiment. For this, the oligonucleotide was again immobilized onto the chip. Wild-type HCoV-229E Nsp9 (20 μM, freshly prepared (less than three days old), containing one free thiol group per mole) and the HCoV-229E Cys69Ala mutant (20 µM) were injected into the flow cell, with the constant presence of DTT in the running buffer. Also, 20 μM aged preparation (more than two weeks old, no free cysteine) of wild-type HCoV-229E Nsp9 was injected without DTT in the running buffer. Freshly prepared wild-type (in the presence of DTT) and Cys69Ala mutant protein showed similar binding curves with the oligonucleotide and gave a maximum response (
<italic>R</italic>
<sub>max</sub>
) of 33 resonance units (RU). In contrast, the aged preparation of wild-type HCoV-229E Nsp9 displayed an
<italic>R</italic>
<sub>max</sub>
of 83 RU, indicating much stronger binding to the nucleic acid than that observed for the fresh preparation or the mutant (
<xref rid="fig6" ref-type="fig">Fig. 6</xref>
).
<fig id="fig6">
<label>Fig. 6</label>
<caption>
<p>HCoV-229E Nsp9 binding to ssDNA analyzed by surface plasmon resonance, in the presence and in the absence of DTT. A 5′-biotinylated 50-mer oligonucleotide was immobilized to an SA chip up to 88 RU. a and b, The binding curves for a 20 μM fresh preparation of the Nsp9 Cys69Ala mutant and for wild-type Nsp9, respectively, both injected in the presence of 5 mM DTT. c, The binding curve for a 20 μM aged preparation of wild-type Nsp9, injected in the absence of 5 mM DTT.</p>
</caption>
<graphic xlink:href="gr6_lrg"></graphic>
</fig>
</p>
</sec>
</sec>
</sec>
<sec id="sec1">
<title>Discussion</title>
<p>In this study, we observed different dimerization modes for HCoV-229E Nsp9 by X-ray crystallography. The wild-type protein exhibits a homodimer that is very different from that seen previously for SARS-CoV Nsp9,
<xref rid="bib23" ref-type="bibr">23</xref>
,
<xref rid="bib25" ref-type="bibr">25</xref>
in spite of a sequence identity of 45% between the two proteins. In HCoV-229E Nsp9, dimerization is mediated by a disulfide bridge, a few hydrogen bonds, and by hydrophobic interactions between the C-terminal helix of each monomer. One major difference between our preparation of HCoV-229E Nsp9 and that of SARS-CoV Nsp9 by both Egloff
<italic>et al</italic>
.
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
and Sutton
<italic>et al</italic>
.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
is that we have worked with a protein with authentic chain termini, whereas the SARS-CoV protein used by those authors has N-terminal extensions from the cloning procedure (a His
<sub>6</sub>
tag in the case of the Egloff
<italic>et al.</italic>
structure, and an extra 30 residues in the Sutton
<italic>et al.</italic>
structure). Interestingly, the differences of the N-terminal extensions between the two reported structures of SARS-CoV Nsp9 led to deviations in the dimer in detail, resulting in a rather high r.m.s. deviation of 2.07 Å (for C
<sup>α</sup>
atoms) between the two models. Residues −7 to −2 of the N-terminal tag present in the Sutton
<italic>et al.</italic>
structure form an extra antiparallel β-sheet with residues 3–8 of the protein, thereby pushing away the β6-β7 hairpin (L67;
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S5</xref>
) and causing the C-terminal part of the α-helix to kink. Regardless of whether the presence of the extra residues at the N terminus of the SARS-CoV Nsp9 preparations used for structure determination results in artifacts, the observation of a completely different, disulfide-linked dimer in HCoV-229E Nsp9 is remarkable.</p>
<p>The occurrence of a disulfide bond in a viral protein located in the cytoplasm of the infected cell is unexpected, because here the overall milieu is reductive and disulfide bonds are rare, although a few cytosolic proteins containing them have been described.
<xref rid="bib35" ref-type="bibr">35</xref>
,
<xref rid="bib36" ref-type="bibr">36</xref>
Therefore, we have to take into account the possibility that formation of the disulfide is an artifact of the conditions of protein preparation. In order to probe the effect of the disulfide bridge, Cys69 of HCoV-229E Nsp9 was mutated to alanine. Surprisingly, the crystal structure of the mutant displays the same dimerization mode as SARS-CoV Nsp9 and is thus very different from the wild-type HCoV-229E dimer.</p>
<p>We tried to assess the relevance of the two different dimers seen in our structures by calculating the surface area buried upon dimerization as well as the shape complementarity (
<xref rid="app1" ref-type="sec">Supplementary Data Table S1</xref>
).
<xref rid="bib37" ref-type="bibr">
<sup>37</sup>
</xref>
The shape complementarity of the monomer–monomer interface in the wild-type structure is as low as 0.56, but that of the mutant is not much better (0.63). For comparison, this value is 0.67 and 0.70 for the two crystal structures of SARS-CoV Nsp9,
<xref rid="bib23" ref-type="bibr">23</xref>
,
<xref rid="bib25" ref-type="bibr">25</xref>
respectively, which show the same dimerization mode as the Cys69Ala mutant of HCoV-229E Nsp9 (the artificial N-terminal tag, which also makes intersubunit contacts, has been removed from the Sutton
<italic>et al.</italic>
structure (PDB code
<ext-link ext-link-type="gen" xlink:href="1UW7">1UW7</ext-link>
) in this calculation).</p>
<p>Both wild-type and mutant dimer contacts are mediated mainly by the C-terminal helix of one monomer interacting with its (quasi-)symmetry mate in the other. However, the helices pack against one another in different orientations. The amino acid residues of the helix that are involved in the interaction are highly conserved and small (GX
<sub>3</sub>
GX
<sub>2</sub>
GA), allowing helix packing according to the ridges-into-grooves model (
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S4</xref>
).
<xref rid="bib38" ref-type="bibr">
<sup>38</sup>
</xref>
The GXXXG motif is actually a common feature of the association of transmembrane helices.
<xref rid="bib39" ref-type="bibr">39</xref>
,
<xref rid="bib40" ref-type="bibr">40</xref>
In wild-type HCoV-229E Nsp9, residues 1, 4 and 7 of the helix sequence given above are involved in the interaction, allowing a close approach of the helices in an antiparallel orientation with an angle of 167°. In contrast, in the mutant structure, residues 1, 4, and 8 are involved in the stabilization of a parallel orientation with a crossing angle of 48°. The fact that the amino acid sequence of the C-terminal helix of Nsp9 allows stabilization of both forms of the dimer may support the idea that both forms are indeed biologically relevant (see below).</p>
<p>In addition to the dimerization modes that we identified in the “parent” dimer of the wild-type protein and the Cys69Ala mutant, we have to consider a number of additional protein–protein interfaces that are seen in the crystal structures (see
<xref rid="app1" ref-type="sec">Supplementary Data Table S1</xref>
). In the wild-type protein, three disulfide-bonded dimers form a trimer of dimers, or hexamer, involving interfaces W2 and W3. Hexamers are assembled into 36-mers through interface W4 (
<xref rid="app1" ref-type="sec">Supplementary Data Fig. S6</xref>
).</p>
<p>In the case of the Cys69Ala mutant, there are two other monomer–monomer interfaces in the crystal, in addition to the ”parent mode” (M1). M3 is formed by the β6-β7 hairpin and involves mainly hydrophobic interactions between side-chains that are not conserved (
<xref rid="app1" ref-type="sec">Supplementary Data Table S1</xref>
), although we note that a similar interface exists in the Egloff
<italic>et al</italic>
.
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
structure of SARS-CoV Nsp9. The other interface, M2, arises through some limited interaction between strands β5 of neighboring molecules in the crystal. M2 has four hydrogen bonds between main-chain atoms and is reminiscent of intersubunit interactions involving β-strands in the ssDNA-binding protein (SSB) from
<italic>Escherichia coli,</italic>
a prototype OB-fold protein.
<xref rid="bib28" ref-type="bibr">
<sup>28</sup>
</xref>
This same alternative dimerization mode was discussed by Sutton
<italic>et al</italic>
.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
for their structure of the SARS-CoV Nsp9, but was considered irrelevant. However, this interface is found also in the SARS-CoV Nsp9 structure described by Egloff
<italic>et al.</italic>
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
even though the space group of these crystals is different. In summary, both dimerization modes M1 and M2 occur in all crystal structures of Nsp9 described so far (except that of the HCoV-229E wild-type protein), even in a second crystal form mentioned briefly by Sutton
<italic>et al</italic>
.
