Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine

Identifieur interne : 000797 ( Pmc/Corpus ); précédent : 000796; suivant : 000798

Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine

Auteurs : Arafat Rahman Oany ; Shah Adil Ishtiyaq Ahmad ; Mohammad Uzzal Hossain ; Tahmina Pervin Jyoti

Source :

RBID : PMC:4293217

Abstract

Crimean–Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease with a disease fatality rate between 15% and 70%. Despite the wide range of distribution, the virus (CCHFV) is basically endemic in Africa, Asia, eastern Europe, and the Middle East. Acute febrile illness associated with petechiae, disseminated intravascular coagulation, and multiple-organ failure are the main symptoms of the disease. With all these fatal effects, CCHFV is considered a huge threat as no successful therapeutic approach is currently available for the treatment of this disease. In the present study, we have used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of CCHFV. Both the T-cell and B-cell epitopes were assessed, and the epitope “DCSSTPPDR” was found to be the most potential one, with 100% conservancy among all the strains of CCHFV. The epitope was also found to interact with both type I and II major histocompatibility complex molecules and is considered nonallergenic as well. In vivo study of our proposed peptide is advised for novel universal vaccine production, which might be an effective path to prevent CCHF disease.


Url:
DOI: 10.2147/AABC.S75250
PubMed: 25609983
PubMed Central: 4293217

Links to Exploration step

PMC:4293217

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine</title>
<author>
<name sortKey="Oany, Arafat Rahman" sort="Oany, Arafat Rahman" uniqKey="Oany A" first="Arafat Rahman" last="Oany">Arafat Rahman Oany</name>
<affiliation>
<nlm:aff id="af1-aabc-8-001">Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, Shah Adil Ishtiyaq" sort="Ahmad, Shah Adil Ishtiyaq" uniqKey="Ahmad S" first="Shah Adil Ishtiyaq" last="Ahmad">Shah Adil Ishtiyaq Ahmad</name>
<affiliation>
<nlm:aff id="af1-aabc-8-001">Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hossain, Mohammad Uzzal" sort="Hossain, Mohammad Uzzal" uniqKey="Hossain M" first="Mohammad Uzzal" last="Hossain">Mohammad Uzzal Hossain</name>
<affiliation>
<nlm:aff id="af1-aabc-8-001">Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jyoti, Tahmina Pervin" sort="Jyoti, Tahmina Pervin" uniqKey="Jyoti T" first="Tahmina Pervin" last="Jyoti">Tahmina Pervin Jyoti</name>
<affiliation>
<nlm:aff id="af2-aabc-8-001">Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25609983</idno>
<idno type="pmc">4293217</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4293217</idno>
<idno type="RBID">PMC:4293217</idno>
<idno type="doi">10.2147/AABC.S75250</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000797</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000797</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine</title>
<author>
<name sortKey="Oany, Arafat Rahman" sort="Oany, Arafat Rahman" uniqKey="Oany A" first="Arafat Rahman" last="Oany">Arafat Rahman Oany</name>
<affiliation>
<nlm:aff id="af1-aabc-8-001">Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ahmad, Shah Adil Ishtiyaq" sort="Ahmad, Shah Adil Ishtiyaq" uniqKey="Ahmad S" first="Shah Adil Ishtiyaq" last="Ahmad">Shah Adil Ishtiyaq Ahmad</name>
<affiliation>
<nlm:aff id="af1-aabc-8-001">Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Hossain, Mohammad Uzzal" sort="Hossain, Mohammad Uzzal" uniqKey="Hossain M" first="Mohammad Uzzal" last="Hossain">Mohammad Uzzal Hossain</name>
<affiliation>
<nlm:aff id="af1-aabc-8-001">Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jyoti, Tahmina Pervin" sort="Jyoti, Tahmina Pervin" uniqKey="Jyoti T" first="Tahmina Pervin" last="Jyoti">Tahmina Pervin Jyoti</name>
<affiliation>
<nlm:aff id="af2-aabc-8-001">Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances and Applications in Bioinformatics and Chemistry : AABC</title>
<idno type="eISSN">1178-6949</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Crimean–Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease with a disease fatality rate between 15% and 70%. Despite the wide range of distribution, the virus (CCHFV) is basically endemic in Africa, Asia, eastern Europe, and the Middle East. Acute febrile illness associated with petechiae, disseminated intravascular coagulation, and multiple-organ failure are the main symptoms of the disease. With all these fatal effects, CCHFV is considered a huge threat as no successful therapeutic approach is currently available for the treatment of this disease. In the present study, we have used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of CCHFV. Both the T-cell and B-cell epitopes were assessed, and the epitope “DCSSTPPDR” was found to be the most potential one, with 100% conservancy among all the strains of CCHFV. The epitope was also found to interact with both type I and II major histocompatibility complex molecules and is considered nonallergenic as well. In vivo study of our proposed peptide is advised for novel universal vaccine production, which might be an effective path to prevent CCHF disease.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Cunha, Ba" uniqKey="Cunha B">BA Cunha</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmaljohn, C" uniqKey="Schmaljohn C">C Schmaljohn</name>
</author>
<author>
<name sortKey="Hooper, J" uniqKey="Hooper J">J Hooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lacy, Md" uniqKey="Lacy M">MD Lacy</name>
</author>
<author>
<name sortKey="Smego, R" uniqKey="Smego R">R Smego</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ergonul, O" uniqKey="Ergonul O">Ö Ergönül</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ergonul, O" uniqKey="Ergonul O">O Ergonul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Swanepoel, R" uniqKey="Swanepoel R">R Swanepoel</name>
</author>
<author>
<name sortKey="Struthers, J" uniqKey="Struthers J">J Struthers</name>
</author>
<author>
<name sortKey="Shepherd, A" uniqKey="Shepherd A">A Shepherd</name>
</author>
<author>
<name sortKey="Mcgillivray, G" uniqKey="Mcgillivray G">G McGillivray</name>
</author>
<author>
<name sortKey="Nel, M" uniqKey="Nel M">M Nel</name>
</author>
<author>
<name sortKey="Jupp, P" uniqKey="Jupp P">P Jupp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitehouse, Ca" uniqKey="Whitehouse C">CA Whitehouse</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="David West, Ts" uniqKey="David West T">TS David-West</name>
</author>
<author>
<name sortKey="Cooke, Ar" uniqKey="Cooke A">AR Cooke</name>
</author>
<author>
<name sortKey="David West, As" uniqKey="David West A">AS David-West</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gonzalez, J P" uniqKey="Gonzalez J">J-P Gonzalez</name>
</author>
<author>
<name sortKey="Leguenno, B" uniqKey="Leguenno B">B LeGuenno</name>
</author>
<author>
<name sortKey="Guillaud, M" uniqKey="Guillaud M">M Guillaud</name>
</author>
<author>
<name sortKey="Wilson, Ml" uniqKey="Wilson M">ML Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, Ml" uniqKey="Wilson M">ML Wilson</name>
</author>
<author>
<name sortKey="Leguenno, B" uniqKey="Leguenno B">B LeGuenno</name>
</author>
<author>
<name sortKey="Guillaud, M" uniqKey="Guillaud M">M Guillaud</name>
</author>
<author>
<name sortKey="Desoutter, D" uniqKey="Desoutter D">D Desoutter</name>
</author>
<author>
<name sortKey="Gonzalez, J P" uniqKey="Gonzalez J">J-P Gonzalez</name>
</author>
<author>
<name sortKey="Camicas, J L" uniqKey="Camicas J">J-L Camicas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Estrada Pe A, A" uniqKey="Estrada Pe A A">A Estrada-Peña</name>
</author>
<author>
<name sortKey="Ruiz Fons, F" uniqKey="Ruiz Fons F">F Ruiz-Fons</name>
</author>
<author>
<name sortKey="Acevedo, P" uniqKey="Acevedo P">P Acevedo</name>
</author>
<author>
<name sortKey="Gortazar, C" uniqKey="Gortazar C">C Gortazar</name>
</author>
<author>
<name sortKey="La Fuente, J" uniqKey="La Fuente J">J la Fuente</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoogstraal, H" uniqKey="Hoogstraal H">H Hoogstraal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kraus, Aa" uniqKey="Kraus A">AA Kraus</name>
</author>
<author>
<name sortKey="Mirazimi, A" uniqKey="Mirazimi A">A Mirazimi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holland, J" uniqKey="Holland J">J Holland</name>
</author>
<author>
<name sortKey="Domingo, E" uniqKey="Domingo E">E Domingo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sette, A" uniqKey="Sette A">A Sette</name>
</author>
<author>
<name sortKey="Newman, M" uniqKey="Newman M">M Newman</name>
</author>
<author>
<name sortKey="Livingston, B" uniqKey="Livingston B">B Livingston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sette, A" uniqKey="Sette A">A Sette</name>
</author>
<author>
<name sortKey="Fikes, J" uniqKey="Fikes J">J Fikes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poland, Ga" uniqKey="Poland G">GA Poland</name>
</author>
<author>
<name sortKey="Ovsyannikova, Ig" uniqKey="Ovsyannikova I">IG Ovsyannikova</name>
</author>
<author>
<name sortKey="Jacobson, Rm" uniqKey="Jacobson R">RM Jacobson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N Petrovsky</name>
</author>
<author>
<name sortKey="Brusic, V" uniqKey="Brusic V">V Brusic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourdette, Dn" uniqKey="Bourdette D">DN Bourdette</name>
</author>
<author>
<name sortKey="Edmonds, E" uniqKey="Edmonds E">E Edmonds</name>
</author>
<author>
<name sortKey="Smith, C" uniqKey="Smith C">C Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="L Pez, Ja" uniqKey="L Pez J">JA López</name>
</author>
<author>
<name sortKey="Weilenman, C" uniqKey="Weilenman C">C Weilenman</name>
</author>
<author>
<name sortKey="Audran, R" uniqKey="Audran R">R Audran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilson, Cc" uniqKey="Wilson C">CC Wilson</name>
