Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polyglutamine Repeats in Viruses

Identifieur interne : 000396 ( Pmc/Corpus ); précédent : 000395; suivant : 000397

Polyglutamine Repeats in Viruses

Auteurs : Catherine H. Schein

Source :

RBID : PMC:6399083

Abstract

This review explores the presence and functions of polyglutamine (polyQ) in viral proteins. In mammals, mutations in polyQ segments (and CAG repeats at the nucleotide level) have been linked to neural disorders and ataxias. PolyQ regions in normal human proteins have documented functional roles, in transcription factors and, more recently, in regulating autophagy. Despite the high frequency of polyQ repeats in eukaryotic genomes, little attention has been given to the presence or possible role of polyQ sequences in virus genomes. A survey described here revealed that polyQ repeats occur rarely in RNA viruses, suggesting that they have detrimental effects on virus replication at the nucleotide or protein level. However, there have been sporadic reports of polyQ segments in potyviruses and in reptilian nidoviruses (among the largest RNA viruses known). Conserved polyQ segments are found in the regulatory control proteins of many DNA viruses. Variable length polyQ tracts are found in proteins that contribute to transmissibility (cowpox A-type inclusion protein (ATI)) and control of latency (herpes viruses). New longer-read sequencing methods, using original biological samples, should reveal more details on the presence and functional role of polyQ in viruses, as well as the nucleotide regions that encode them. Given the known toxic effects of polyQ repeats, the role of these segments in neurovirulent and tumorigenic viruses should be further explored.

Electronic supplementary material

The online version of this article (10.1007/s12035-018-1269-4) contains supplementary material, which is available to authorized users.