<xref rid="bib23" ref-type="bibr">
<sup>23</sup>
</xref>
(for which no data have been deposited in the Protein Data Bank), i.e. in a total of four different crystalline environments. We therefore propose that Nsp9 oligomerization, in particular in the presence of ssRNA, is mediated through these two protein–protein interaction surfaces. The existence of such oligomers in solution is supported by our glutaraldehyde crosslinking experiments, which revealed the presence of monomers, dimers, trimers, and higher oligomers for wild-type SARS-CoV Nsp9 and HCoV-229E Cys69Ala Nsp9 in SDS-PAGE under reducing conditions (
<xref rid="fig4" ref-type="fig">Fig. 4</xref>
). Interestingly, for the wild-type 229E protein, only monomers, dimers, and, to a limited extent, trimers were seen by this method. This is consistent with the observed crystal structures: when in the disulfide-linked state, wild-type 229E Nsp9 cannot normally form oligomers larger than hexamers (
<xref rid="fig3" ref-type="fig">Fig. 3</xref>
), whereas the Cys69Ala mutant as well as SARS-CoV Nsp9 can form polymers (
<xref rid="fig7" ref-type="fig">Fig. 7</xref>
).
<fig id="fig7">
<label>Fig. 7</label>
<caption>
<p>Oligomers of SARS-CoV Nsp9 (PDB codes
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
(a) and
<ext-link ext-link-type="gen" xlink:href="1UW7">1UW7</ext-link>
(b)) and the HCoV-229E Nsp9 Cys69Ala mutant (c). Independent of space group symmetry (
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
,
<italic>P</italic>
6
<sub>1</sub>
22;
<ext-link ext-link-type="gen" xlink:href="1UW7">1UW7</ext-link>
,
<italic>P</italic>
4
<sub>3</sub>
22; and HCoV-229E Nsp9 Cys69Ala mutant,
<italic>P</italic>
2
<sub>1</sub>
2
<sub>1</sub>
2
<sub>1</sub>
), two common dimer interfaces are present in these crystal structures of Nsp9. One interface is formed mainly by the C-terminal α-helix (red), and the other by strand β5 (blue). We propose that the ssRNA (black) could wrap around the Nsp9 polymer by forming a left-handed helix (a), with approximately 40 nucleotides bound per Nsp9 dimer.</p>
</caption>
<graphic xlink:href="gr7_lrg"></graphic>
</fig>
</p>
<p>We used the sulfate ions present in one of the SARS-CoV Nsp9 structures
<xref rid="bib25" ref-type="bibr">
<sup>25</sup>
</xref>
(PDB ID
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
) to propose a binding mode for single-stranded RNA (ssRNA) (
<xref rid="fig7" ref-type="fig">Fig. 7</xref>
a). In this crystal structure, three sulfate ions are located near one of the two monomers, two of them in the vicinity of the completely conserved lysine residues 50 (52; we use the HCoV-229E numbering scheme here, with numbers for SARS-CoV in parentheses) and 88(92), and one interacting with residue 46(48; Lys46 in 229E, His48 in SARS-CoV). By superimposition with the structure of the wild-type HCoV-229E Nsp9, which was crystallized from sulfate, two further sulfate-binding sites are revealed. One is also near Lys50(52), but in a different position, and the other interacts with Lys82(86). The resulting five independent sulfate positions were used to define a path for ssRNA on the surface of the monomer and, subsequently, the polymer. We also note that the residues that we propose to interact with the ssRNA on the basis of this model (Lys10, Lys50, Tyr51, Arg70, Tyr83, Lys88, and Arg107) are better conserved, on average, than the polypeptide sequence. In our crude model, the ssRNA forms a left-handed helix wrapping around the Nsp9 polymer, similar to the model proposed recently for the nucleocapsid protein of SARS-CoV interacting with ssRNA.
<xref rid="bib41" ref-type="bibr">
<sup>41</sup>
</xref>
In our model, approximately 40 nucleotides can be bound per Nsp9 dimer within the extended polymer that we propose for SARS-CoV Nsp9 (
<xref rid="fig7" ref-type="fig">Fig. 7</xref>
a).</p>
<p>Nsp9 interaction with nucleic acids was visualized using a slightly modified version of zone interference gel electrophoresis (ZIGE; for details, see
<xref rid="sec2" ref-type="sec">Materials and Methods</xref>
).
<xref rid="bib34" ref-type="bibr">
<sup>34</sup>
</xref>
HCoV-229E and SARS-CoV Nsp9 bind to single-stranded and, to a limited extent, double-stranded deoxyoligonucleotides without any sequence specificity (Deoxyribonucleotides were used instead of ribonucleotides because they showed identical behavior in test runs). In agreement with the structural data discussed above, surface-exposed positively charged residues could interact with the sugar-phosphate backbone of the nucleic acid. However, there is a strong correlation between the length of the oligonucleotide and the gel mobility-shift observed (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
a and b). Although the dimerization modes of HCoV-229E and SARS-CoV Nsp9 wild-type proteins are very different, their binding profile to nucleic acid in the gel mobility-shift experiment is similar (neglecting the stepwise rather than linear increase of the gel shift with oligonucleotide lengths in case of the SARS-CoV protein). On the other hand, the HCoV-229E Cys69Ala mutant has a dimerization mode similar to that of the wild-type SARS-CoV Nsp9 but it does not show binding with the nucleic acid in the gel mobility-shift experiment (except for the small shift seen for the 55-mer, the longest oligonucleotide tested). This inability to bind oligonucleotides could, in principle, be due to a direct interaction of the Cys69 with the nucleic acid. Therefore, we prepared an additional three mutants; namely, HCoV-229E Cys69Ser and the corresponding mutants of SARS-CoV Nsp9, Cys73Ala and Cys73Ser. Similar to HCoV-229E Cys69Ala, the Cys69Ser mutant did not exhibit a significant shift in the ZIGE experiment. However, the homologous SARS-CoV Cys73Ala and Cys73Ser mutants did show a shift of the same magnitude as the SARS-CoV Nsp9 wild-type (
<xref rid="fig5" ref-type="fig">Fig. 5</xref>
c). It remains to be understood why the HCoV-229E Cys69Ala and Cys69Ser mutants apparently do not bind nucleic acids, whereas the corresponding SARS-CoV mutants do.</p>
<p>SPR was used to further analyze the interaction between nucleic acids and the different dimeric forms of HCoV-229E Nsp9. An “aged” preparation (two weeks old) of wild-type HCoV-229E Nsp9 showed a strong signal for the binding with a 50-mer oligonucleotide under non-reducing conditions. Freshly prepared wild-type HCoV-229E Nsp9 gave a much weaker binding signal under reducing conditions. In the case of the HCoV-229E Nsp9 Cys69Ala mutant, the signal was equally small, irrespective of whether DTT was present. These relatively weak signals still indicate significant binding to the 50-mer, albeit much weaker than that found for the wild-type HCoV-229E protein in its oxidized state. This is in agreement with the gel mobility-shifts, where we had observed a weak shift for the HCoV-229E mutants in the case of the longest oligonucleotide examined (the 55-mer), but not with shorter oligonucleotides.</p>
<p>Why does the wild-type HCoV-229E Nsp9, but not the SARS-CoV protein, form a disulfide-linked homodimer even though it has Cys69(73) conserved? The chemical environment of the cysteine residues are the same in the two structures, i.e. there is no special structural feature in HCoV-229E Nsp9 that would cause a particular reactivity of Cys69. However, in contrast to HCoV-229E, the SARS-CoV protein has two additional cysteine residues at positions 14 and 23. All three cysteines are in the free form, as we could determine using Ellman's reagent (data not shown). If one of these cysteines was involved in an intermolecular disulfide bond, the latter would probably be reduced by the remaining ones, so that a disulfide-bonded dimer would be unlikely to be the dominant species. In agreement with this argument, there are few proteins that contain a disulfide bond in addition to a free cysteine.
<xref rid="bib42" ref-type="bibr">
<sup>42</sup>
</xref>
(An exception is the cysteine proteases of the papain family, where the active-site cysteine has special properties, such as an unusual p
<italic>K</italic>
<sub>a</sub>
value).</p>
<p>The question remains of whether the disulfide-bonded form of wild-type HCoV-229E Nsp9 is an artifact that may have occurred during protein preparation. As mentioned before, we observed that a freshly prepared sample of this protein gave a reaction with Ellman's reagent, but not so after one day. Apparently, there is a correlation between the age of the sample and disulfide formation, even though the reducing agent (5 mM DTT) was added at regular intervals. It is known that DTT is subject to oxidation itself; its half-life at 20 °C is 10 h and 40 h at pH 7.5 and 6.5, respectively.
<xref rid="bib43" ref-type="bibr">
<sup>43</sup>
</xref>
We determined the concentration of DTT required to fully reduce the Nsp9 disulfide as 10 mM; however, the protein would not crystallize at this concentration.</p>
<p>As the disulfide-bonded form of HCoV-229E Nsp9 binds oligonucleotides with much higher affinity than the reduced form, we believe that it may indeed have a biological role, possibly in response to the oxidative stress induced by the viral infection of the host cell. There are several earlier reports suggesting the regulation of DNA/RNA-binding proteins by redox processes. Thus, the redox state has been shown to determine the interaction with DNA of the multifunctional eukaryotic SSB protein, RPA.