</author>
<author>
<name sortKey="Mckinney, D" uniqKey="Mckinney D">D McKinney</name>
</author>
<author>
<name sortKey="Anders, M" uniqKey="Anders M">M Anders</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robinson, Hl" uniqKey="Robinson H">HL Robinson</name>
</author>
<author>
<name sortKey="Amara, Rr" uniqKey="Amara R">RR Amara</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apweiler, R" uniqKey="Apweiler R">R Apweiler</name>
</author>
<author>
<name sortKey="Bairoch, A" uniqKey="Bairoch A">A Bairoch</name>
</author>
<author>
<name sortKey="Wu, Ch" uniqKey="Wu C">CH Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kinsella, E" uniqKey="Kinsella E">E Kinsella</name>
</author>
<author>
<name sortKey="Martin, Sg" uniqKey="Martin S">SG Martin</name>
</author>
<author>
<name sortKey="Grolla, A" uniqKey="Grolla A">A Grolla</name>
</author>
<author>
<name sortKey="Czub, M" uniqKey="Czub M">M Czub</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
<author>
<name sortKey="Flick, R" uniqKey="Flick R">R Flick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanchez, Aj" uniqKey="Sanchez A">AJ Sanchez</name>
</author>
<author>
<name sortKey="Vincent, Mj" uniqKey="Vincent M">MJ Vincent</name>
</author>
<author>
<name sortKey="Nichol, St" uniqKey="Nichol S">ST Nichol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hall, Ta" uniqKey="Hall T">TA Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, Jd" uniqKey="Thompson J">JD Thompson</name>
</author>
<author>
<name sortKey="Higgins, Dg" uniqKey="Higgins D">DG Higgins</name>
</author>
<author>
<name sortKey="Gibson, Tj" uniqKey="Gibson T">TJ Gibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Waterhouse, Am" uniqKey="Waterhouse A">AM Waterhouse</name>
</author>
<author>
<name sortKey="Procter, Jb" uniqKey="Procter J">JB Procter</name>
</author>
<author>
<name sortKey="Martin, Dm" uniqKey="Martin D">DM Martin</name>
</author>
<author>
<name sortKey="Clamp, M" uniqKey="Clamp M">M Clamp</name>
</author>
<author>
<name sortKey="Barton, Gj" uniqKey="Barton G">GJ Barton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doytchinova, Ia" uniqKey="Doytchinova I">IA Doytchinova</name>
</author>
<author>
<name sortKey="Flower, Dr" uniqKey="Flower D">DR Flower</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, Mv" uniqKey="Larsen M">MV Larsen</name>
</author>
<author>
<name sortKey="Lundegaard, C" uniqKey="Lundegaard C">C Lundegaard</name>
</author>
<author>
<name sortKey="Lamberth, K" uniqKey="Lamberth K">K Lamberth</name>
</author>
<author>
<name sortKey="Buus, S" uniqKey="Buus S">S Buus</name>
</author>
<author>
<name sortKey="Lund, O" uniqKey="Lund O">O Lund</name>
</author>
<author>
<name sortKey="Nielsen, M" uniqKey="Nielsen M">M Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhasin, M" uniqKey="Bhasin M">M Bhasin</name>
</author>
<author>
<name sortKey="Raghava, G" uniqKey="Raghava G">G Raghava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buus, S" uniqKey="Buus S">S Buus</name>
</author>
<author>
<name sortKey="Lauem Ller, Sl" uniqKey="Lauem Ller S">SL Lauemøller</name>
</author>
<author>
<name sortKey="Worning, P" uniqKey="Worning P">P Worning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
<author>
<name sortKey="Sidney, J" uniqKey="Sidney J">J Sidney</name>
</author>
<author>
<name sortKey="Kim, Y" uniqKey="Kim Y">Y Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, P" uniqKey="Wang P">P Wang</name>
</author>
<author>
<name sortKey="Sidney, J" uniqKey="Sidney J">J Sidney</name>
</author>
<author>
<name sortKey="Dow, C" uniqKey="Dow C">C Dow</name>
</author>
<author>
<name sortKey="Mothe, B" uniqKey="Mothe B">B Mothe</name>
</author>
<author>
<name sortKey="Sette, A" uniqKey="Sette A">A Sette</name>
</author>
<author>
<name sortKey="Peters, B" uniqKey="Peters B">B Peters</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peters, B" uniqKey="Peters B">B Peters</name>
</author>
<author>
<name sortKey="Sette, A" uniqKey="Sette A">A Sette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nair, Dt" uniqKey="Nair D">DT Nair</name>
</author>
<author>
<name sortKey="Singh, K" uniqKey="Singh K">K Singh</name>
</author>
<author>
<name sortKey="Siddiqui, Z" uniqKey="Siddiqui Z">Z Siddiqui</name>
</author>
<author>
<name sortKey="Nayak, Bp" uniqKey="Nayak B">BP Nayak</name>
</author>
<author>
<name sortKey="Rao, Kv" uniqKey="Rao K">KV Rao</name>
</author>
<author>
<name sortKey="Salunke, Dm" uniqKey="Salunke D">DM Salunke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolaskar, A" uniqKey="Kolaskar A">A Kolaskar</name>
</author>
<author>
<name sortKey="Tongaonkar, Pc" uniqKey="Tongaonkar P">PC Tongaonkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Emini, Ea" uniqKey="Emini E">EA Emini</name>
</author>
<author>
<name sortKey="Hughes, Jv" uniqKey="Hughes J">JV Hughes</name>
</author>
<author>
<name sortKey="Perlow, D" uniqKey="Perlow D">D Perlow</name>
</author>
<author>
<name sortKey="Boger, J" uniqKey="Boger J">J Boger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larsen, Je" uniqKey="Larsen J">JE Larsen</name>
</author>
<author>
<name sortKey="Lund, O" uniqKey="Lund O">O Lund</name>
</author>
<author>
<name sortKey="Nielsen, M" uniqKey="Nielsen M">M Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sali, A" uniqKey="Sali A">A Šali</name>
</author>
<author>
<name sortKey="Potterton, L" uniqKey="Potterton L">L Potterton</name>
</author>
<author>
<name sortKey="Yuan, F" uniqKey="Yuan F">F Yuan</name>
</author>
<author>
<name sortKey="Van Vlijmen, H" uniqKey="Van Vlijmen H">H van Vlijmen</name>
</author>
<author>
<name sortKey="Karplus, M" uniqKey="Karplus M">M Karplus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laskowski, Ra" uniqKey="Laskowski R">RA Laskowski</name>
</author>
<author>
<name sortKey="Rullmann, Jac" uniqKey="Rullmann J">JAC Rullmann</name>
</author>
<author>
<name sortKey="Macarthur, Mw" uniqKey="Macarthur M">MW MacArthur</name>
</author>
<author>
<name sortKey="Kaptein, R" uniqKey="Kaptein R">R Kaptein</name>
</author>
<author>
<name sortKey="Thornton, Jm" uniqKey="Thornton J">JM Thornton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benkert, P" uniqKey="Benkert P">P Benkert</name>
</author>
<author>
<name sortKey="Biasini, M" uniqKey="Biasini M">M Biasini</name>
</author>
<author>
<name sortKey="Schwede, T" uniqKey="Schwede T">T Schwede</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnold, K" uniqKey="Arnold K">K Arnold</name>
</author>
<author>
<name sortKey="Bordoli, L" uniqKey="Bordoli L">L Bordoli</name>
</author>
<author>
<name sortKey="Kopp, J" uniqKey="Kopp J">J Kopp</name>
</author>
<author>
<name sortKey="Schwede, T" uniqKey="Schwede T">T Schwede</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ward, Jj" uniqKey="Ward J">JJ Ward</name>
</author>
<author>
<name sortKey="Mcguffin, Lj" uniqKey="Mcguffin L">LJ McGuffin</name>
</author>
<author>
<name sortKey="Bryson, K" uniqKey="Bryson K">K Bryson</name>
</author>
<author>
<name sortKey="Buxton, Bf" uniqKey="Buxton B">BF Buxton</name>
</author>
<author>
<name sortKey="Jones, Dt" uniqKey="Jones D">DT Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Boronat, M" uniqKey="Garcia Boronat M">M Garcia-Boronat</name>
</author>
<author>
<name sortKey="Diez Rivero, Cm" uniqKey="Diez Rivero C">CM Diez-Rivero</name>
</author>
<author>
<name sortKey="Reinherz, El" uniqKey="Reinherz E">EL Reinherz</name>
</author>
<author>
<name sortKey="Reche, Pa" uniqKey="Reche P">PA Reche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saha, S" uniqKey="Saha S">S Saha</name>
</author>
<author>
<name sortKey="Raghava, G" uniqKey="Raghava G">G Raghava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bui, H H" uniqKey="Bui H">H-H Bui</name>
</author>
<author>
<name sortKey="Sidney, J" uniqKey="Sidney J">J Sidney</name>
</author>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Fusseder, N" uniqKey="Fusseder N">N Fusseder</name>
</author>
<author>
<name sortKey="Sette, A" uniqKey="Sette A">A Sette</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shrestha, B" uniqKey="Shrestha B">B Shrestha</name>
</author>
<author>
<name sortKey="Diamond, Ms" uniqKey="Diamond M">MS Diamond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arnon, R" uniqKey="Arnon R">R Arnon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckeever, Tm" uniqKey="Mckeever T">TM McKeever</name>
</author>
<author>
<name sortKey="Lewis, Sa" uniqKey="Lewis S">SA Lewis</name>
</author>
<author>
<name sortKey="Smith, C" uniqKey="Smith C">C Smith</name>
</author>
<author>
<name sortKey="Hubbard, R" uniqKey="Hubbard R">R Hubbard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Buttigieg, Kr" uniqKey="Buttigieg K">KR Buttigieg</name>
</author>
<author>
<name sortKey="Dowall, Sd" uniqKey="Dowall S">SD Dowall</name>
</author>
<author>
<name sortKey="Findlay Wilson, S" uniqKey="Findlay Wilson S">S Findlay-Wilson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, R" uniqKey="Lu R">R Lu</name>
</author>
<author>
<name sortKey="Yu, X" uniqKey="Yu X">X Yu</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lapelosa, M" uniqKey="Lapelosa M">M Lapelosa</name>
</author>
<author>
<name sortKey="Gallicchio, E" uniqKey="Gallicchio E">E Gallicchio</name>
</author>
<author>
<name sortKey="Arnold, Gf" uniqKey="Arnold G">GF Arnold</name>
</author>
<author>
<name sortKey="Arnold, E" uniqKey="Arnold E">E Arnold</name>
</author>
<author>
<name sortKey="Levy, Rm" uniqKey="Levy R">RM Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chakraborty, S" uniqKey="Chakraborty S">S Chakraborty</name>
</author>
<author>
<name sortKey="Chakravorty, R" uniqKey="Chakravorty R">R Chakravorty</name>
</author>
<author>
<name sortKey="Ahmed, M" uniqKey="Ahmed M">M Ahmed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oany, Ar" uniqKey="Oany A">AR Oany</name>
</author>
<author>
<name sortKey="Emran, Aa" uniqKey="Emran A">AA Emran</name>
</author>
<author>