Url:
DOI: 10.1007/s12035-018-1269-4
PubMed: 30182336
PubMed Central: 6399083

Links to Exploration step

PMC:6399083

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polyglutamine Repeats in Viruses</title>
<author>
<name sortKey="Schein, Catherine H" sort="Schein, Catherine H" uniqKey="Schein C" first="Catherine H." last="Schein">Catherine H. Schein</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">30182336</idno>
<idno type="pmc">6399083</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399083</idno>
<idno type="RBID">PMC:6399083</idno>
<idno type="doi">10.1007/s12035-018-1269-4</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000396</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000396</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Polyglutamine Repeats in Viruses</title>
<author>
<name sortKey="Schein, Catherine H" sort="Schein, Catherine H" uniqKey="Schein C" first="Catherine H." last="Schein">Catherine H. Schein</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular Neurobiology</title>
<idno type="ISSN">0893-7648</idno>
<idno type="eISSN">1559-1182</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">This review explores the presence and functions of polyglutamine (polyQ) in viral proteins. In mammals, mutations in polyQ segments (and CAG repeats at the nucleotide level) have been linked to neural disorders and ataxias. PolyQ regions in normal human proteins have documented functional roles, in transcription factors and, more recently, in regulating autophagy. Despite the high frequency of polyQ repeats in eukaryotic genomes, little attention has been given to the presence or possible role of polyQ sequences in virus genomes. A survey described here revealed that polyQ repeats occur rarely in RNA viruses, suggesting that they have detrimental effects on virus replication at the nucleotide or protein level. However, there have been sporadic reports of polyQ segments in potyviruses and in reptilian nidoviruses (among the largest RNA viruses known). Conserved polyQ segments are found in the regulatory control proteins of many DNA viruses. Variable length polyQ tracts are found in proteins that contribute to transmissibility (cowpox A-type inclusion protein (ATI)) and control of latency (herpes viruses). New longer-read sequencing methods, using original biological samples, should reveal more details on the presence and functional role of polyQ in viruses, as well as the nucleotide regions that encode them. Given the known toxic effects of polyQ repeats, the role of these segments in neurovirulent and tumorigenic viruses should be further explored.</p>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (10.1007/s12035-018-1269-4) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Kovtun, Iv" uniqKey="Kovtun I">IV Kovtun</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Bjoras, M" uniqKey="Bjoras M">M Bjoras</name>
</author>
<author>
<name sortKey="Klungland, A" uniqKey="Klungland A">A Klungland</name>
</author>
<author>
<name sortKey="Wilson, Sh" uniqKey="Wilson S">SH Wilson</name>
</author>
<author>
<name sortKey="Mcmurray, Ct" uniqKey="Mcmurray C">CT McMurray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashkenazi, A" uniqKey="Ashkenazi A">A Ashkenazi</name>
</author>
<author>
<name sortKey="Bento, Cf" uniqKey="Bento C">CF Bento</name>
</author>
<author>
<name sortKey="Ricketts, T" uniqKey="Ricketts T">T Ricketts</name>
</author>
<author>
<name sortKey="Vicinanza, M" uniqKey="Vicinanza M">M Vicinanza</name>
</author>
<author>
<name sortKey="Siddiqi, F" uniqKey="Siddiqi F">F Siddiqi</name>
</author>
<author>
<name sortKey="Pavel, M" uniqKey="Pavel M">M Pavel</name>
</author>
<author>
<name sortKey="Squitieri, F" uniqKey="Squitieri F">F Squitieri</name>
</author>
<author>
<name sortKey="Hardenberg, Mc" uniqKey="Hardenberg M">MC Hardenberg</name>
</author>
<author>
<name sortKey="Imarisio, S" uniqKey="Imarisio S">S Imarisio</name>
</author>
<author>
<name sortKey="Menzies, Fm" uniqKey="Menzies F">FM Menzies</name>