<xref rid="bib44" ref-type="bibr">
<sup>44</sup>
</xref>
Also, many transcription factors including Fos, Jun, NF-κB, PaX, FNR, OxyR are regulated by the redox state of the environment.
<xref rid="bib45" ref-type="bibr">
<sup>45</sup>
</xref>
Another example is the p53 tumor suppressor protein, which binds to DNA with sequence specificity only in the reduced state. Disulfide formation in the oxidized state alters the conformation and the protein binds DNA without any sequence specificity.
<xref rid="bib36" ref-type="bibr">
<sup>36</sup>
</xref>
</p>
<p>Several viruses have been reported to induce oxidative stress in the infected cell. Among the coronavirus family, TGEV was shown to induce apoptosis in the infected cell via oxidative stress.
<xref rid="bib46" ref-type="bibr">
<sup>46</sup>
</xref>
Similarly, rhinovirus
<xref rid="bib47" ref-type="bibr">
<sup>47</sup>
</xref>
and baculovirus
<xref rid="bib48" ref-type="bibr">
<sup>48</sup>
</xref>
induce oxidative stress in the infected cell. More specifically, LEF3 (the SSB of baculovirus) shows a DNA-annealing effect in its oxidized state, whereas in the reduced state, its DNA-unwinding activity is favored. Cys214 is apparently involved in DNA binding; when mutated to serine, both DNA-binding and unwinding activities are reduced.
<xref rid="bib49" ref-type="bibr">
<sup>49</sup>
</xref>
It has been hypothesized that this cysteine could form an intermolecular disulfide bridge and thus results in LEF3 oligomers in solution. This could allow more DNA to bind in closer proximity, thus favoring the annealing effect.
<xref rid="bib49" ref-type="bibr">
<sup>49</sup>
</xref>
The E2 protein of bovine papilloma virus type 1 and ICP8 of herpes simplex virus type 1 also show DNA-binding activity depending on the redox state of the environment.
<xref rid="bib50" ref-type="bibr">50</xref>
,
<xref rid="bib51" ref-type="bibr">51</xref>
,
<xref rid="bib52" ref-type="bibr">52</xref>
,
<xref rid="bib53" ref-type="bibr">53</xref>
</p>
<p>What is the relevance of these
<italic>in vitro</italic>
studies to the situation in the infected host cell? For several RNA viruses, including mouse hepatitis (corona)virus (MHV) and SARS-CoV, it has been shown that viral replication is localized to double-membrane vesicles that have been hijacked from the endoplasmic reticulum or late endosomes.
<xref rid="bib54" ref-type="bibr">54</xref>
,
<xref rid="bib55" ref-type="bibr">55</xref>
,
<xref rid="bib56" ref-type="bibr">56</xref>
,
<xref rid="bib57" ref-type="bibr">57</xref>
These double-membrane vesicles are 200–350 nm in diameter and present in the cytosol alone or as clusters.
<xref rid="bib55" ref-type="bibr">
<sup>55</sup>
</xref>
The milieu inside these vesicles or at their surface is unknown, but it is quite possible that it is partially oxidative. Since it is here that replicase proteins are produced at high levels, it is conceivable that the oxidized form of HCoV-229E Nsp9 is the dominant species. According to our findings, this form binds to ssRNA more tightly than does the reduced form, and could therefore promote replication of the viral genome. This speculation is supported by the recent report by Wu
<italic>et al</italic>
.
<xref rid="bib58" ref-type="bibr">
<sup>58</sup>
</xref>
who have shown that oxidative stress in the host cell promotes HCoV-229E infectivity. Very likely, SARS-CoV will also induce oxidative stress in the infected host cell,
<xref rid="bib59" ref-type="bibr">
<sup>59</sup>
</xref>
even though its Nsp9 does not seem to form disulfide-linked dimers, at least not
<italic>in vitro</italic>
. The replicase of this virus may have other mechanisms to deal with an oxidative environment. We note that the number of cysteine residues is above average in coronavirus replicase proteins; in SARS-CoV, their share is 3.9% (HCoV 229E, 3.3%), whereas only 1.25% of residues in human cytosolic proteins are cysteine.
<xref rid="bib60" ref-type="bibr">
<sup>60</sup>
</xref>
In the SARS-CoV main proteinase (M
<sup>pro</sup>
) alone, there are 12 cysteine residues (3.9% of all residues), whereas this number is 8 (2.6%) in HCoV-229E M
<sup>pro</sup>
. Some of these could perhaps scavenge oxygen radicals, thereby undergoing oxidation to sulfenic, sulfinic, or even sulfonic acid.</p>
</sec>
<sec id="sec2">
<title>Materials and Methods</title>
<sec>
<title>Cloning, expression and purification</title>
<p>The regions coding for Nsp9 of HCoV 229E and SARS-CoV were amplified by PCR from virus-derived cDNA fragments. The HCoV-229E nsp9 PCR product was cloned into the pET15b vector, resulting in pETHCoV-229E/nsp9, which contained the full-length gene (coding for pp1a residues 3825–3933) with an N-terminal extension (MHHHHHHVKLQ), including a His
<sub>6</sub>
tag for protein purification and a SARS-CoV main proteinase (M
<sup>pro</sup>
) cleavage site (VKLQ
<sup></sup>
NNE…) for tag removal. The same approach was chosen for SARS-CoV Nsp9, pp1a residues 4118–4230, resulting in construct pETSARS-CoV/nsp9. Four mutants were prepared using single-site mutagenesis. The corresponding codon of the amino acid to be mutated was encoded in the primer. The pETHCoV-229E/nsp9 or pETSARS-CoV/nsp9 plasmids were used as template in the PCR reaction. The PCR product corresponding to a size of ∼6.05 kb was purified and the template was removed using the restriction enzyme DpnI. The restricted product was transformed into
<italic>E. coli</italic>
XL1-blue supercompetent cells. The correctness of the mutations (Cys69→Ala and Cys69→Ser for HCoV 229E, and Cys73→Ala, Cys73→Ser for SARS-CoV) was confirmed by DNA sequencing.</p>
<p>The wild-type Nsp9 of HCoV 229E and of SARS-CoV and the mutant proteins were produced recombinantly and purified in a similar manner. Nsp9-encoding plasmids were transformed in the competent
<italic>E. coli</italic>
Tuner (DE3) pLacI strain (Merck KGaA, Darmstadt, Germany). Cultures were grown in TY medium at 37 °C until cells reached an absorbance of 0.4 at 660 nm. Cells were then induced with 1 mM IPTG and grown for a further 4 h at 37 °C. The cells were then harvested by centrifugation at 7200
<italic>
<bold>g</bold>
</italic>
for 30 min at 4 °C. The resulting pellets were frozen at −20 °C. For lysis, the cell pellets were resuspended in 20 mM Tris–HCl, 300 mM NaCl, 5 mM DTT, and 20 mM imidazole, pH 7.5 (25 °C). Cells were broken by French press after adding glycerol to 10% (v/v) and one Complete EDTA-free protease inhibitor cocktail tablet (Roche Diagnostics, Mannheim, Germany). To optimize the solubility of overproduced Nsp9, a sparse-matrix screen of buffer composition was applied.