<name sortKey="Jyoti, Tp" uniqKey="Jyoti T">TP Jyoti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khan, Mk" uniqKey="Khan M">MK Khan</name>
</author>
<author>
<name sortKey="Zaman, S" uniqKey="Zaman S">S Zaman</name>
</author>
<author>
<name sortKey="Chakraborty, S" uniqKey="Chakraborty S">S Chakraborty</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Adv Appl Bioinform Chem</journal-id>
<journal-id journal-id-type="iso-abbrev">Adv Appl Bioinform Chem</journal-id>
<journal-id journal-id-type="publisher-id">Advances and Applications in Bioinformatics and Chemistry</journal-id>
<journal-title-group>
<journal-title>Advances and Applications in Bioinformatics and Chemistry : AABC</journal-title>
</journal-title-group>
<issn pub-type="epub">1178-6949</issn>
<publisher>
<publisher-name>Dove Medical Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25609983</article-id>
<article-id pub-id-type="pmc">4293217</article-id>
<article-id pub-id-type="doi">10.2147/AABC.S75250</article-id>
<article-id pub-id-type="publisher-id">aabc-8-001</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Original Research</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Oany</surname>
<given-names>Arafat Rahman</given-names>
</name>
<xref ref-type="aff" rid="af1-aabc-8-001">1</xref>
<xref ref-type="corresp" rid="c1-aabc-8-001"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ahmad</surname>
<given-names>Shah Adil Ishtiyaq</given-names>
</name>
<xref ref-type="aff" rid="af1-aabc-8-001">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hossain</surname>
<given-names>Mohammad Uzzal</given-names>
</name>
<xref ref-type="aff" rid="af1-aabc-8-001">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jyoti</surname>
<given-names>Tahmina Pervin</given-names>
</name>
<xref ref-type="aff" rid="af2-aabc-8-001">2</xref>
</contrib>
</contrib-group>
<aff id="af1-aabc-8-001">
<label>1</label>
Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh</aff>
<aff id="af2-aabc-8-001">
<label>2</label>
Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh</aff>
<author-notes>
<corresp id="c1-aabc-8-001">Correspondence: Arafat Rahman Oany, Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh, Tel +880 15 5881 9130, Email
<email>arafatr@outlook.com</email>
</corresp>
</author-notes>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>08</day>
<month>1</month>
<year>2015</year>
</pub-date>
<volume>8</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<permissions>
<copyright-statement>© 2015 Oany et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License</copyright-statement>
<copyright-year>2015</copyright-year>
<license>
<license-p>The full terms of the License are available at
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</ext-link>
. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.</license-p>
</license>
</permissions>
<abstract>
<p>Crimean–Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic viral disease with a disease fatality rate between 15% and 70%. Despite the wide range of distribution, the virus (CCHFV) is basically endemic in Africa, Asia, eastern Europe, and the Middle East. Acute febrile illness associated with petechiae, disseminated intravascular coagulation, and multiple-organ failure are the main symptoms of the disease. With all these fatal effects, CCHFV is considered a huge threat as no successful therapeutic approach is currently available for the treatment of this disease. In the present study, we have used the immunoinformatics approach to design a potential epitope-based vaccine against the RNA-dependent RNA polymerase-L of CCHFV. Both the T-cell and B-cell epitopes were assessed, and the epitope “DCSSTPPDR” was found to be the most potential one, with 100% conservancy among all the strains of CCHFV. The epitope was also found to interact with both type I and II major histocompatibility complex molecules and is considered nonallergenic as well. In vivo study of our proposed peptide is advised for novel universal vaccine production, which might be an effective path to prevent CCHF disease.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>single-stranded RNA</kwd>
<kwd>immunoinformatics</kwd>
<kwd>RNA-dependent RNA polymerase</kwd>
<kwd>epitope</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>Crimean–Congo hemorrhagic fever virus (CCHFV) is the causative agent of the hemorrhagic fever, which was first described in Cremia in 1945.
<xref rid="b1-aabc-8-001" ref-type="bibr">1</xref>
The virus consists of a negative-sense single-stranded RNA, and its tripartite genome comprises the small (S), medium (M), and large (L) segments, which encode the viral nucleocapsid (N), glycoprotein precursor, and polymerase-L proteins, respectively.
<xref rid="b2-aabc-8-001" ref-type="bibr">2</xref>
Africa, Asia, eastern Europe, and the Middle East are the hotspots of this viral infection, with a high fatality rate between 15% and 70%.
<xref rid="b3-aabc-8-001" ref-type="bibr">3</xref>
,
<xref rid="b4-aabc-8-001" ref-type="bibr">4</xref>
In case of human infection, the progression of this disease is very rapid and it causes acute febrile illness, associated with petechiae, ecchymosis, disseminated intravascular coagulation, and multiple-organ failure.
<xref rid="b5-aabc-8-001" ref-type="bibr">5</xref>
A wide range of ticks that belong to the
<italic>Hyalomma</italic>
genus are considered the main vectors of this viral disease and the disease is spread through the bite of these ticks to humans or other domestic animals.
<xref rid="b6-aabc-8-001" ref-type="bibr">6</xref>
Due to inadequate hospital care, the disease is also spread nosocomially and a case reported that, in South Africa, about 33% medical personnel are infected through needlestick injury.
<xref rid="b7-aabc-8-001" ref-type="bibr">7</xref>
Alternate routes of infection, such as aerosol and droplet respiratory route of infection, were also suspected for several cases in Russia.
<xref rid="b8-aabc-8-001" ref-type="bibr">8</xref>
With a broad geographic distribution, this virus already covers >30 countries across Africa, southeastern Europe, the Middle East, western Asia, and more recently, some places of southwestern Europe, particularly Spain.
<xref rid="b9-aabc-8-001" ref-type="bibr">9</xref>
<xref rid="b11-aabc-8-001" ref-type="bibr">11</xref>
The wide distribution of this virus indicates the ability of the tick hosts to adapt across different environmental and geographic regions.
<xref rid="b12-aabc-8-001" ref-type="bibr">12</xref>
Despite the outbreaks, there is no reliable vaccine or drug for the treatment of CCHFV infection in animals or humans.
<xref rid="b13-aabc-8-001" ref-type="bibr">13</xref>
As a single-stranded-RNA-containing genome and due to the error-prone nature of its polymerase, the CCHFV incorporates random mutations into the genome. The rate of recombination in its RNA is also very high. As a consequence, the development of a vaccine or antiviral drug against CCHFV is very difficult.
<xref rid="b14-aabc-8-001" ref-type="bibr">14</xref>
</p>
<p>The design of epitope-based vaccines against some deadly viruses has gained much popularity due to its increased potency and safety.
<xref rid="b15-aabc-8-001" ref-type="bibr">15</xref>
,
<xref rid="b16-aabc-8-001" ref-type="bibr">16</xref>
The application of bioinformatics in immunology, which is also termed immunoinformatics, is now widely accepted. Immunoinformatics can assist in designing new vaccines through the identification of potential T-cell epitope, B-cell epitope, and human leukocyte antigen (HLA) ligands.
<xref rid="b17-aabc-8-001" ref-type="bibr">17</xref>
<xref rid="b19-aabc-8-001" ref-type="bibr">19</xref>
This novel approach has proven its efficacy in the case of multiple sclerosis,
<xref rid="b20-aabc-8-001" ref-type="bibr">20</xref>
malaria,
<xref rid="b21-aabc-8-001" ref-type="bibr">21</xref>
human immunodeficiency virus,
<xref rid="b22-aabc-8-001" ref-type="bibr">22</xref>
and tuberculosis,
<xref rid="b23-aabc-8-001" ref-type="bibr">23</xref>
with desired results. In our present study, we have proposed the design of a potential conserved epitope candidate through the immunoinformatics approaches in order to minimize the fatal effects of the CCHFV, with the expectation of finding a novel candidate for the vaccine via wet laboratory validation.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials and methods</title>
<sec>
<title>Sequence retrieval and conserved region identification</title>
<p>UniProtKB
<xref rid="b24-aabc-8-001" ref-type="bibr">24</xref>
database was used for the retrieval of the sequences of RNA-dependent RNA polymerase-L
<xref rid="b25-aabc-8-001" ref-type="bibr">25</xref>
and the envelope glycoprotein
<xref rid="b26-aabc-8-001" ref-type="bibr">26</xref>
of the CCHFV in the FASTA protein format.</p>
<p>BioEdit v7.2.3 sequence alignment editor
<xref rid="b27-aabc-8-001" ref-type="bibr">27</xref>
was used for the identification of the conserved region among the sequences through multiple-sequence alignment (MSA) with ClustalW.
<xref rid="b28-aabc-8-001" ref-type="bibr">28</xref>
Finally, Jalview v2 tool
<xref rid="b29-aabc-8-001" ref-type="bibr">29</xref>
was used to retrieve the alignment and the CLC Sequence Viewer v7.0.2 (
<ext-link ext-link-type="uri" xlink:href="http://www.clcbio.com">http://www.clcbio.com</ext-link>
) was used for analysis of the divergence among the different strains of the CCHFV.</p>
</sec>
<sec>
<title>Antigenicity determination of the conserved peptides</title>
<p>VaxiJen v2. 0, a Web-based server,
<xref rid="b30-aabc-8-001" ref-type="bibr">30</xref>
was used for the determination of the antigenicity of the conserved sequences. Herein, we used the default parameters for the prediction, with a threshold value of 0.4.</p>
</sec>
<sec>
<title>T-cell epitope prediction</title>
<p>Two online servers were used for the prediction of the T-cell epitope. Initially, the NetCTL v1.2 server was used for the identification of the potential T-cell epitope.