</author>
<author>
<name sortKey="Rubinsztein, Dc" uniqKey="Rubinsztein D">DC Rubinsztein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomioka, I" uniqKey="Tomioka I">I Tomioka</name>
</author>
<author>
<name sortKey="Ishibashi, H" uniqKey="Ishibashi H">H Ishibashi</name>
</author>
<author>
<name sortKey="Minakawa, En" uniqKey="Minakawa E">EN Minakawa</name>
</author>
<author>
<name sortKey="Motohashi, Hh" uniqKey="Motohashi H">HH Motohashi</name>
</author>
<author>
<name sortKey="Takayama, O" uniqKey="Takayama O">O Takayama</name>
</author>
<author>
<name sortKey="Saito, Y" uniqKey="Saito Y">Y Saito</name>
</author>
<author>
<name sortKey="Popiel, Ha" uniqKey="Popiel H">HA Popiel</name>
</author>
<author>
<name sortKey="Puentes, S" uniqKey="Puentes S">S Puentes</name>
</author>
<author>
<name sortKey="Owari, K" uniqKey="Owari K">K Owari</name>
</author>
<author>
<name sortKey="Nakatani, T" uniqKey="Nakatani T">T Nakatani</name>
</author>
<author>
<name sortKey="Nogami, N" uniqKey="Nogami N">N Nogami</name>
</author>
<author>
<name sortKey="Yamamoto, K" uniqKey="Yamamoto K">K Yamamoto</name>
</author>
<author>
<name sortKey="Noguchi, S" uniqKey="Noguchi S">S Noguchi</name>
</author>
<author>
<name sortKey="Yonekawa, T" uniqKey="Yonekawa T">T Yonekawa</name>
</author>
<author>
<name sortKey="Tanaka, Y" uniqKey="Tanaka Y">Y Tanaka</name>
</author>
<author>
<name sortKey="Fujita, N" uniqKey="Fujita N">N Fujita</name>
</author>
<author>
<name sortKey="Suzuki, H" uniqKey="Suzuki H">H Suzuki</name>
</author>
<author>
<name sortKey="Kikuchi, H" uniqKey="Kikuchi H">H Kikuchi</name>
</author>
<author>
<name sortKey="Aizawa, S" uniqKey="Aizawa S">S Aizawa</name>
</author>
<author>
<name sortKey="Nagano, S" uniqKey="Nagano S">S Nagano</name>
</author>
<author>
<name sortKey="Yamada, D" uniqKey="Yamada D">D Yamada</name>
</author>
<author>
<name sortKey="Nishino, I" uniqKey="Nishino I">I Nishino</name>
</author>
<author>
<name sortKey="Ichinohe, N" uniqKey="Ichinohe N">N Ichinohe</name>
</author>
<author>
<name sortKey="Wada, K" uniqKey="Wada K">K Wada</name>
</author>
<author>
<name sortKey="Kohsaka, S" uniqKey="Kohsaka S">S Kohsaka</name>
</author>
<author>
<name sortKey="Nagai, Y" uniqKey="Nagai Y">Y Nagai</name>
</author>
<author>
<name sortKey="Seki, K" uniqKey="Seki K">K Seki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Colton, Ca" uniqKey="Colton C">CA Colton</name>
</author>
<author>
<name sortKey="Xu, Q" uniqKey="Xu Q">Q Xu</name>
</author>
<author>
<name sortKey="Burke, Jr" uniqKey="Burke J">JR Burke</name>
</author>
<author>
<name sortKey="Bae, Sy" uniqKey="Bae S">SY Bae</name>
</author>
<author>
<name sortKey="Wakefield, Jk" uniqKey="Wakefield J">JK Wakefield</name>
</author>
<author>
<name sortKey="Nair, A" uniqKey="Nair A">A Nair</name>
</author>
<author>
<name sortKey="Strittmatter, Wj" uniqKey="Strittmatter W">WJ Strittmatter</name>
</author>
<author>
<name sortKey="Vitek, Mp" uniqKey="Vitek M">MP Vitek</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moulder, Kl" uniqKey="Moulder K">KL Moulder</name>
</author>
<author>
<name sortKey="Onodera, O" uniqKey="Onodera O">O Onodera</name>
</author>
<author>
<name sortKey="Burke, Jr" uniqKey="Burke J">JR Burke</name>
</author>
<author>
<name sortKey="Strittmatter, Wj" uniqKey="Strittmatter W">WJ Strittmatter</name>
</author>
<author>
<name sortKey="Johnson, Em" uniqKey="Johnson E">EM Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onodera, O" uniqKey="Onodera O">O Onodera</name>
</author>
<author>
<name sortKey="Burke, Jr" uniqKey="Burke J">JR Burke</name>
</author>
<author>
<name sortKey="Miller, Se" uniqKey="Miller S">SE Miller</name>
</author>
<author>
<name sortKey="Hester, S" uniqKey="Hester S">S Hester</name>
</author>
<author>
<name sortKey="Tsuji, S" uniqKey="Tsuji S">S Tsuji</name>
</author>
<author>
<name sortKey="Roses, Ad" uniqKey="Roses A">AD Roses</name>
</author>
<author>