<xref rid="bib61" ref-type="bibr">
<sup>61</sup>
</xref>
The sample was centrifuged at 150,000
<italic>
<bold>g</bold>
</italic>
for 1 h at 4 °C. The supernatant was applied to a His Trap HP column (1 ml, GE Healthcare, Freiburg, Germany) with a flow rate of 1 ml/min. After washing with 20 mM Tris–HCl, 300 mM NaCl, 5 mM DTT, and 20 mM imidazole, pH 7.5 (25 °C), the protein was eluted with a linear gradient of 20 mM–500 mM imidazole. For SARS-CoV Nsp9 purification alone, the buffers were adjusted to pH 8.0 (25 °C) and 8 μl of Benzonase (Merck KGaA, Darmstadt, Germany) was added after breaking the cells for 15 min at 37 °C, in order to hydrolyze contaminant
<italic>E. coli</italic>
nucleic acids. Protein was blotted and detected with anti-tetrahistidine antibody (Dianova, Hamburg, Germany) and anti-mouse IgG-alkaline phosphatase conjugate (Sigma, Munich, Germany).</p>
<p>Before cleaving the N-terminal His
<sub>6</sub>
tag, proteins were dialysed against 20 mM Tris, 200 mM NaCl, pH 7.5 (25 °C). SARS-CoV M
<sup>pro</sup>
carrying a C-terminal His
<sub>6</sub>
tag was added to a molar ratio of 1:100 and cleavage was allowed to continue for 16 h at 37 °C in the presence of 5 mM DTT. The protein solution was applied to a His Trap HP column (1 ml, GE Healthcare, Freiburg, Germany) with a flow rate of 1 ml/min. His
<sub>6</sub>
tag-cleaved Nsp9 passed through the column whereas uncleaved Nsp9 and M
<sup>pro</sup>
were bound to it.</p>
<p>SDS gel electrophoresis (without β-mercaptoethanol) was used to determine the minimum concentration of DTT required to reduce the disulfide bond. DTT solutions were freshly prepared and different concentrations of DTT (increasing in 1 mM steps) were added to the Nsp9 preparation. After incubation for 30 min at room temperature, 2% loading buffer was added and SDS-PAGE was started.</p>
</sec>
<sec>
<title>Crystallization, structure determination, and refinement</title>
<p>Crystallization screening was performed for both the HCoV-229E Nsp9 wild-type protein and the Cys69Ala mutant using a Phoenix robot (Dunn Labortechnik, Thelenberg, Germany) with the sitting-drop, vapor-diffusion method. Initial hits were optimized by manually setting up 2 μl hanging drops consisting of 1 μl of protein solution and 1 μl of reservoir solution. Both wild-type and mutant protein crystals appeared within two days at 10 °C and a protein concentration of 6–8 mg/ml, in 20 mM Tris, 200 mM NaCl, 1 mM DTT, pH 7.5. The most useful precipitants were ammonium sulfate at pH 4.0–4.5 for wild-type Nsp9, and polyethylene glycol monomethyl ether 2000 (pH 4.6) for the mutant (see Results for optimized conditions). X-ray diffraction data were collected at 100 K using synchrotron radiation of wavelength 0.8075 Å, provided by the University of Hamburg–University of Lübeck – EMBL beamline X13 at Deutsches Elektronen-Synchrotron (DESY), Hamburg. The cryoprotectant was 25% glycerol for the wild-type protein and 25% polyethylene glycol 400 for the mutant. Data were processed with DENZO
<xref rid="bib62" ref-type="bibr">
<sup>62</sup>
</xref>
and scaled using SCALA.
<xref rid="bib63" ref-type="bibr">
<sup>63</sup>
</xref>
The structures were solved by using the molecular replacement program Phaser,
<xref rid="bib64" ref-type="bibr">
<sup>64</sup>
</xref>
with a monomer of SARS coronavirus Nsp9 (
<ext-link ext-link-type="gen" xlink:href="1QZ8">1QZ8</ext-link>
) as the search model. The initial solutions had
<italic>R</italic>
-factors of 51.0% (wild-type) and 50.8% (mutant). Models were built into electron density using COOT,
<xref rid="bib65" ref-type="bibr">
<sup>65</sup>
</xref>
and refined by REFMAC5.
<xref rid="bib66" ref-type="bibr">
<sup>66</sup>
</xref>
The final model for wild-type HCoV-229E Nsp9 includes 70 water molecules, two sulfate ion sites, and one MPD molecule. The structural model for the mutant contains 90 water molecules and one DTT molecule. The final steps of refinement of the mutant structure incorporated TLS refinement with residues 4 – 109 of monomer A as one group and residues 6 – 106 of monomer B as the second group. The overall geometric quality of the models was checked using PROCHECK.
<xref rid="bib26" ref-type="bibr">
<sup>26</sup>
</xref>
The surface area buried upon dimerization was calculated using AREAIMOL.
<xref rid="bib32" ref-type="bibr">
<sup>32</sup>
</xref>
Structure superimposition and calculation of r.m.s. deviations were carried out using ALIGN.
<xref rid="bib67" ref-type="bibr">
<sup>67</sup>
</xref>
The figures were created using PyMOL.
<xref rid="bib68" ref-type="bibr">
<sup>68</sup>
</xref>
</p>
</sec>
<sec>
<title>Dynamic light-scattering</title>
<p>Measurements were taken using a Spectroscatter 201 (RiNA GmbH, Berlin, Germany) using 10 μl solution of Nsp9 in 20 mM Tris–HCl, 200 mM NaCl, 1 mM DTT, pH 7.0 (25 °C). All measurements were done at a protein concentration of ∼10 mg/ml. The results were analysed using the software provided by the manufacturer. Experimental errors were estimated as standard deviations calculated from ten measurements for each sample.</p>
</sec>
<sec>
<title>Electrophoretic mobility-shift assay</title>
<p>ZIGE is a method designed to analyze weak protein/nucleic-acid interactions.
<xref rid="bib18" ref-type="bibr">18</xref>
,
<xref rid="bib34" ref-type="bibr">34</xref>
Because of the high isoelectric point of Nsp9, this method was modified slightly. HCoV-229E Nsp9 and SARS-CoV Nsp9 have a theoretical pI of 9.3 and 9.1, respectively; thus, the protein is positively charged at the pH of the running buffer (8.3), whereas the nucleic acids are negatively charged and will move towards the opposite pole during electrophoresis. Therefore, only the oligonucleotides (100 μM) were loaded into the sample slots and run for 40 min at 100 mA and 4 °C. Subsequently, 50 μM protein was loaded into the respective lanes and the run was continued for another 40 min, with the poles of the electrodes interchanged. With this design of the experiment, the protein and the nucleic acid run in opposite directions and meet in the middle of the agarose gel. If there is interaction between the two, the protein will move in the same direction as the nucleic acid, whereas if there is no interaction, the protein will simply pass the nucleic acid. Gel mobility-shift assays were performed using a horizontal 1% agarose gel system at pH 8.3 in TBE buffer (20 mM Tris, 50 mM boric acid, 0.1 mM NaEDTA, pH 8.3 (25 °C) adjusted by the addition of acetic acid). The protein and DNA samples were mixed with dimethylsulfoxide (DMSO) at a final concentration of 10% (v/v) and a trace of bromophenol blue (BPB) dye. After electrophoresis, the gel was fixed in 3.5% (w/v) α-sulfosalicilic acid, 10% (w/v) trichloroacetic acid, until the dye turned yellow. At this stage, zones with higher concentrations of ligands such as oligonucleotide can be seen as a whitish area. For the detection of protein bands, the gel was washed for 15 min in 15% (v/v) ethanol, 8% (v/v) acetic acid, and stained for 30 min with 0.25% (w/v) Coomassie brilliant blue in the same solution with additional 10% (v/v) methanol. The gel was washed in 15% (v/v) ethanol, 8% (v/v) acetic acid, and stored in 10% (v/v) acetic acid.</p>
</sec>
<sec>
<title>Crosslinking</title>
<p>Chemical cross-linking experiments were performed for wild-type HCoV-229E Nsp9, the Cys69Ala mutant, and SARS-CoV Nsp9 with glutaraldehyde. Different concentrations of Nsp9 were incubated in a final volume of 20 μl of cross-linking buffer (50 mM NaH
<sub>2</sub>
PO
<sub>4</sub>
(pH 7.6), 50 mM NaCl) for 5 min at 20 °C. After addition of 0.01% (w/v) glutaraldehyde, the reaction tubes were incubated for 5 min at 20 °C, before the reactions were stopped by the addition of 100 mM Tris. In the case of the Nsp9-DNA complex, oligonucleotides and proteins were incubated for 2 h at 20 °C before glutaraldehyde crosslinking. The samples were analyzed by SDS-PAGE after adding 10 μl of 2% sample-loading buffer and incubation at 70 °C for 10 min.</p>
</sec>
<sec>
<title>Surface plasmon resonance analysis</title>
<p>The streptavidin-coated sensor chip (SA chip, Biacore, GE Healthcare, Freiburg, Germany) was preconditioned before immobilization, by treating it three times with 1 M NaCl in 50 mM NaOH, 0.05% (w/v) SDS for 60 s at a flow rate of 5 μl/min. 5′-Biotinylated 50-mer oligonucleotide was purchased from MWG-Biotech AG, Ebersberg, Germany. For immobilization, 2 nM oligonucleotide was injected in manual mode until the desired amount of DNA on the surface was reached. To reduce non-specific binding of protein to the surface of the SA chip, the chip was activated with 50 mM
<italic>N</italic>
-hydroxysuccinimide and 200 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (NHS/EDC) and deactivated five times with 1 M ethanolamine. Saturation of residual free streptavidin-binding sites was achieved with 0.4% biotin. Unless mentioned specifically, all the injections were done at a flow rate of 10 μl/min in the running buffer (10 mM Hepes pH 7.4, 150 mM NaCl (HBS-N)). For determining the
<italic>K</italic>
<sub>D</sub>
value, the oligonucleotide was immobilized up to 300 RU. (For the set of experiments analyzing the interactions between oligonucleotide and the reduced or oxidized forms of HCoV-229E Nsp9, this value was 88 RU). HCoV-229E Nsp9 wild-type and SARS-CoV Nsp9 were injected into the flow cell for 22 min and 30 min, respectively. The concentration used for determining the
<italic>K</italic>
<sub>D</sub>
value ranged from 2 μM to 85 μM. The
<italic>K</italic>
<sub>D</sub>
values were calculated using a steady-state equilibrium analysis in a 1:1 Langmuir single-state binding model or a two-state binding model.</p>
<p>The single-state binding model is:
<disp-formula>
<mml:math id="M1" altimg="si1.gif" overflow="scroll">
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">e</mml:mi>
<mml:mi mathvariant="normal">q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mi mathvariant="normal">A</mml:mi>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>×</mml:mo>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mi>max</mml:mi>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mi mathvariant="normal">A</mml:mi>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>n</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mfrac>
</mml:math>
</disp-formula>
</p>
<p>The two-state binding model is:
<disp-formula>
<mml:math id="M2" altimg="si2.gif" overflow="scroll">
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">e</mml:mi>
<mml:mi mathvariant="normal">q</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>=</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">A</mml:mi>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>×</mml:mo>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mrow>