<xref rid="b31-aabc-8-001" ref-type="bibr">31</xref>
We used the default approach to predict the epitopes, including major histocompatibility complex class I (MHC-I) binding, proteasomal C terminal cleavage, and transporter of antigenic peptide (TAP) transport efficiency. The epitope prediction was restricted to 12 MHC-I supertypes. MHC-I binding and proteasomal cleavage were performed through artificial neural networks and the weight matrix was used for estimating TAP transport efficiency. The threshold for epitope identification was set at 0.5 to maintain sensitivity and specificity of 0.89 and 0.94, respectively. Finally, CTLPred
<xref rid="b32-aabc-8-001" ref-type="bibr">32</xref>
was implemented additionally for further confirmation about the prediction with default parameters.</p>
</sec>
<sec sec-type="methods">
<title>MHC-I and MHC-II restriction analysis</title>
<p>T Cell Epitope Prediction Tools from Immune Epitope Database and Analysis Resource (IEDB-AR) was used for the prediction of MHC-I
<xref rid="b33-aabc-8-001" ref-type="bibr">33</xref>
and MHC-II
<xref rid="b34-aabc-8-001" ref-type="bibr">34</xref>
,
<xref rid="b35-aabc-8-001" ref-type="bibr">35</xref>
binding of the peptide. The Stabilized Matrix Method
<xref rid="b36-aabc-8-001" ref-type="bibr">36</xref>
was used to calculate the half-maximal inhibitory concentration (IC
<sub>50</sub>
) of peptide binding to MHC-I molecules from different prediction methods, with a preselected 9.0-mer epitope. In case of MHC-II binding analysis, the IEDB-recommended method was used for the specific HLA-DQ, HLA-DP, and HLA-DR loci. Here, we used specific peptides for the prediction of MHC-II interaction on the basis of the antigenic conservancy and MHC-I analysis.</p>
</sec>
<sec>
<title>B-cell epitope prediction</title>
<p>B-cell epitope initiates immunoresponse through the interaction with B lymphocytes and causes the differentiation of B lymphocytes into plasma and memory cells.
<xref rid="b37-aabc-8-001" ref-type="bibr">37</xref>
IEDB-AR hosts a number of Web-based tools for the prediction of B-cell epitope. Multiple tools, including the Kolaskar and Tongaonkar antigenicity scale,
<xref rid="b38-aabc-8-001" ref-type="bibr">38</xref>
Emini surface accessibility prediction
<xref rid="b39-aabc-8-001" ref-type="bibr">39</xref>
and Bepipred linear epitope prediction analysis, were used for the B-cell epitope prediction with high accuracy.
<xref rid="b40-aabc-8-001" ref-type="bibr">40</xref>
</p>
</sec>
<sec>
<title>Homology modeling and protein variability determination of the conserved region</title>
<p>Homology model of the conserved region was obtained by MODELLER v9,
<xref rid="b41-aabc-8-001" ref-type="bibr">41</xref>
and the predicted model was assessed by PROCHECK
<xref rid="b42-aabc-8-001" ref-type="bibr">42</xref>
and QMEAN
<xref rid="b43-aabc-8-001" ref-type="bibr">43</xref>
servers of the SWISS-MODEL Workspace.
<xref rid="b44-aabc-8-001" ref-type="bibr">44</xref>
For the disorder prediction among the amino acid sequences, DISOPRED v3
<xref rid="b45-aabc-8-001" ref-type="bibr">45</xref>
was used. The Protein variability server was used to calculate protein variability index using Shannon variability coefficient.
<xref rid="b46-aabc-8-001" ref-type="bibr">46</xref>
</p>
</sec>
<sec sec-type="methods">
<title>Allergenicity and epitope conservancy analysis</title>
<p>In order to predict the allergenicity of the proposed epitopes with high accuracy, a Web-based server AlgPred
<xref rid="b47-aabc-8-001" ref-type="bibr">47</xref>
was used. Herein, we used a hybrid prediction (SVMc + IgEepitope + ARPs BLAST + MAST) approach to predict the allergenicity with an accuracy of about 86% at a threshold value of −0.4. The prediction procedure follows the guidelines of the Food and Agriculture Organization/World Health Organization, 2003. A Web-based tool from IEDB-AR
<xref rid="b48-aabc-8-001" ref-type="bibr">48</xref>
was used in order to identify the specific conservancy of the proposed epitopes.</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec sec-type="methods">
<title>Analysis of the retrieved sequences and their divergence</title>
<p>A total of 80 envelope glycoproteins and 34 RNA-dependent RNA polymerase-L molecules from different variants of the CCHFV were retrieved from the UniProt database. The MSA of two different types of proteins was retrieved from BioEdit tool through ClustalW with 1,000 bootstrap replicates (Figures S1 and S2). Conserved regions were grouped for the antigenic property analysis. CLC Sequence Viewer was used to construct phylograms for both proteins from the MSA obtained from BioEdit, in order to analyze the divergence among the retrieved sequences. Phylogram of RNA-dependent RNA polymerase-L is depicted in
<xref ref-type="fig" rid="f1-aabc-8-001">Figure 1</xref>
and the phylogram for the envelope glycoprotein is provided in Figure S3.</p>
</sec>
<sec>
<title>Antigenic peptide identification</title>
<p>Initially, the conserved sequences (MSA number: 3,563–3,915) of RNA-dependent RNA polymerase-L were separated into four conserved peptides, according to their continuity in the MSA. Then the VaxiJen v2.0 server was used to predict the antigenicity of all the grouped conserved peptides (
<xref ref-type="table" rid="t1-aabc-8-001">Table 1</xref>
). On the basis of the VaxiJen score, the top two conserved peptides (MSA number: 3,563–3,658 and 3,694–3,773) were selected for further analysis. The peptide with second-best VaxiJen score (MSA: 3,694–3,773) showed better results during further analysis of T-cell epitope identification, MHC interaction analysis, and B-cell epitope identification. The conservancy of this region among the different viral strains is partially depicted in
<xref ref-type="fig" rid="f2-aabc-8-001">Figure 2</xref>
.</p>
</sec>
<sec sec-type="methods">
<title>T-cell epitope identification and MHC interaction analysis</title>
<p>NetCTL v1.2 server predicted the T-cell epitopes through the combined approach for the 12 MHC-I supertypes. On the basis of the combined score, five epitopes with top scores (
<xref ref-type="table" rid="t2-aabc-8-001">Table 2</xref>
) were selected for further analysis. CTLPred server also predicted the T-cell epitopes based on an approach that combined artificial neural networks and support vector machines (
<xref ref-type="table" rid="t3-aabc-8-001">Table 3</xref>
). From the analysis, the common epitope–containing peptide, which was predicted by both servers, was selected and used for the MHC-binding analysis.</p>
<p>MHC-I-binding prediction, which was run through the Stabilized Matrix Method, predicted a wide range of
<italic>MHC-I</italic>
allele interactions for the proposed T-cell epitopes. The
<italic>MHC-I</italic>
alleles for which the epitope showed higher affinity (IC
<sub>50</sub>
<200 nM) are listed in
<xref ref-type="table" rid="t4-aabc-8-001">Table 4</xref>
. The output of the MHC-II interaction analysis is also shown in
<xref ref-type="table" rid="t4-aabc-8-001">Table 4</xref>
.</p>
</sec>
<sec>
<title>B-cell epitope identification</title>
<p>Amino acid–based methods were used for the prediction of potential B-cell epitope. Antigenic property of the peptides was assessed using the Kolaskar and Tongaonkar antigenicity scale. The average antigenic propensity score of the protein was 1.019, with a maximum of 1.197 and a minimum of 0.884. The threshold value for antigenic determination of the peptide was 1.0, where all epitopes with values >1.0 were potential antigenic determinants. We found that 14 epitopes satisfied the threshold value set prior to the analysis, and they had the potential to express the B-cell response. The results are summarized in
<xref ref-type="table" rid="t5-aabc-8-001">Table 5</xref>
and
<xref ref-type="fig" rid="f3-aabc-8-001">Figure 3</xref>
. Peptides with the potential to function as B-cell epitope must be surface accessible. For this reason, Emini surface accessibility prediction was employed, with a maximum propensity score of 4.946 at threshold 1.0. Results are summarized in
<xref ref-type="fig" rid="f4-aabc-8-001">Figure 4</xref>
. Finally, Bepipred linear epitope prediction tool predicted the linear B-cell epitope with the most reliable results of prediction. Results are shown in
<xref ref-type="fig" rid="f5-aabc-8-001">Figure 5</xref>
.</p>
</sec>
<sec sec-type="methods">
<title>Structure analysis and protein variability determination</title>
<p>Homology model of the conserved region was obtained by the MODELLER software, which is shown in
<xref ref-type="fig" rid="f6-aabc-8-001">Figure 6A</xref>
. PROCHECK server validated the stereochemical quality of the model through Ramachandran Plot (
<xref ref-type="fig" rid="f6-aabc-8-001">Figure 6B</xref>
), and Qmean server also assessed the tertiary structure, with a Qmean6 score of 0.268. DISOPRED v3 server predicted the disorder of the conserved peptide in order to get insight about the disorder among the conserved sequences, which is depicted in
<xref ref-type="fig" rid="f7-aabc-8-001">Figure 7</xref>
. Protein variability server predicted the variability of the conserved region of the RNA-dependent RNA polymerase-L (
<xref ref-type="fig" rid="f8-aabc-8-001">Figure 8</xref>
) to ensure that the proposed epitope is within the invariable region.</p>
</sec>
<sec sec-type="methods">
<title>Epitope conservancy and allergenicity analysis</title>
<p>IEDB conservancy analysis tool analyzed the epitope conservancy of the proposed epitopes that are shown in
<xref ref-type="table" rid="t6-aabc-8-001">Table 6</xref>
. AlgPred predicted the allergenicity of the epitopes based on amino acid composition. The prediction score of AlgPred for the two epitopes in combination was 0.49752311 at threshold of −0.4.</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>With a widely distributed endemically affected region and a randomly mutated genome, CCHFV imposes a great challenge to researchers in developing a successful therapeutic approach against it. The ability of an epitope-based vaccine to stimulate an effective specific immune response with a minute structure and without any unexpected side effects has made it a good choice for vaccine development.
<xref rid="b49-aabc-8-001" ref-type="bibr">49</xref>
In this instance, we started with the preferable target, namely, the envelope glycoprotein, but failed to identify any unique conserved region (Figure S1; multiple-sequence alignment of the envelope glycoprotein of CCHFV.) to design a peptide vaccine against the envelope glycoprotein. This was also revealed by phylogeny analysis, which is shown in Figure S3; phylogenetic tree showing the evolutionary divergence among the different envelope glycoproteins of CCHFV. RNA-dependent RNA polymerase, a product of the L-segment of the genome, comprises a unique conserved region among all the available strains of CCHFV (Figure S2; multiple-sequence alignment of the RNA-dependent RNA polymerase-L of CCHFV). This was the pedestal to think about a novel vaccine candidate. To ensure a firm immune response, we looked for the activation of both T-cell and B-cell immunity with a single epitope.