<name sortKey="Strittmatter, Wj" uniqKey="Strittmatter W">WJ Strittmatter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Onodera, O" uniqKey="Onodera O">O Onodera</name>
</author>
<author>
<name sortKey="Roses, Ad" uniqKey="Roses A">AD Roses</name>
</author>
<author>
<name sortKey="Tsuji, S" uniqKey="Tsuji S">S Tsuji</name>
</author>
<author>
<name sortKey="Vance, Jm" uniqKey="Vance J">JM Vance</name>
</author>
<author>
<name sortKey="Strittmatter, Wj" uniqKey="Strittmatter W">WJ Strittmatter</name>
</author>
<author>
<name sortKey="Burke, Jr" uniqKey="Burke J">JR Burke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carmona, V" uniqKey="Carmona V">V Carmona</name>
</author>
<author>
<name sortKey="Cunha Santos, J" uniqKey="Cunha Santos J">J Cunha-Santos</name>
</author>
<author>
<name sortKey="Onofre, I" uniqKey="Onofre I">I Onofre</name>
</author>
<author>
<name sortKey="Simoes, At" uniqKey="Simoes A">AT Simoes</name>
</author>
<author>
<name sortKey="Vijayakumar, U" uniqKey="Vijayakumar U">U Vijayakumar</name>
</author>
<author>
<name sortKey="Davidson, Bl" uniqKey="Davidson B">BL Davidson</name>
</author>
<author>
<name sortKey="Pereira De Almeida, L" uniqKey="Pereira De Almeida L">L Pereira de Almeida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belikov, S" uniqKey="Belikov S">S Belikov</name>
</author>
<author>
<name sortKey="Bott, Lc" uniqKey="Bott L">LC Bott</name>
</author>
<author>
<name sortKey="Fischbeck, Kh" uniqKey="Fischbeck K">KH Fischbeck</name>
</author>
<author>
<name sortKey="Wrange, O" uniqKey="Wrange O">O Wrange</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ratovitski, T" uniqKey="Ratovitski T">T Ratovitski</name>
</author>
<author>
<name sortKey="Chaerkady, R" uniqKey="Chaerkady R">R Chaerkady</name>
</author>
<author>
<name sortKey="Kammers, K" uniqKey="Kammers K">K Kammers</name>
</author>
<author>
<name sortKey="Stewart, Jc" uniqKey="Stewart J">JC Stewart</name>
</author>
<author>
<name sortKey="Zavala, A" uniqKey="Zavala A">A Zavala</name>
</author>
<author>
<name sortKey="Pletnikova, O" uniqKey="Pletnikova O">O Pletnikova</name>
</author>
<author>
<name sortKey="Troncoso, Jc" uniqKey="Troncoso J">JC Troncoso</name>
</author>
<author>
<name sortKey="Rudnicki, Dd" uniqKey="Rudnicki D">DD Rudnicki</name>
</author>
<author>
<name sortKey="Margolis, Rl" uniqKey="Margolis R">RL Margolis</name>
</author>
<author>
<name sortKey="Cole, Rn" uniqKey="Cole R">RN Cole</name>
</author>
<author>
<name sortKey="Ross, Ca" uniqKey="Ross C">CA Ross</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lanz, Rb" uniqKey="Lanz R">RB Lanz</name>
</author>
<author>
<name sortKey="Wieland, S" uniqKey="Wieland S">S Wieland</name>
</author>
<author>
<name sortKey="Hug, M" uniqKey="Hug M">M Hug</name>
</author>
<author>
<name sortKey="Rusconi, S" uniqKey="Rusconi S">S Rusconi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seixas, Ai" uniqKey="Seixas A">AI Seixas</name>
</author>
<author>
<name sortKey="Holmes, Se" uniqKey="Holmes S">SE Holmes</name>
</author>
<author>
<name sortKey="Takeshima, H" uniqKey="Takeshima H">H Takeshima</name>
</author>
<author>
<name sortKey="Pavlovich, A" uniqKey="Pavlovich A">A Pavlovich</name>
</author>
<author>
<name sortKey="Sachs, N" uniqKey="Sachs N">N Sachs</name>
</author>
<author>
<name sortKey="Pruitt, Jl" uniqKey="Pruitt J">JL Pruitt</name>
</author>
<author>
<name sortKey="Silveira, I" uniqKey="Silveira I">I Silveira</name>
</author>
<author>
<name sortKey="Ross, Ca" uniqKey="Ross C">CA Ross</name>
</author>
<author>
<name sortKey="Margolis, Rl" uniqKey="Margolis R">RL Margolis</name>
</author>
<author>
<name sortKey="Rudnicki, Dd" uniqKey="Rudnicki D">DD Rudnicki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Monteys, Am" uniqKey="Monteys A">AM Monteys</name>
</author>
<author>
<name sortKey="Ebanks, Sa" uniqKey="Ebanks S">SA Ebanks</name>
</author>
<author>
<name sortKey="Keiser, Ms" uniqKey="Keiser M">MS Keiser</name>
</author>
<author>
<name sortKey="Davidson, Bl" uniqKey="Davidson B">BL Davidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keiser, Ms" uniqKey="Keiser M">MS Keiser</name>