<mml:mn>1</mml:mn>
<mml:mi>max</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">A</mml:mi>
<mml:mn mathvariant="normal">1</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>n</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mfrac>
<mml:mo>+</mml:mo>
<mml:mfrac>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">A</mml:mi>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>×</mml:mo>
<mml:msub>
<mml:mi>R</mml:mi>
<mml:mrow>
<mml:mn>2</mml:mn>
<mml:mi>max</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:msub>
<mml:mi>K</mml:mi>
<mml:mrow>
<mml:mi mathvariant="normal">A</mml:mi>
<mml:mn mathvariant="normal">2</mml:mn>
</mml:mrow>
</mml:msub>
<mml:mo>×</mml:mo>
<mml:mi>C</mml:mi>
<mml:mo>×</mml:mo>
<mml:mi>n</mml:mi>
<mml:mo>+</mml:mo>
<mml:mn>1</mml:mn>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mfrac>
</mml:math>
</disp-formula>
Where
<italic>K</italic>
<sub>A</sub>
is the equilibrium association constant,
<italic>C</italic>
is the concentration of injected protein,
<italic>R</italic>
<sub>max</sub>
is the maximum analyte-binding capacity and
<italic>n</italic>
is the steric interference factor.</p>
<p>Regeneration was achieved using 0.05% SDS for 60 s. The efficiency of the regenerated SA chip was tested with multiple injections after the regeneration. The data were analyzed with the BIAevaluation software, version 3.2.</p>
</sec>
<sec>
<title>Protein Data Bank accession codes</title>
<p>Atomic coordinates of wild-type HCoV-229E Nsp9 and the Cys69Ala mutant have been deposited with the RCSB Protein Data Bank, with accession code
<ext-link ext-link-type="gen" xlink:href="2J97">2J97</ext-link>
and
<ext-link ext-link-type="gen" xlink:href="2J98">2J98</ext-link>
, respectively.</p>
</sec>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="bib1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Preiser</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>van der Werf</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Brodt</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Identification of a novel coronavirus in patients with severe acute respiratory syndrome</article-title>
<source>N. Engl. J. Med.</source>
<volume>348</volume>
<year>2003</year>
<fpage>1967</fpage>
<lpage>1976</lpage>
<pub-id pub-id-type="pmid">12690091</pub-id>
</element-citation>
</ref>
<ref id="bib2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ksiazek</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Erdman</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Goldsmith</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Peret</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Emery</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>A novel coronavirus associated with severe acute respiratory syndrome</article-title>
<source>N. Engl. J. Med.</source>
<volume>348</volume>
<year>2003</year>
<fpage>1953</fpage>
<lpage>1966</lpage>
<pub-id pub-id-type="pmid">12690092</pub-id>
</element-citation>
</ref>
<ref id="bib3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuiken</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Schutten</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Rimmelzwaan</surname>
<given-names>G.F.</given-names>
</name>
<name>
<surname>van Amerongen</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>van Riel</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome</article-title>
<source>Lancet</source>
<volume>362</volume>
<year>2003</year>
<fpage>263</fpage>
<lpage>270</lpage>
<pub-id pub-id-type="pmid">12892955</pub-id>
</element-citation>
</ref>
<ref id="bib4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peiris</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>V.C.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>I.F.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>L.L.</given-names>
</name>
</person-group>
<article-title>Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study</article-title>
<source>Lancet</source>
<volume>361</volume>
<year>2003</year>
<fpage>1767</fpage>
<lpage>1772</lpage>
<pub-id pub-id-type="pmid">12781535</pub-id>
</element-citation>
</ref>
<ref id="bib5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Groneberg</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Hilgenfeld</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Zabel</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of severe acute respiratory syndrome (SARS)</article-title>
<source>Respir. Res.</source>
<volume>6</volume>
<year>2005</year>
<fpage>8</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="pmid">15661082</pub-id>
</element-citation>
</ref>
<ref id="bib6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van der Hoek</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Pyrc</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Jebbink</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Vermeulen-Oost</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Berkhout</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Wolthers</surname>
<given-names>K.C.</given-names>
</name>
</person-group>
<article-title>Identification of a new human coronavirus</article-title>
<source>Nature Med.</source>
<volume>10</volume>
<year>2004</year>
<fpage>368</fpage>
<lpage>373</lpage>
<pub-id pub-id-type="pmid">15034574</pub-id>
</element-citation>
</ref>
<ref id="bib7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woo</surname>
<given-names>P.C.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Tsoi</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia</article-title>
<source>J. Virol.</source>
<volume>79</volume>
<year>2005</year>
<fpage>884</fpage>
<lpage>895</lpage>
<pub-id pub-id-type="pmid">15613317</pub-id>
</element-citation>
</ref>
<ref id="bib8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorbalenya</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Spaan</surname>
<given-names>W.J.</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus phylogeny: toward consensus</article-title>
<source>J. Virol.</source>
<volume>78</volume>
<year>2004</year>
<fpage>7863</fpage>
<lpage>7866</lpage>
<pub-id pub-id-type="pmid">15254158</pub-id>
</element-citation>
</ref>
<ref id="bib9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cavanagh</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Coronaviruses in poultry and other birds</article-title>
<source>Avian Pathol.</source>
<volume>34</volume>
<year>2005</year>
<fpage>439</fpage>
<lpage>448</lpage>
<pub-id pub-id-type="pmid">16537157</pub-id>
</element-citation>
</ref>
<ref id="bib10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Cavanagh</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>The molecular biology of coronaviruses</article-title>
<source>Adv. Virus. Res.</source>
<volume>48</volume>
<year>1997</year>
<fpage>1</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="pmid">9233431</pub-id>
</element-citation>
</ref>
<ref id="bib11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herold</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Raabe</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schelle-Prinz</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Siddell</surname>
<given-names>S.G.</given-names>
</name>
</person-group>
<article-title>Nucleotide sequence of the human coronavirus 229E RNA polymerase locus</article-title>
<source>Virology</source>
<volume>195</volume>
<year>1993</year>
<fpage>680</fpage>
<lpage>691</lpage>
<pub-id pub-id-type="pmid">8337838</pub-id>
</element-citation>
</ref>
<ref id="bib12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herold</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gorbalenya</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Thiel</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Schelle</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Siddell</surname>
<given-names>S.G.</given-names>
</name>
</person-group>
<article-title>Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate</article-title>
<source>J. Virol.</source>
<volume>72</volume>
<year>1998</year>
<fpage>910</fpage>
<lpage>918</lpage>
<pub-id pub-id-type="pmid">9444982</pub-id>
</element-citation>
</ref>
<ref id="bib13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ziebuhr</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Siddell</surname>
<given-names>S.G.</given-names>
</name>
</person-group>
<article-title>Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab</article-title>
<source>J. Virol.</source>
<volume>73</volume>
<year>1999</year>
<fpage>177</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="pmid">9847320</pub-id>
</element-citation>
</ref>
<ref id="bib14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anand</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wadhwani</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Mesters</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Hilgenfeld</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Coronavirus main proteinase (3CL
<sup>pro</sup>
) structure: basis for design of anti-SARS drugs</article-title>
<source>Science</source>
<volume>300</volume>
<year>2003</year>
<fpage>1763</fpage>
<lpage>1767</lpage>
<pub-id pub-id-type="pmid">12746549</pub-id>
</element-citation>
</ref>
<ref id="bib15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anand</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Palm</surname>
<given-names>G.J.</given-names>
</name>
<name>
<surname>Mesters</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Siddell</surname>
<given-names>S.G.</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hilgenfeld</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain</article-title>
<source>EMBO J.</source>
<volume>21</volume>
<year>2002</year>
<fpage>3213</fpage>
<lpage>3224</lpage>
<pub-id pub-id-type="pmid">12093723</pub-id>
</element-citation>
</ref>
<ref id="bib16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Lou</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Z.</given-names>
</name>
</person-group>
<article-title>The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<volume>100</volume>
<year>2003</year>
<fpage>13190</fpage>
<lpage>13195</lpage>
<pub-id pub-id-type="pmid">14585926</pub-id>
</element-citation>
</ref>
<ref id="bib17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tan</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Verschueren</surname>
<given-names>K.H.</given-names>
</name>
<name>
<surname>Anand</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>pH-dependent conformational flexibility of the SARS-CoV main proteinase (M