<xref rid="b50-aabc-8-001" ref-type="bibr">50</xref>
Antigenicity of the conserved peptides indicated their ability to provoke potential immune response and they were used for further analysis involving T-cell epitope prediction. Through the analysis of the output of both NetCTL and CTLPred, it was found that the epitope “DCSSTPPDR” would be the best candidate for the activation of T-cell immunity with potential antigenicity. Analysis of the MHC ligands for both type I and II revealed that the core epitope “DCSSTPPDR” would interact with the highest number of HLA molecules and that it would support the MHC molecules to present the epitope on the T-cell surface. The complete peptide for MHC-II restriction was FIACADCSSTPPDRW. The peptide DCSSTPPDR was also found to be the most potential candidate to raise B-cell immune response by amino acid–based B-cell epitope prediction, including Kolaskar and Tongaonkar antigenicity scale, Emini surface accessibility prediction, and Bepipred linear epitope prediction.</p>
<p>In order to see the exact location of the proposed epitope of the protein (shown spherically in
<xref ref-type="fig" rid="f6-aabc-8-001">Figure 6A</xref>
), the three-dimensional structure of the conserved peptide was modeled. This predicted model was validated with Ramachandran Plot (
<xref ref-type="fig" rid="f6-aabc-8-001">Figure 6B</xref>
), whereby 89.8% amino acid residues were found within the favored region. The disorderliness of the peptide remains outside of the proposed epitope region, which would secure the functioning of our predicted epitope (
<xref ref-type="fig" rid="f7-aabc-8-001">Figure 7</xref>
).</p>
<p>The most important feature of an epitope enabling its use as a vaccine is its conservancy. Conservancy analysis of the proposed epitope found 100% conservancy among all the available sequences. Another important criterion of the peptide vaccine is its allergenicity
<xref rid="b51-aabc-8-001" ref-type="bibr">51</xref>
; our proposed epitope was examined in silico and found to be nonallergenic in nature. A recent study in designing a vaccine against CCHFV targeting the envelope glycoprotein showed a high success rate in a mouse model.
<xref rid="b52-aabc-8-001" ref-type="bibr">52</xref>
But because it is a structural protein, the rate of mutation is higher than that of nonstructural proteins such as RNA polymerase,
<xref rid="b53-aabc-8-001" ref-type="bibr">53</xref>
a phenomenon that has been evidenced in our study through sequence analysis. As our proposed epitope is shown to be 100% conserved among different CCHF strains, we suggest that it will be the best possible candidate for vaccine designing.</p>
<p>Epitope-based vaccine designing is now becoming more popular and already has been established for rhinovirus,
<xref rid="b54-aabc-8-001" ref-type="bibr">54</xref>
dengue virus,
<xref rid="b55-aabc-8-001" ref-type="bibr">55</xref>
human corona virus,
<xref rid="b56-aabc-8-001" ref-type="bibr">56</xref>
and some others. This type of work has also been proven in vitro.
<xref rid="b57-aabc-8-001" ref-type="bibr">57</xref>
So, considering the above analysis,we predict that our proposed epitope would also trigger an immune response in vitro.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>The findings from this study denote that integrated computational approaches are very much effective for designing vaccine candidates against some deadly viruses such as the CCHFV, with the formally delineated experimental procedure. Thus, computational studies save both time and cost for researchers and can lead the wet laboratory work with higher possibilities of getting the desired outcome.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Disclosure</bold>
</p>
<p>The authors report no conflicts of interests in this work.</p>
</fn>
</fn-group>
<ref-list>
<title>References</title>
<ref id="b1-aabc-8-001">
<label>1</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Cunha</surname>
<given-names>BA</given-names>
</name>
</person-group>
<source>Tickborne Infectious Diseases: Diagnosis and Management</source>
<volume>24</volume>
<publisher-loc>Boca Raton, FL</publisher-loc>
<publisher-name>CRC Press</publisher-name>
<year>2000</year>
</element-citation>
</ref>
<ref id="b2-aabc-8-001">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schmaljohn</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hooper</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Bunyaviridae: the viruses and their replication</article-title>
<source>Fields Virol</source>
<year>2001</year>
<volume>2</volume>
<issue>2</issue>
<fpage>20</fpage>
</element-citation>
</ref>
<ref id="b3-aabc-8-001">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lacy</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Smego</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Viral hemorrhagic fevers</article-title>
<source>Adv Pediatr Infect Dis</source>
<year>1995</year>
<volume>12</volume>
<fpage>21</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="pmid">9033974</pub-id>
</element-citation>
</ref>
<ref id="b4-aabc-8-001">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<collab>Centers for Disease Control and Prevention (CDC)</collab>
</person-group>
<article-title>Management of patients with suspected viral hemorrhagic fever</article-title>
<source>MMWR Morb Mortal Wkly Rep</source>
<year>1988</year>
<volume>37</volume>
<fpage>1</fpage>
</element-citation>
</ref>
<ref id="b5-aabc-8-001">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ergönül</surname>
<given-names>Ö</given-names>
</name>
</person-group>
<article-title>Crimean–Congo haemorrhagic fever</article-title>
<source>Lancet Infect Dis</source>
<year>2006</year>
<volume>6</volume>
<issue>4</issue>
<fpage>203</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="pmid">16554245</pub-id>
</element-citation>
</ref>
<ref id="b6-aabc-8-001">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ergonul</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Crimean–Congo hemorrhagic fever virus: new outbreaks, new discoveries</article-title>
<source>Curr Opin Virol</source>
<year>2012</year>
<volume>2</volume>
<issue>2</issue>
<fpage>215</fpage>
<lpage>220</lpage>
<pub-id pub-id-type="pmid">22482717</pub-id>
</element-citation>
</ref>
<ref id="b7-aabc-8-001">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Swanepoel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Struthers</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Shepherd</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McGillivray</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Nel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jupp</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Crimean–Congo hemorrhagic fever in South Africa</article-title>
<source>Am J Trop Med Hyg</source>
<year>1983</year>
<volume>32</volume>
<issue>6</issue>
<fpage>1407</fpage>
<lpage>1415</lpage>
<pub-id pub-id-type="pmid">6418019</pub-id>
</element-citation>
</ref>
<ref id="b8-aabc-8-001">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitehouse</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Crimean–Congo hemorrhagic fever</article-title>
<source>Antiviral Res</source>
<year>2004</year>
<volume>64</volume>
<issue>3</issue>
<fpage>145</fpage>
<lpage>160</lpage>
<pub-id pub-id-type="pmid">15550268</pub-id>
</element-citation>
</ref>
<ref id="b9-aabc-8-001">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>David-West</surname>
<given-names>TS</given-names>
</name>
<name>
<surname>Cooke</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>David-West</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Seroepidemiology of Congo virus (related to the virus of Crimean haemorrhagic fever) in Nigeria</article-title>
<source>Bull World Health Organ</source>
<year>1974</year>
<volume>51</volume>
<issue>5</issue>
<fpage>543</fpage>
<pub-id pub-id-type="pmid">4219295</pub-id>
</element-citation>
</ref>
<ref id="b10-aabc-8-001">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gonzalez</surname>
<given-names>J-P</given-names>
</name>
<name>
<surname>LeGuenno</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Guillaud</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>ML</given-names>
</name>
</person-group>
<article-title>A fatal case of Crimean–Congo haemorrhagic fever in Mauritania: virological and serological evidence suggesting epidemic transmission</article-title>
<source>Trans R Soc Trop Med Hyg</source>
<year>1990</year>
<volume>84</volume>
<issue>4</issue>
<fpage>573</fpage>
<lpage>576</lpage>
<pub-id pub-id-type="pmid">2128671</pub-id>
</element-citation>
</ref>
<ref id="b11-aabc-8-001">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>LeGuenno</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Guillaud</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Desoutter</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gonzalez</surname>
<given-names>J-P</given-names>
</name>
<name>
<surname>Camicas</surname>
<given-names>J-L</given-names>
</name>
</person-group>
<article-title>Distribution of Crimean–Congo hemorrhagic fever viral antibody in Senegal: environmental and vectorial correlates</article-title>
<source>Am J Trop Med Hyg</source>
<year>1990</year>
<volume>43</volume>
<issue>5</issue>
<fpage>557</fpage>
<lpage>566</lpage>
<pub-id pub-id-type="pmid">2122750</pub-id>
</element-citation>
</ref>
<ref id="b12-aabc-8-001">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Estrada-Peña</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ruiz-Fons</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Acevedo</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gortazar</surname>
<given-names>C</given-names>
</name>
<name>
<surname>la Fuente</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Factors driving the circulation and possible expansion of Crimean–Congo haemorrhagic fever virus in the western Palearctic</article-title>
<source>J Appl Microbiol</source>
<year>2013</year>
<volume>114</volume>
<issue>1</issue>
<fpage>278</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="pmid">23061817</pub-id>
</element-citation>
</ref>
<ref id="b13-aabc-8-001">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoogstraal</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>The epidemiology of tick-borne Crimean–Congo hemorrhagic fever in Asia, Europe, and Africa</article-title>
<source>J Med Entomol</source>
<year>1979</year>
<volume>15</volume>
<issue>4</issue>
<fpage>307</fpage>
<lpage>417</lpage>
<pub-id pub-id-type="pmid">113533</pub-id>
</element-citation>
</ref>
<ref id="b14-aabc-8-001">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kraus</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Mirazimi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Molecular biology and pathogenesis of Crimean–Congo hemorrhagic fever virus</article-title>
<source>Future Virol</source>
<year>2010</year>
<volume>5</volume>
<issue>4</issue>
<fpage>469</fpage>
<lpage>479</lpage>
</element-citation>
</ref>
<ref id="b15-aabc-8-001">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holland</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Domingo</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Origin and evolution of viruses</article-title>
<source>Virus Genes</source>
<year>1998</year>
<volume>16</volume>
<issue>1</issue>
<fpage>13</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">9562888</pub-id>
</element-citation>
</ref>
<ref id="b16-aabc-8-001">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sette</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Newman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Livingston</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Optimizing vaccine design for cellular processing, MHC binding and TCR recognition</article-title>
<source>Tissue Antigens</source>
<year>2002</year>
<volume>59</volume>
<issue>6</issue>
<fpage>443</fpage>
<lpage>451</lpage>
<pub-id pub-id-type="pmid">12445314</pub-id>
</element-citation>
</ref>
<ref id="b17-aabc-8-001">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sette</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Fikes</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Epitope-based vaccines: an update on epitope identification, vaccine design and delivery</article-title>