<sup>pro</sup>
) dimer: molecular dynamics simulations and multiple X-ray structure analyses</article-title>
<source>J. Mol. Biol.</source>
<volume>354</volume>
<year>2005</year>
<fpage>25</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="pmid">16242152</pub-id>
</element-citation>
</ref>
<ref id="bib18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matthes</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Mesters</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Coutard</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Canard</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>Moll</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The non-structural protein Nsp10 of mouse hepatitis virus binds zinc ions and nucleic acids</article-title>
<source>FEBS Letters</source>
<volume>580</volume>
<year>2006</year>
<fpage>4143</fpage>
<lpage>4149</lpage>
<pub-id pub-id-type="pmid">16828088</pub-id>
</element-citation>
</ref>
<ref id="bib19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ponnusamy</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mesters</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Moll</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Hilgenfeld</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Non structural proteins 8 and 9 of human coronavirus 229E</article-title>
<source>Adv. Exp. Med. Biol.</source>
<volume>581</volume>
<year>2006</year>
<fpage>49</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">17037503</pub-id>
</element-citation>
</ref>
<ref id="bib20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robertson</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Igel</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Baertsch</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Haussler</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ares</surname>
<given-names>M.</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Scott</surname>
<given-names>W.G.</given-names>
</name>
</person-group>
<article-title>The structure of a rigorously conserved RNA element within the SARS virus genome</article-title>
<source>PLoS Biol.</source>
<volume>3</volume>
<year>2005</year>
<fpage>e5</fpage>
<pub-id pub-id-type="pmid">15630477</pub-id>
</element-citation>
</ref>
<ref id="bib21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imbert</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Guillemot</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Bourhis</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Bussetta</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Coutard</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Egloff</surname>
<given-names>M.P.</given-names>
</name>
</person-group>
<article-title>A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus</article-title>
<source>EMBO J.</source>
<volume>25</volume>
<year>2006</year>
<fpage>4933</fpage>
<lpage>4942</lpage>
<pub-id pub-id-type="pmid">17024178</pub-id>
</element-citation>
</ref>
<ref id="bib22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Pang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Bartlam</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer</article-title>
<source>Nature Struct. Mol. Biol.</source>
<volume>12</volume>
<year>2005</year>
<fpage>980</fpage>
<lpage>986</lpage>
<pub-id pub-id-type="pmid">16228002</pub-id>
</element-citation>
</ref>
<ref id="bib23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sutton</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Fry</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Carter</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Sainsbury</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Walter</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nettleship</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>The nsp9 replicase protein of SARS-coronavirus, structure and functional insights</article-title>
<source>Structure</source>
<volume>12</volume>
<year>2004</year>
<fpage>341</fpage>
<lpage>353</lpage>
<pub-id pub-id-type="pmid">14962394</pub-id>
</element-citation>
</ref>
<ref id="bib24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bost</surname>
<given-names>A.G.</given-names>
</name>
<name>
<surname>Carnahan</surname>
<given-names>R.H.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X.T.</given-names>
</name>
<name>
<surname>Denison</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly</article-title>
<source>J. Virol.</source>
<volume>74</volume>
<year>2000</year>
<fpage>3379</fpage>
<lpage>3387</lpage>
<pub-id pub-id-type="pmid">10708455</pub-id>
</element-citation>
</ref>
<ref id="bib25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Egloff</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Ferron</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Campanacci</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Longhi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Rancurel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Dutartre</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<volume>101</volume>
<year>2004</year>
<fpage>3792</fpage>
<lpage>3796</lpage>
<pub-id pub-id-type="pmid">15007178</pub-id>
</element-citation>
</ref>
<ref id="bib26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laskowski</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>MacArthur</surname>
<given-names>M.W.</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Thornton</surname>
<given-names>J.M.</given-names>
</name>
</person-group>
<article-title>PROCHECK: a program to check the stereochemical quality of protein structures</article-title>
<source>J. Appl. Crystallog.</source>
<volume>26</volume>
<year>1993</year>
<fpage>283</fpage>
<lpage>291</lpage>
</element-citation>
</ref>
<ref id="bib27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Theobald</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Mitton-Fry</surname>
<given-names>R.M.</given-names>
</name>
<name>
<surname>Wuttke</surname>
<given-names>D.S.</given-names>
</name>
</person-group>
<article-title>Nucleic acid recognition by OB-fold proteins</article-title>
<source>Annu. Rev. Biophys. Biomol. Struct.</source>
<volume>32</volume>
<year>2003</year>
<fpage>115</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="pmid">12598368</pub-id>
</element-citation>
</ref>
<ref id="bib28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webster</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Genschel</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Curth</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Urbanke</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hilgenfeld</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>A common core for binding single-stranded DNA: structural comparison of the single-stranded DNA-binding proteins (SSB) from
<italic>E. coli</italic>
and human mitochondria</article-title>
<source>FEBS Letters</source>
<volume>411</volume>
<year>1997</year>
<fpage>313</fpage>
<lpage>316</lpage>
<pub-id pub-id-type="pmid">9271227</pub-id>
</element-citation>
</ref>
<ref id="bib29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bochkarev</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pfuetzner</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Edwards</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Frappier</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA</article-title>
<source>Nature</source>
<volume>385</volume>
<year>1997</year>
<fpage>176</fpage>
<lpage>181</lpage>
<pub-id pub-id-type="pmid">8990123</pub-id>
</element-citation>
</ref>
<ref id="bib30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mapelli</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Panjikar</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Tucker</surname>
<given-names>P.A.</given-names>
</name>
</person-group>
<article-title>The crystal structure of the herpes simplex virus 1 ssDNA-binding protein suggests the structural basis for flexible, cooperative single-stranded DNA binding</article-title>
<source>J. Biol. Chem.</source>
<volume>280</volume>
<year>2005</year>
<fpage>2990</fpage>
<lpage>2997</lpage>
<pub-id pub-id-type="pmid">15507432</pub-id>
</element-citation>
</ref>
<ref id="bib31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Anand</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Pal</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hilgenfeld</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>An overview on 2-methyl-2,4-pentanediol in crystallization and in crystals of biological macromolecules</article-title>
<source>Acta Crystallog. D</source>
<volume>58</volume>
<year>2002</year>
<fpage>1722</fpage>
<lpage>1728</lpage>
</element-citation>
</ref>
<ref id="bib32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Richards</surname>
<given-names>F.M.</given-names>
</name>
</person-group>
<article-title>The interpretation of protein structures: estimation of static accessibility</article-title>
<source>J. Mol. Biol.</source>
<volume>55</volume>
<year>1971</year>
<fpage>379</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="pmid">5551392</pub-id>
</element-citation>
</ref>
<ref id="bib33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ellman</surname>
<given-names>G.L.</given-names>
</name>
</person-group>
<article-title>Tissue sulfhydryl groups</article-title>
<source>Arch. Biochem. Biophys.</source>
<volume>82</volume>
<year>1959</year>
<fpage>70</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">13650640</pub-id>
</element-citation>
</ref>
<ref id="bib34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abrahams</surname>
<given-names>J.P.</given-names>
</name>
<name>
<surname>Kraal</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Bosch</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Zone-interference gel electrophoresis: a new method for studying weak protein-nucleic acid complexes under native equilibrium conditions</article-title>
<source>Nucleic Acids Res.</source>
<volume>16</volume>
<year>1988</year>
<fpage>10099</fpage>
<lpage>10108</lpage>
<pub-id pub-id-type="pmid">3194195</pub-id>
</element-citation>
</ref>
<ref id="bib35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bessette</surname>
<given-names>P.H.</given-names>
</name>
<name>
<surname>Aslund</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Beckwith</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Georgiou</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Efficient folding of proteins with multiple disulfide bonds in the
<italic>Escherichia coli</italic>
cytoplasm</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<volume>96</volume>