<source>Curr Opin Immunol</source>
<year>2003</year>
<volume>15</volume>
<issue>4</issue>
<fpage>461</fpage>
<lpage>470</lpage>
<pub-id pub-id-type="pmid">12900280</pub-id>
</element-citation>
</ref>
<ref id="b18-aabc-8-001">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poland</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Ovsyannikova</surname>
<given-names>IG</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Application of pharmacogenomics to vaccines</article-title>
<source>Pharmacogenomics</source>
<year>2009</year>
<volume>10</volume>
<issue>5</issue>
<fpage>837</fpage>
<lpage>852</lpage>
<pub-id pub-id-type="pmid">19450131</pub-id>
</element-citation>
</ref>
<ref id="b19-aabc-8-001">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petrovsky</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Brusic</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Computational immunology: the coming of age</article-title>
<source>Immunol Cell Biol</source>
<year>2002</year>
<volume>80</volume>
<issue>3</issue>
<fpage>248</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="pmid">12067412</pub-id>
</element-citation>
</ref>
<ref id="b20-aabc-8-001">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bourdette</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Edmonds</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis</article-title>
<source>Mult Scler</source>
<year>2005</year>
<volume>11</volume>
<issue>5</issue>
<fpage>552</fpage>
<lpage>561</lpage>
<pub-id pub-id-type="pmid">16193893</pub-id>
</element-citation>
</ref>
<ref id="b21-aabc-8-001">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>López</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Weilenman</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Audran</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A synthetic malaria vaccine elicits a potent CD8+ and CD4+ T lymphocyte immune response in humans. Implications for vaccination strategies</article-title>
<source>Eur J Immunol</source>
<year>2001</year>
<volume>31</volume>
<issue>7</issue>
<fpage>1989</fpage>
<lpage>1998</lpage>
<pub-id pub-id-type="pmid">11449351</pub-id>
</element-citation>
</ref>
<ref id="b22-aabc-8-001">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilson</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>McKinney</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Anders</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1</article-title>
<source>J Immunol</source>
<year>2003</year>
<volume>171</volume>
<issue>10</issue>
<fpage>5611</fpage>
<lpage>5623</lpage>
<pub-id pub-id-type="pmid">14607970</pub-id>
</element-citation>
</ref>
<ref id="b23-aabc-8-001">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Robinson</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>Amara</surname>
<given-names>RR</given-names>
</name>
</person-group>
<article-title>T cell vaccines for microbial infections</article-title>
<source>Nat Med</source>
<year>2005</year>
<volume>11</volume>
<fpage>S25</fpage>
<lpage>S32</lpage>
<pub-id pub-id-type="pmid">15812486</pub-id>
</element-citation>
</ref>
<ref id="b24-aabc-8-001">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apweiler</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bairoch</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>CH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>UniProt: the universal protein knowledgebase</article-title>
<source>Nucleic Acids Res</source>
<year>2004</year>
<volume>32</volume>
<issue>suppl 1</issue>
<fpage>D115</fpage>
<lpage>D119</lpage>
<pub-id pub-id-type="pmid">14681372</pub-id>
</element-citation>
</ref>
<ref id="b25-aabc-8-001">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kinsella</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Grolla</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Czub</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Flick</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Sequence determination of the Crimean–Congo hemorrhagic fever virus L segment</article-title>
<source>Virology</source>
<year>2004</year>
<volume>321</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>28</lpage>
<pub-id pub-id-type="pmid">15033561</pub-id>
</element-citation>
</ref>
<ref id="b26-aabc-8-001">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanchez</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Vincent</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Nichol</surname>
<given-names>ST</given-names>
</name>
</person-group>
<article-title>Characterization of the glycoproteins of Crimean–Congo hemorrhagic fever virus</article-title>
<source>J Virol</source>
<year>2002</year>
<volume>76</volume>
<issue>14</issue>
<fpage>7263</fpage>
<lpage>7275</lpage>
<pub-id pub-id-type="pmid">12072526</pub-id>
</element-citation>
</ref>
<ref id="b27-aabc-8-001">
<label>27</label>
<element-citation publication-type="confproc">
<person-group person-group-type="author">
<name>
<surname>Hall</surname>
<given-names>TA</given-names>
</name>
</person-group>
<source>BioEdit: A User-Friendly Biological Sequence Alignment Editor and analysis Program for Windows 95/98/NT</source>
<conf-name>Paper presented at: Nucleic Acids Symposium Series</conf-name>
<year>1999</year>
<conf-loc>London</conf-loc>
</element-citation>
</ref>
<ref id="b28-aabc-8-001">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thompson</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Higgins</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice</article-title>
<source>Nucleic Acids Res</source>
<year>1994</year>
<volume>22</volume>
<issue>22</issue>
<fpage>4673</fpage>
<lpage>4680</lpage>
<pub-id pub-id-type="pmid">7984417</pub-id>
</element-citation>
</ref>
<ref id="b29-aabc-8-001">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Waterhouse</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Procter</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Clamp</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Barton</surname>
<given-names>GJ</given-names>
</name>
</person-group>
<article-title>Jalview version 2 – a multiple sequence alignment editor and analysis workbench</article-title>
<source>Bioinformatics</source>
<year>2009</year>
<volume>25</volume>
<issue>9</issue>
<fpage>1189</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="pmid">19151095</pub-id>
</element-citation>
</ref>
<ref id="b30-aabc-8-001">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doytchinova</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Flower</surname>
<given-names>DR</given-names>
</name>
</person-group>
<article-title>VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines</article-title>
<source>BMC Bioinformatics</source>
<year>2007</year>
<volume>8</volume>
<issue>1</issue>
<fpage>4</fpage>
<pub-id pub-id-type="pmid">17207271</pub-id>
</element-citation>
</ref>
<ref id="b31-aabc-8-001">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsen</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Lundegaard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lamberth</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Buus</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lund</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction</article-title>
<source>BMC Bioinformatics</source>
<year>2007</year>
<volume>8</volume>
<issue>1</issue>
<fpage>424</fpage>
<pub-id pub-id-type="pmid">17973982</pub-id>
</element-citation>
</ref>
<ref id="b32-aabc-8-001">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bhasin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Raghava</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Prediction of CTL epitopes using QM, SVM and ANN techniques</article-title>
<source>Vaccine</source>
<year>2004</year>
<volume>22</volume>
<issue>23</issue>
<fpage>3195</fpage>
<lpage>3204</lpage>
<pub-id pub-id-type="pmid">15297074</pub-id>
</element-citation>
</ref>
<ref id="b33-aabc-8-001">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buus</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lauemøller</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Worning</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach</article-title>
<source>Tissue Antigens</source>
<year>2003</year>
<volume>62</volume>
<issue>5</issue>
<fpage>378</fpage>
<lpage>384</lpage>
<pub-id pub-id-type="pmid">14617044</pub-id>
</element-citation>
</ref>
<ref id="b34-aabc-8-001">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sidney</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peptide binding predictions for HLA DR, DP and DQ molecules</article-title>
<source>BMC Bioinformatics</source>
<year>2010</year>
<volume>11</volume>
<issue>1</issue>
<fpage>568</fpage>
<pub-id pub-id-type="pmid">21092157</pub-id>
</element-citation>
</ref>
<ref id="b35-aabc-8-001">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Sidney</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Dow</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mothe</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sette</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peters</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach</article-title>
<source>PLoS Comput Biol</source>
<year>2008</year>
<volume>4</volume>
<issue>4</issue>
<fpage>e1000048</fpage>
<pub-id pub-id-type="pmid">18389056</pub-id>
</element-citation>
</ref>
<ref id="b36-aabc-8-001">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peters</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sette</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method</article-title>
<source>BMC Bioinformatics</source>
<year>2005</year>
<volume>6</volume>
<issue>1</issue>
<fpage>132</fpage>
<pub-id pub-id-type="pmid">15927070</pub-id>
</element-citation>
</ref>
<ref id="b37-aabc-8-001">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nair</surname>
<given-names>DT</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Siddiqui</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Nayak</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>KV</given-names>
</name>
<name>
<surname>Salunke</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response</article-title>
<source>J Immunol</source>
<year>2002</year>
<volume>168</volume>
<issue>5</issue>
<fpage>2371</fpage>
<lpage>2382</lpage>
<pub-id pub-id-type="pmid">11859128</pub-id>
</element-citation>
</ref>
<ref id="b38-aabc-8-001">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolaskar</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tongaonkar</surname>
<given-names>PC</given-names>
</name>
</person-group>
<article-title>A semi-empirical method for prediction of antigenic determinants on protein antigens</article-title>
<source>FEBS Lett</source>
<year>1990</year>
<volume>276</volume>
<issue>1</issue>
<fpage>172</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="pmid">1702393</pub-id>
</element-citation>
</ref>
<ref id="b39-aabc-8-001">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Emini</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Hughes</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Perlow</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Boger</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide</article-title>
<source>J Virol</source>
<year>1985</year>
<volume>55</volume>
<issue>3</issue>
<fpage>836</fpage>
<lpage>839</lpage>
<pub-id pub-id-type="pmid">2991600</pub-id>
</element-citation>
</ref>
<ref id="b40-aabc-8-001">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larsen</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Lund</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Nielsen</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Improved method for predicting linear B-cell epitopes</article-title>
<source>Immunome Res</source>
<year>2006</year>
<volume>2</volume>
<issue>1</issue>
<fpage>2</fpage>
<pub-id pub-id-type="pmid">16635264</pub-id>
</element-citation>
</ref>
<ref id="b41-aabc-8-001">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Šali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Potterton</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>van Vlijmen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Karplus</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Evaluation of comparative protein modeling by MODELLER</article-title>
<source>Proteins</source>
<year>1995</year>
<volume>23</volume>
<issue>3</issue>
<fpage>318</fpage>
<lpage>326</lpage>
<pub-id pub-id-type="pmid">8710825</pub-id>
</element-citation>
</ref>
<ref id="b42-aabc-8-001">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laskowski</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Rullmann</surname>
<given-names>JAC</given-names>
</name>
<name>
<surname>MacArthur</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Kaptein</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Thornton</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR</article-title>
<source>J Biomol NMR</source>
<year>1996</year>
<volume>8</volume>
<issue>4</issue>
<fpage>477</fpage>
<lpage>486</lpage>
<pub-id pub-id-type="pmid">9008363</pub-id>
</element-citation>
</ref>
<ref id="b43-aabc-8-001">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benkert</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Biasini</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Schwede</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Toward the estimation of the absolute quality of individual protein structure models</article-title>
<source>Bioinformatics</source>
<year>2011</year>
<volume>27</volume>
<issue>3</issue>
<fpage>343</fpage>
<lpage>350</lpage>
<pub-id pub-id-type="pmid">21134891</pub-id>
</element-citation>
</ref>
<ref id="b44-aabc-8-001">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnold</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Bordoli</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kopp</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Schwede</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<issue>2</issue>
<fpage>195</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="pmid">16301204</pub-id>
</element-citation>
</ref>
<ref id="b45-aabc-8-001">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ward</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>McGuffin</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Bryson</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Buxton</surname>
<given-names>BF</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>DT</given-names>
</name>
</person-group>
<article-title>The DISOPRED server for the prediction of protein disorder</article-title>
<source>Bioinformatics</source>
<year>2004</year>
<volume>20</volume>
<issue>13</issue>
<fpage>2138</fpage>
<lpage>2139</lpage>
<pub-id pub-id-type="pmid">15044227</pub-id>
</element-citation>
</ref>
<ref id="b46-aabc-8-001">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Boronat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diez-Rivero</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Reinherz</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Reche</surname>
<given-names>PA</given-names>
</name>
</person-group>
<article-title>PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery</article-title>
<source>Nucleic Acids Res</source>
<year>2008</year>
<volume>36</volume>
<issue>Suppl 2</issue>
<fpage>W35</fpage>
<lpage>W41</lpage>
<pub-id pub-id-type="pmid">18442995</pub-id>
</element-citation>
</ref>
<ref id="b47-aabc-8-001">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saha</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Raghava</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>AlgPred: prediction of allergenic proteins and mapping of IgE epitopes</article-title>
<source>Nucleic Acids Res</source>
<year>2006</year>
<volume>34</volume>
<issue>Suppl 2</issue>
<fpage>W202</fpage>
<lpage>W209</lpage>
<pub-id pub-id-type="pmid">16844994</pub-id>
</element-citation>
</ref>
<ref id="b48-aabc-8-001">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bui</surname>
<given-names>H-H</given-names>
</name>
<name>
<surname>Sidney</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Fusseder</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sette</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines</article-title>
<source>BMC Bioinformatics</source>
<year>2007</year>
<volume>8</volume>
<issue>1</issue>
<fpage>361</fpage>
<pub-id pub-id-type="pmid">17897458</pub-id>
</element-citation>
</ref>
<ref id="b49-aabc-8-001">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shrestha</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Diamond</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Role of CD8+ T cells in control of West Nile virus infection</article-title>
<source>J Virol</source>
<year>2004</year>
<volume>78</volume>
<issue>15</issue>
<fpage>8312</fpage>
<lpage>8321</lpage>
<pub-id pub-id-type="pmid">15254203</pub-id>
</element-citation>
</ref>
<ref id="b50-aabc-8-001">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arnon</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A novel approach to vaccine design – epitope-based vaccines</article-title>
<source>FEBS J</source>
<year>2006</year>
<volume>273</volume>
<fpage>33</fpage>
<lpage>34</lpage>
</element-citation>
</ref>
<ref id="b51-aabc-8-001">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKeever</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hubbard</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Vaccination and allergic disease: a birth cohort study</article-title>
<source>Am J Public Health</source>
<year>2004</year>
<volume>94</volume>
<issue>6</issue>
<fpage>985</fpage>
<pub-id pub-id-type="pmid">15249303</pub-id>
</element-citation>
</ref>
<ref id="b52-aabc-8-001">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Buttigieg</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Dowall</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Findlay-Wilson</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel vaccine against Crimean–Congo haemorrhagic fever protects 100% of animals against lethal challenge in a mouse model</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<issue>3</issue>
<fpage>e91516</fpage>
<pub-id pub-id-type="pmid">24621656</pub-id>
</element-citation>
</ref>
<ref id="b53-aabc-8-001">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization of human coronavirus etiology in Chinese adults with acute upper respiratory tract infection by real-time RT-PCR assays</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<issue>6</issue>
<fpage>e38638</fpage>
<pub-id pub-id-type="pmid">22719912</pub-id>
</element-citation>
</ref>
<ref id="b54-aabc-8-001">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lapelosa</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gallicchio</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes</article-title>
<source>J Mol Biol</source>
<year>2009</year>
<volume>385</volume>
<issue>2</issue>
<fpage>675</fpage>
<lpage>691</lpage>
<pub-id pub-id-type="pmid">19026659</pub-id>
</element-citation>
</ref>
<ref id="b55-aabc-8-001">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chakraborty</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chakravorty</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A computational approach for identification of epitopes in dengue virus envelope protein: a step towards designing a universal dengue vaccine targeting endemic regions</article-title>
<source>In Silico Biol</source>
<year>2010</year>
<volume>10</volume>
<issue>5</issue>
<fpage>235</fpage>
<lpage>246</lpage>
<pub-id pub-id-type="pmid">22430357</pub-id>
</element-citation>
</ref>
<ref id="b56-aabc-8-001">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oany</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Emran</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Jyoti</surname>
<given-names>TP</given-names>
</name>
</person-group>
<article-title>Design of an epitope-based peptide vaccine against spike protein of human corona virus: an in silico approach</article-title>
<source>Drug Des Devel Ther</source>
<year>2014</year>
<volume>8</volume>
<fpage>1139</fpage>
<lpage>1149</lpage>
</element-citation>
</ref>
<ref id="b57-aabc-8-001">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khan</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Zaman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chakraborty</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In silico predicted mycobacterial epitope elicits in vitro T-cell responses</article-title>
<source>Mol Immunol</source>
<year>2014</year>
<volume>61</volume>
<issue>1</issue>
<fpage>16</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">24853589</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
<floats-group>
<fig id="f1-aabc-8-001" position="float">
<label>Figure 1</label>
<caption>
<p>Phylogenetic tree showing the evolutionary divergence among the different RNA-dependent RNA polymerase-L molecules of the CCHFV.</p>
<p>
<bold>Notes:</bold>
Here, cladogram view is shown with appropriate distance among the different strains. The blue dotted view indicates the node of the tree.</p>
<p>
<bold>Abbreviation:</bold>
CCHFV, Crimean–Congo hemorrhagic fever virus.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig1"></graphic>
</fig>
<fig id="f2-aabc-8-001" position="float">
<label>Figure 2</label>
<caption>
<p>MSA of the conserved region of RNA-dependent RNA polymerase-L. Only the partial sequences containing the proposed epitope sequence are shown here.</p>
<p>
<bold>Notes:</bold>
Clustalx color is used here. Different colors indicate different amino acid residues.</p>
<p>
<bold>Abbreviation:</bold>
MSA, multiple-sequence alignment.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig2"></graphic>
</fig>
<fig id="f3-aabc-8-001" position="float">
<label>Figure 3</label>
<caption>
<p>Kolaskar and Tongaonkar antigenicity prediction of the conserved peptide, ranging from 3,563 to 3,915 MSA number.</p>
<p>
<bold>Notes:</bold>
The region from 197 to 202 is the proposed epitope. The X- and Y-axes represent the sequence position and antigenic propensity score, respectively. The threshold value is 1.0. The regions above the threshold are antigenic, shown in yellow.</p>
<p>
<bold>Abbreviation:</bold>
MSA, multiple-sequence alignment.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig3"></graphic>
</fig>
<fig id="f4-aabc-8-001" position="float">
<label>Figure 4</label>
<caption>
<p>Emini surface accessibility prediction of the proposed epitope, with a minimum propensity score of 0.327 and maximum score of 1.488.</p>
<p>
<bold>Notes:</bold>
The X- and Y-axes represent the sequence position and surface probability, respectively. The threshold value is 1.0. The regions above the threshold are antigenic, shown in yellow.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig4"></graphic>
</fig>
<fig id="f5-aabc-8-001" position="float">
<label>Figure 5</label>
<caption>
<p>Bepipred linear epitope prediction of the proposed epitope with a minimum propensity score of 1.631 and maximum score of 2.094.</p>
<p>
<bold>Notes:</bold>
The X- and Y-axes represent the sequence position and propensity score, respectively. The threshold is 0.350. The regions having beta turns are shown in yellow. The highest peak region indicates the most potent B-cell epitope.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig5"></graphic>
</fig>
<fig id="f6-aabc-8-001" position="float">
<label>Figure 6</label>
<caption>
<p>Three-dimensional structure prediction and validation.</p>
<p>
<bold>Notes:</bold>
(
<bold>A</bold>
) Three-dimensional model of the conserved region. Here, the epitope “DCSSTPPDR” is shown spherically. The outerside location of the epitope indicates its surface accessibility. (
<bold>B</bold>
) Ramachandran plot of the predicted model shows that most of the residues are in the allowed region of the plot, proving the validity of the model.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig6"></graphic>
</fig>
<fig id="f7-aabc-8-001" position="float">
<label>Figure 7</label>
<caption>
<p>Disorder prediction of the conserved antigenic amino acid sequences. Here, our proposed epitope lies outside (197–202) of the disordered region to secure its potentiality as an effective epitope.</p>
<p>
<bold>Notes:</bold>
Amino acids in the input sequence are considered disordered when the blue line is above the gray dashed line, that is, when the confidence score is >0.5. The orange line shows the confidence score of the disordered protein-binding residue predictions.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig7"></graphic>
</fig>