<year>1999</year>
<fpage>13703</fpage>
<lpage>13708</lpage>
<pub-id pub-id-type="pmid">10570136</pub-id>
</element-citation>
</ref>
<ref id="bib36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Parks</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bolinger</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Redox state regulates binding of p53 to sequence-specific DNA, but not to non-specific or mismatched DNA</article-title>
<source>Nucleic Acids Res.</source>
<volume>25</volume>
<year>1997</year>
<fpage>1289</fpage>
<lpage>1295</lpage>
<pub-id pub-id-type="pmid">9092641</pub-id>
</element-citation>
</ref>
<ref id="bib37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lawrence</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Colman</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>Shape complementarity at protein/protein interfaces</article-title>
<source>J. Mol. Biol.</source>
<volume>234</volume>
<year>1993</year>
<fpage>946</fpage>
<lpage>950</lpage>
<pub-id pub-id-type="pmid">8263940</pub-id>
</element-citation>
</ref>
<ref id="bib38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chothia</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Levitt</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Richardson</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>Helix to helix packing in proteins</article-title>
<source>J. Mol. Biol.</source>
<volume>145</volume>
<year>1981</year>
<fpage>215</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="pmid">7265198</pub-id>
</element-citation>
</ref>
<ref id="bib39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russ</surname>
<given-names>W.P.</given-names>
</name>
<name>
<surname>Engelman</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<article-title>The GxxxG motif: a framework for transmembrane helix-helix association</article-title>
<source>J. Mol. Biol.</source>
<volume>296</volume>
<year>2000</year>
<fpage>911</fpage>
<lpage>919</lpage>
<pub-id pub-id-type="pmid">10677291</pub-id>
</element-citation>
</ref>
<ref id="bib40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senes</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gerstein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Engelman</surname>
<given-names>D.M.</given-names>
</name>
</person-group>
<article-title>Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions</article-title>
<source>J. Mol. Biol.</source>
<volume>296</volume>
<year>2000</year>
<fpage>921</fpage>
<lpage>936</lpage>
<pub-id pub-id-type="pmid">10677292</pub-id>
</element-citation>
</ref>
<ref id="bib41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C.Y.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y.W.</given-names>
</name>
<name>
<surname>Sue</surname>
<given-names>S.C.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>H.I.</given-names>
</name>
<name>
<surname>Riang</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA</article-title>
<source>J. Mol. Biol.</source>
<volume>368</volume>
<year>2007</year>
<fpage>1075</fpage>
<lpage>1086</lpage>
<pub-id pub-id-type="pmid">17379242</pub-id>
</element-citation>
</ref>
<ref id="bib42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petersen</surname>
<given-names>M.T.</given-names>
</name>
<name>
<surname>Jonson</surname>
<given-names>P.H.</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>S.B.</given-names>
</name>
</person-group>
<article-title>Amino acid neighbours and detailed conformational analysis of cysteines in proteins</article-title>
<source>Protein Eng.</source>
<volume>12</volume>
<year>1999</year>
<fpage>535</fpage>
<lpage>548</lpage>
<pub-id pub-id-type="pmid">10436079</pub-id>
</element-citation>
</ref>
<ref id="bib43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stevens</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Price</surname>
<given-names>N.C.</given-names>
</name>
</person-group>
<article-title>The stabilities of various thiol compounds used in protein purifications</article-title>
<source>Biochem. Educ.</source>
<volume>11</volume>
<year>1983</year>
<fpage>70</fpage>
</element-citation>
</ref>
<ref id="bib44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>You</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.H.</given-names>
</name>
</person-group>
<article-title>Functional characterization of zinc-finger motif in redox regulation of RPA-ssDNA interaction</article-title>
<source>Biochemistry</source>
<volume>39</volume>
<year>2000</year>
<fpage>12953</fpage>
<lpage>12958</lpage>
<pub-id pub-id-type="pmid">11041860</pub-id>
</element-citation>
</ref>
<ref id="bib45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauer</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Elsen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bird</surname>
<given-names>T.H.</given-names>
</name>
</person-group>
<article-title>Mechanisms for redox control of gene expression</article-title>
<source>Annu. Rev. Microbiol.</source>
<volume>53</volume>
<year>1999</year>
<fpage>495</fpage>
<lpage>523</lpage>
<pub-id pub-id-type="pmid">10547699</pub-id>
</element-citation>
</ref>
<ref id="bib46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eleouet</surname>
<given-names>J.F.</given-names>
</name>
<name>
<surname>Chilmonczyk</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Besnardeau</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Laude</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Transmissible gastroenteritis coronavirus induces programmed cell death in infected cells through a caspase-dependent pathway</article-title>
<source>J. Virol.</source>
<volume>72</volume>
<year>1998</year>
<fpage>4918</fpage>
<lpage>4924</lpage>
<pub-id pub-id-type="pmid">9573259</pub-id>
</element-citation>
</ref>
<ref id="bib47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaul</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Biagioli</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>R.B.</given-names>
</name>
</person-group>
<article-title>Rhinovirus-induced oxidative stress and interleukin-8 elaboration involves p47-phox but is independent of attachment to intercellular adhesion molecule-1 and viral replication</article-title>
<source>J. Infect. Dis.</source>
<volume>181</volume>
<year>2000</year>
<fpage>1885</fpage>
<lpage>1890</lpage>
<pub-id pub-id-type="pmid">10837166</pub-id>
</element-citation>
</ref>
<ref id="bib48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Oberley</surname>
<given-names>L.W.</given-names>
</name>
<name>
<surname>Murhammer</surname>
<given-names>D.W.</given-names>
</name>
</person-group>
<article-title>Evidence of oxidative stress following the viral infection of two lepidopteran insect cell lines</article-title>
<source>Free Radic. Biol. Med.</source>
<volume>31</volume>
<year>2001</year>
<fpage>1448</fpage>
<lpage>1455</lpage>
<pub-id pub-id-type="pmid">11728817</pub-id>
</element-citation>
</ref>
<ref id="bib49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mikhailov</surname>
<given-names>V.S.</given-names>
</name>
<name>
<surname>Okano</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Rohrmann</surname>
<given-names>G.F.</given-names>
</name>
</person-group>
<article-title>The redox state of the baculovirus single-stranded DNA-binding protein LEF-3 regulates its DNA binding, unwinding, and annealing activities</article-title>
<source>J. Biol. Chem.</source>
<volume>280</volume>
<year>2005</year>
<fpage>29444</fpage>
<lpage>29453</lpage>
<pub-id pub-id-type="pmid">15944160</pub-id>
</element-citation>
</ref>
<ref id="bib50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McBride</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Klausner</surname>
<given-names>R.D.</given-names>
</name>
<name>
<surname>Howley</surname>
<given-names>P.M.</given-names>
</name>
</person-group>
<article-title>Conserved cysteine residue in the DNA-binding domain of the bovine papillomavirus type 1 E2 protein confers redox regulation of the DNA-binding activity in vitro</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<volume>89</volume>
<year>1992</year>
<fpage>7531</fpage>
<lpage>7535</lpage>
<pub-id pub-id-type="pmid">1323841</pub-id>
</element-citation>
</ref>
<ref id="bib51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sampson</surname>
<given-names>D.A.</given-names>
</name>
<name>
<surname>Arana</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Boehmer</surname>
<given-names>P.E.</given-names>
</name>
</person-group>
<article-title>Cysteine 111 affects coupling of single-stranded DNA binding to ATP hydrolysis in the herpes simplex virus type-1 origin-binding protein</article-title>
<source>J. Biol. Chem.</source>
<volume>275</volume>
<year>2000</year>
<fpage>2931</fpage>
<lpage>2937</lpage>
<pub-id pub-id-type="pmid">10644762</pub-id>
</element-citation>
</ref>
<ref id="bib52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knipe</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Quinlan</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Spang</surname>
<given-names>A.E.</given-names>
</name>
</person-group>
<article-title>Characterization of two conformational forms of the major DNA-binding protein encoded by herpes simplex virus 1</article-title>
<source>J. Virol.</source>
<volume>44</volume>
<year>1982</year>
<fpage>736</fpage>
<lpage>741</lpage>
<pub-id pub-id-type="pmid">6292530</pub-id>
</element-citation>
</ref>
<ref id="bib53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dudas</surname>
<given-names>K.C.</given-names>
</name>
<name>
<surname>Ruyechan</surname>
<given-names>W.T.</given-names>
</name>
</person-group>
<article-title>Identification of a region of the herpes simplex virus single-stranded DNA-binding protein involved in cooperative binding</article-title>
<source>J. Virol.</source>
<volume>72</volume>
<year>1998</year>
<fpage>257</fpage>
<lpage>265</lpage>
<pub-id pub-id-type="pmid">9420222</pub-id>
</element-citation>
</ref>
<ref id="bib54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gosert</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Kanjanahaluethai</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Egger</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bienz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>S.C.</given-names>
</name>
</person-group>
<article-title>RNA replication of mouse hepatitis virus takes place at double-membrane vesicles</article-title>
<source>J. Virol.</source>
<volume>76</volume>
<year>2002</year>
<fpage>3697</fpage>
<lpage>3708</lpage>
<pub-id pub-id-type="pmid">11907209</pub-id>
</element-citation>
</ref>
<ref id="bib55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prentice</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Jerome</surname>
<given-names>W.G.</given-names>
</name>
<name>
<surname>Yoshimori</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mizushima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Denison</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Coronavirus replication complex formation utilizes components of cellular autophagy</article-title>
<source>J. Biol. Chem.</source>
<volume>279</volume>
<year>2004</year>
<fpage>10136</fpage>
<lpage>10141</lpage>
<pub-id pub-id-type="pmid">14699140</pub-id>
</element-citation>
</ref>
<ref id="bib56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Snijder</surname>
<given-names>E.J.</given-names>
</name>
<name>
<surname>van der Meer</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Zevenhoven-Dobbe</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Onderwater</surname>
<given-names>J.J.</given-names>
</name>
<name>
<surname>van der Meulen</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Koerten</surname>
<given-names>H.K.</given-names>
</name>
</person-group>
<article-title>Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex</article-title>
<source>J. Virol.</source>
<volume>80</volume>
<year>2006</year>
<fpage>5927</fpage>
<lpage>5940</lpage>
<pub-id pub-id-type="pmid">16731931</pub-id>
</element-citation>
</ref>
<ref id="bib57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Hemert</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>van den Worm</surname>
<given-names>S.H.E.</given-names>
</name>
<name>
<surname>Knoops</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mommaas</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Gorbalenya</surname>
<given-names>A.E.</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E.J.</given-names>
</name>
</person-group>
<source>PLoS Pathogens</source>
<volume>4</volume>
<year>2008</year>
<fpage>e1000054</fpage>
<pub-id pub-id-type="pmid">18451981</pub-id>
</element-citation>
</ref>
<ref id="bib58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.P.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>M.L.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>H.Y.</given-names>
</name>
<name>
<surname>Shih</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Chiu</surname>
<given-names>D.T.</given-names>
</name>
</person-group>
<article-title>Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection</article-title>
<source>J. Infect. Dis.</source>
<volume>197</volume>
<year>2008</year>
<fpage>812</fpage>
<lpage>816</lpage>
<pub-id pub-id-type="pmid">18269318</pub-id>
</element-citation>
</ref>
<ref id="bib59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Imai</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kuba</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Neely</surname>
<given-names>G.G.</given-names>
</name>
<name>
<surname>Yaghubian-Malhami</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Perkmann</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>van Loo</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury</article-title>
<source>Cell</source>
<volume>133</volume>
<year>2008</year>
<fpage>235</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="pmid">18423196</pub-id>
</element-citation>
</ref>
<ref id="bib60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miseta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Csutora</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Relationship between the occurrence of cysteine in proteins and the complexity of organisms</article-title>
<source>Mol. Biol. Evol.</source>
<volume>17</volume>
<year>2000</year>
<fpage>1232</fpage>
<lpage>1239</lpage>
<pub-id pub-id-type="pmid">10908643</pub-id>
</element-citation>
</ref>
<ref id="bib61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lindwall</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Chau</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>S.R.</given-names>
</name>
<name>
<surname>Kohlstaedt</surname>
<given-names>L.A.</given-names>
</name>
</person-group>
<article-title>A sparse matrix approach to the solubilization of overexpressed proteins</article-title>
<source>Protein Eng.</source>
<volume>13</volume>
<year>2000</year>
<fpage>67</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="pmid">10679532</pub-id>
</element-citation>
</ref>
<ref id="bib62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otwinowski</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Minor</surname>
<given-names>W.</given-names>
</name>
</person-group>
<article-title>Processing of X-ray diffraction data collected in oscillation mode</article-title>
<source>Methods Enzymol.</source>
<volume>276</volume>
<year>1997</year>
<fpage>307</fpage>
<lpage>326</lpage>
</element-citation>
</ref>
<ref id="bib63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collaborative Computational Project Number 4</surname>
</name>
</person-group>
<article-title>The CCP4 suite: programmes for protein crystallography</article-title>
<source>Acta Crystallog. D</source>
<volume>50</volume>
<year>1994</year>
<fpage>760</fpage>
<lpage>763</lpage>
</element-citation>
</ref>
<ref id="bib64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCoy</surname>
<given-names>A.J.</given-names>
</name>
<name>
<surname>Grosse-Kunstleve</surname>
<given-names>R.W.</given-names>
</name>
<name>
<surname>Storoni</surname>
<given-names>L.C.</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Likelihood-enhanced fast translation functions</article-title>
<source>Acta Crystallog. D</source>
<volume>61</volume>
<year>2005</year>
<fpage>458</fpage>
<lpage>464</lpage>
</element-citation>
</ref>
<ref id="bib65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emsley</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cowtan</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>Coot: model-building tools for molecular graphics</article-title>
<source>Acta Crystallog. D</source>
<volume>60</volume>
<year>2004</year>
<fpage>2126</fpage>
<lpage>2132</lpage>
</element-citation>
</ref>
<ref id="bib66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Murshudov</surname>
<given-names>G.N.</given-names>
</name>
<name>
<surname>Vagin</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>Dodson</surname>
<given-names>E.J.</given-names>
</name>
</person-group>
<article-title>Refinement of macromolecular structures by the maximum-likelihood method</article-title>
<source>Acta Crystallog. D</source>
<volume>53</volume>
<year>1997</year>
<fpage>240</fpage>
<lpage>255</lpage>
</element-citation>
</ref>
<ref id="bib67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cohen</surname>
<given-names>G.E.</given-names>
</name>
</person-group>
<article-title>ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions</article-title>
<source>J. Appl. Crystallog.</source>
<volume>30</volume>
<year>1997</year>
<fpage>1160</fpage>
<lpage>1161</lpage>
</element-citation>
</ref>
<ref id="bib68">
<label>68</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>DeLano</surname>
<given-names>W.L.</given-names>
</name>
</person-group>
<chapter-title>The PyMOL Molecular Graphics System</chapter-title>
<year>2002</year>
<publisher-name>DeLano Scientific</publisher-name>
<publisher-loc>Palo Alto, CA, USA</publisher-loc>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://pymol.sourceforge.net/">http://pymol.sourceforge.net/</ext-link>
</comment>
</element-citation>
</ref>
</ref-list>
<sec sec-type="supplementary-material">
<label>Appendix A</label>
<title>Supplementary Data</title>
<p>Supplementary data associated with this article can be found, in the online version, at
<ext-link ext-link-type="doi" xlink:href="10.1016/j.jmb.2008.07.071">doi:10.1016/j.jmb.2008.07.071</ext-link>
</p>
</sec>
<sec id="app1" sec-type="supplementary-material">
<label>Appendix A</label>
<title>Supplementary material</title>
<p>
<fig id="d32e3067" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr8_lrg"></graphic>
</fig>
<fig id="d32e3072" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr9_lrg"></graphic>
</fig>
<fig id="d32e3077" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr10_lrg"></graphic>
</fig>
<fig id="d32e3082" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr11_lrg"></graphic>
</fig>
<fig id="d32e3087" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr12_lrg"></graphic>
</fig>
<fig id="d32e3093" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr13_lrg"></graphic>
</fig>
<fig id="d32e3098" position="anchor">
<label>Supplementary data</label>
<graphic xlink:href="gr14_lrg"></graphic>
</fig>
<supplementary-material content-type="local-data" id="d32e3103">
<caption>
<title>Supplementary Table 1</title>
<p>Protein-protein interfaces seen in the HCoV-229E Nsp9 wild-type and Cys69Ala mutant structure, their intermolecular interactions, buried dimerization surface area and shape complementarity values.</p>
</caption>
<media xlink:href="mmc1.doc"></media>
</supplementary-material>
</p>
</sec>
<ack>
<title>Acknowledgements</title>
<p>This work was supported, in part, by the Sino-European Project on SARS Diagnostics and Antivir (SEPSDA, contract no. SP22-CT-2004-003831
<xref rid="fn3" ref-type="fn">§</xref>
) and by VIZIER (contract no. LSHG-CT-2004-511960
<xref rid="fn4" ref-type="fn"></xref>
), both funded by the European Commission. We acknowledge support from the Sino-German Center for the Promotion of Research, Beijing, the Schleswig-Holstein Innovation Fund, and the DFG Cluster of Excellence “Inflammation at Interfaces”. We thank Professor J. Ziebuhr (Queen's University of Belfast) for providing cDNA for HCoV-229E Nsp7-10 polyprotein, Dr K.H.G. Verschueren for help with data collection, and Silke Schmidtke for expert technical assistance. R.H. thanks the Fonds der Chemischen Industrie for continuous support.</p>
</ack>
<fn-group>
<fn id="fn1">
<label></label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://www.athena.bioc.uvic.ca">http://athena.bioc.uvic.ca</ext-link>
</p>
</fn>
<fn id="fn3">
<label>§</label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://www.sepsda.eu">www.sepsda.eu</ext-link>
</p>
</fn>
<fn id="fn4">
<label></label>
<p>
<ext-link ext-link-type="uri" xlink:href="http://www.vizier-europe.org">www.vizier-europe.org</ext-link>
</p>
</fn>
</fn-group>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000936 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000936 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7094590
   |texte=   Variable Oligomerization Modes in Coronavirus Non-structural Protein 9
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:18694760" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021