<fig id="f8-aabc-8-001" position="float">
<label>Figure 8</label>
<caption>
<p>Protein variability index of the conserved peptides of all the sequences. The prediction suggests that our proposed epitope (197–202) falls in the invariable region.</p>
<p>
<bold>Notes:</bold>
The conservancy threshold was 1.0 in this analysis. The X-axis indicates the amino acid positions in the sequences and the Y-axis indicates the Shannon variability score.</p>
</caption>
<graphic xlink:href="aabc-8-001Fig8"></graphic>
</fig>
<table-wrap id="t1-aabc-8-001" position="float">
<label>Table 1</label>
<caption>
<p>Antigenicity determination of the conserved peptide by Vaxijen server</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Peptide number</th>
<th valign="top" align="left" rowspan="1" colspan="1">Peptide</th>
<th valign="top" align="left" rowspan="1" colspan="1">Region</th>
<th valign="top" align="left" rowspan="1" colspan="1">Vaxijen score (threshold: 0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">LIQTLFPDKFEDFLDRTQLHPEFRDLTPDFSLTQKVHFKRNQIPSVENVQISIDATLPESVEAVPVTERKMFPLPETPLSEVHSIERIMENFTRLM</td>
<td valign="top" align="left" rowspan="1" colspan="1">3,563–3,658</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.6556</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1">DYGERGIVEENHMKFSGEDQLETRQLLLVEVGFQTDIDGKIRTDHKKWKDILKLLELLGIKCSFIACADCSSTPPDRWWI</td>
<td valign="top" align="left" rowspan="1" colspan="1">3,694–3,773</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.4268</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1">EDRVRVLKNSVSFLFNKLSRNSPTEVTDIVVGAISTQKVRSYLKAGTATKTPVSTKDVLETWEK</td>
<td valign="top" align="left" rowspan="1" colspan="1">3,775–3,838</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.3662</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">MKEHILNRPTGLTLPTSLEQAMRKGLVEGVVISKEGSESCINMLKENLDRITDEFERTKFKHELTQNITTSEKML</td>
<td valign="top" align="left" rowspan="1" colspan="1">3,841–3,915</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.1044</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="t2-aabc-8-001" position="float">
<label>Table 2</label>
<caption>
<p>Prediction of the T-cell epitope by NetCTL server on the basis of combined score</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Number</th>
<th valign="top" align="left" rowspan="1" colspan="1">Epitope</th>
<th valign="top" align="left" rowspan="1" colspan="1">Combined score (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">CSSTPPDRW</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.7235</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1">DVLETWEKM</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.6491</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1">WEKMKEHIL</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.5089</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">ERTKFKHEL</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.4955</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">5</td>
<td valign="top" align="left" rowspan="1" colspan="1">VPVTERKMF</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.4734</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="t3-aabc-8-001" position="float">
<label>Table 3</label>
<caption>
<p>Prediction of the T-cell epitope by CTLPred server</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Epitope</th>
<th valign="top" align="left" rowspan="1" colspan="1">Start position</th>
<th valign="top" align="left" rowspan="1" colspan="1">Score (ANN/SVM)</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">LNRPTGLTL</td>
<td valign="top" align="left" rowspan="1" colspan="1">246</td>
<td valign="top" align="left" rowspan="1" colspan="1">1.00/−0.23718777</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">FSLTQKVHF</td>
<td valign="top" align="left" rowspan="1" colspan="1">30</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.99/−0.23718777</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">ADCSSTPPD</td>
<td valign="top" align="left" rowspan="1" colspan="1">164</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.99/−0.23718777</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">LSRNSPTEV</td>
<td valign="top" align="left" rowspan="1" colspan="1">194</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.99/−0.23718777</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">TSLEQAMRK</td>
<td valign="top" align="left" rowspan="1" colspan="1">256</td>
<td valign="top" align="left" rowspan="1" colspan="1">0.99/−0.23718777</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn1-aabc-8-001">
<p>
<bold>Abbreviations:</bold>
ANN/SVM, artificial neural networks/support vector machines; CTLP, Cytotoxic T Lymphocyte Prediction (CTLPred).</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="t4-aabc-8-001" position="float">
<label>Table 4</label>
<caption>
<p>MHC-I and MHC-II interaction of the proposed sequence by IEDB-AR</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Epitope</th>
<th valign="top" align="left" rowspan="1" colspan="1">MHC interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="2" valign="top" align="left" rowspan="1">
<bold>MHC-I interaction analysis</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">DCSSTPPDR</td>
<td valign="top" align="left" rowspan="1" colspan="1">HLA-C*12:03, HLA-C*03:03, HLA-C*14:02, HLA-B*58:01, HLA-C*12:03, HLA-C*03:03, HLA-C*15:02, HLA-B*57:01</td>
</tr>
<tr>
<td colspan="2" valign="top" align="left" rowspan="1">
<bold>MHC-II interaction analysis</bold>
</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">FIACADCSSTPPDRW</td>
<td valign="top" align="left" rowspan="1" colspan="1">HLA-DRB1*04:01, HLA-DRB1*03:01, HLA-DRB1*08:02, HLA-DRB3*01:01, DQB1*03:01, HLA-DRB1*09:01, HLA-DRB5*01:01, HLA-DRB1*04:05, DQB1*04:02, HLA-DRB1*11:01, HLA-DRB1*07:01, DQB1*02:01, HLA-DRB1*13:02, DQB1*03:02, DQB1*05:01, HLA-DRB4*01:01, HLA-DRB1*01:01, HLA-DRB3*02:02, DPB1*04:01, DQB1*06:02, DPB1*14:01, HLA-DRB1*15:01, DPB1*02:01, HLA-DRB1*12:01, DPB1*04:02, DPB1*05:01, DPB1*01:01</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tfn2-aabc-8-001">
<p>
<bold>Abbreviations:</bold>
IEDB-AR, Immune Epitope Database and Analysis Resource; MHC, major histocompatibility complex.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<table-wrap id="t5-aabc-8-001" position="float">
<label>Table 5</label>
<caption>
<p>Kolaskar and Tongaonkar antigenicity analysis</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Number</th>
<th valign="top" align="left" rowspan="1" colspan="1">Start position</th>
<th valign="top" align="left" rowspan="1" colspan="1">End position</th>
<th valign="top" align="left" rowspan="1" colspan="1">Peptide</th>
<th valign="top" align="left" rowspan="1" colspan="1">Peptide length</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">1</td>
<td valign="top" align="left" rowspan="1" colspan="1">16</td>
<td valign="top" align="left" rowspan="1" colspan="1">23</td>
<td valign="top" align="left" rowspan="1" colspan="1">RTQLHPEF</td>
<td valign="top" align="left" rowspan="1" colspan="1">8</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">2</td>
<td valign="top" align="left" rowspan="1" colspan="1">28</td>
<td valign="top" align="left" rowspan="1" colspan="1">39</td>
<td valign="top" align="left" rowspan="1" colspan="1">PDFSLTQKVHFK</td>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">3</td>
<td valign="top" align="left" rowspan="1" colspan="1">43</td>
<td valign="top" align="left" rowspan="1" colspan="1">67</td>
<td valign="top" align="left" rowspan="1" colspan="1">IPSVENVQISIDVTLPESVEAVPVT</td>
<td valign="top" align="left" rowspan="1" colspan="1">25</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">4</td>
<td valign="top" align="left" rowspan="1" colspan="1">72</td>
<td valign="top" align="left" rowspan="1" colspan="1">85</td>
<td valign="top" align="left" rowspan="1" colspan="1">FPLPETPLSEVHSI</td>
<td valign="top" align="left" rowspan="1" colspan="1">14</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">5</td>
<td valign="top" align="left" rowspan="1" colspan="1">117</td>
<td valign="top" align="left" rowspan="1" colspan="1">130</td>
<td valign="top" align="left" rowspan="1" colspan="1">QSAVEHESPSISAF</td>
<td valign="top" align="left" rowspan="1" colspan="1">14</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">6</td>
<td valign="top" align="left" rowspan="1" colspan="1">154</td>
<td valign="top" align="left" rowspan="1" colspan="1">163</td>
<td valign="top" align="left" rowspan="1" colspan="1">TRQLLLVEVG</td>
<td valign="top" align="left" rowspan="1" colspan="1">10</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">7</td>
<td valign="top" align="left" rowspan="1" colspan="1">182</td>
<td valign="top" align="left" rowspan="1" colspan="1">204</td>
<td valign="top" align="left" rowspan="1" colspan="1">ILKLLELLGIKCSFIACADCSST</td>
<td valign="top" align="left" rowspan="1" colspan="1">23</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">8</td>
<td valign="top" align="left" rowspan="1" colspan="1">215</td>
<td valign="top" align="left" rowspan="1" colspan="1">229</td>
<td valign="top" align="left" rowspan="1" colspan="1">RVRVLKNSVSFLFNK</td>
<td valign="top" align="left" rowspan="1" colspan="1">15</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
<td valign="top" align="left" rowspan="1" colspan="1">238</td>
<td valign="top" align="left" rowspan="1" colspan="1">246</td>
<td valign="top" align="left" rowspan="1" colspan="1">VTDIVVGAI</td>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">10</td>
<td valign="top" align="left" rowspan="1" colspan="1">248</td>
<td valign="top" align="left" rowspan="1" colspan="1">258</td>
<td valign="top" align="left" rowspan="1" colspan="1">TQKVRSYLKAG</td>
<td valign="top" align="left" rowspan="1" colspan="1">11</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">11</td>
<td valign="top" align="left" rowspan="1" colspan="1">262</td>
<td valign="top" align="left" rowspan="1" colspan="1">273</td>
<td valign="top" align="left" rowspan="1" colspan="1">KTPVSTKDVLET</td>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">12</td>
<td valign="top" align="left" rowspan="1" colspan="1">287</td>
<td valign="top" align="left" rowspan="1" colspan="1">295</td>
<td valign="top" align="left" rowspan="1" colspan="1">GLTLPASLE</td>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">13</td>
<td valign="top" align="left" rowspan="1" colspan="1">302</td>
<td valign="top" align="left" rowspan="1" colspan="1">310</td>
<td valign="top" align="left" rowspan="1" colspan="1">LVEGVVISK</td>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">14</td>
<td valign="top" align="left" rowspan="1" colspan="1">314</td>
<td valign="top" align="left" rowspan="1" colspan="1">319</td>
<td valign="top" align="left" rowspan="1" colspan="1">ESCINM</td>
<td valign="top" align="left" rowspan="1" colspan="1">6</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="t6-aabc-8-001" position="float">
<label>Table 6</label>
<caption>
<p>Epitope conservancy analysis</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th valign="top" align="left" rowspan="1" colspan="1">Peptide sequence</th>
<th valign="top" align="left" rowspan="1" colspan="1">Peptide length</th>
<th valign="top" align="left" rowspan="1" colspan="1">Percentage of protein sequence match</th>
<th valign="top" align="left" rowspan="1" colspan="1">Maximum identity</th>
</tr>
</thead>
<tbody>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">DCSSTPPDR</td>
<td valign="top" align="left" rowspan="1" colspan="1">9</td>
<td valign="top" align="left" rowspan="1" colspan="1">100% (34/34)</td>
<td valign="top" align="left" rowspan="1" colspan="1">100%</td>
</tr>
<tr>
<td valign="top" align="left" rowspan="1" colspan="1">FIACADCSSTPPDRW</td>
<td valign="top" align="left" rowspan="1" colspan="1">15</td>
<td valign="top" align="left" rowspan="1" colspan="1">100% (34/34)</td>
<td valign="top" align="left" rowspan="1" colspan="1">100%</td>
</tr>
</tbody>
</table>
</table-wrap>
</floats-group>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000797 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000797 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4293217
   |texte=   Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:25609983" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021