</author>
<author>
<name sortKey="Monteys, Am" uniqKey="Monteys A">AM Monteys</name>
</author>
<author>
<name sortKey="Corbau, R" uniqKey="Corbau R">R Corbau</name>
</author>
<author>
<name sortKey="Gonzalez Alegre, P" uniqKey="Gonzalez Alegre P">P Gonzalez-Alegre</name>
</author>
<author>
<name sortKey="Davidson, Bl" uniqKey="Davidson B">BL Davidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Batra, R" uniqKey="Batra R">R Batra</name>
</author>
<author>
<name sortKey="Nelles, Da" uniqKey="Nelles D">DA Nelles</name>
</author>
<author>
<name sortKey="Pirie, E" uniqKey="Pirie E">E Pirie</name>
</author>
<author>
<name sortKey="Blue, Sm" uniqKey="Blue S">SM Blue</name>
</author>
<author>
<name sortKey="Marina, Rj" uniqKey="Marina R">RJ Marina</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H Wang</name>
</author>
<author>
<name sortKey="Chaim, Ia" uniqKey="Chaim I">IA Chaim</name>
</author>
<author>
<name sortKey="Thomas, Jd" uniqKey="Thomas J">JD Thomas</name>
</author>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N Zhang</name>
</author>
<author>
<name sortKey="Nguyen, V" uniqKey="Nguyen V">V Nguyen</name>
</author>
<author>
<name sortKey="Aigner, S" uniqKey="Aigner S">S Aigner</name>
</author>
<author>
<name sortKey="Markmiller, S" uniqKey="Markmiller S">S Markmiller</name>
</author>
<author>
<name sortKey="Xia, G" uniqKey="Xia G">G Xia</name>
</author>
<author>
<name sortKey="Corbett, Kd" uniqKey="Corbett K">KD Corbett</name>
</author>
<author>
<name sortKey="Swanson, Ms" uniqKey="Swanson M">MS Swanson</name>
</author>
<author>
<name sortKey="Yeo, Gw" uniqKey="Yeo G">GW Yeo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ripaud, L" uniqKey="Ripaud L">L Ripaud</name>
</author>
<author>
<name sortKey="Chumakova, V" uniqKey="Chumakova V">V Chumakova</name>
</author>
<author>
<name sortKey="Antonin, M" uniqKey="Antonin M">M Antonin</name>
</author>
<author>
<name sortKey="Hastie, Ar" uniqKey="Hastie A">AR Hastie</name>
</author>
<author>
<name sortKey="Pinkert, S" uniqKey="Pinkert S">S Pinkert</name>
</author>
<author>
<name sortKey="Korner, R" uniqKey="Korner R">R Korner</name>
</author>
<author>
<name sortKey="Ruff, Km" uniqKey="Ruff K">KM Ruff</name>
</author>
<author>
<name sortKey="Pappu, Rv" uniqKey="Pappu R">RV Pappu</name>
</author>
<author>
<name sortKey="Hornburg, D" uniqKey="Hornburg D">D Hornburg</name>
</author>
<author>
<name sortKey="Mann, M" uniqKey="Mann M">M Mann</name>
</author>
<author>
<name sortKey="Hartl, Fu" uniqKey="Hartl F">FU Hartl</name>
</author>
<author>
<name sortKey="Hipp, Ms" uniqKey="Hipp M">MS Hipp</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bettencourt, Br" uniqKey="Bettencourt B">BR Bettencourt</name>
</author>
<author>
<name sortKey="Hogan, Cc" uniqKey="Hogan C">CC Hogan</name>
</author>
<author>
<name sortKey="Nimali, M" uniqKey="Nimali M">M Nimali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bugert, Jj" uniqKey="Bugert J">JJ Bugert</name>
</author>
<author>
<name sortKey="Darai, G" uniqKey="Darai G">G Darai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cao, H" uniqKey="Cao H">H Cao</name>
</author>
<author>
<name sortKey="Dai, P" uniqKey="Dai P">P Dai</name>
</author>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
<author>
<name sortKey="Wang, F" uniqKey="Wang F">F Wang</name>
</author>
<author>
<name sortKey="Fang, Cm" uniqKey="Fang C">CM Fang</name>
</author>
<author>
<name sortKey="Pitha, Pm" uniqKey="Pitha P">PM Pitha</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Condit, Rc" uniqKey="Condit R">RC Condit</name>
</author>
<author>
<name sortKey="Mcfadden, G" uniqKey="Mcfadden G">G McFadden</name>
</author>
<author>
<name sortKey="Merghoub, T" uniqKey="Merghoub T">T Merghoub</name>
</author>
<author>
<name sortKey="Houghton, An" uniqKey="Houghton A">AN Houghton</name>
</author>
<author>
<name sortKey="Young, Jw" uniqKey="Young J">JW Young</name>
</author>
<author>
<name sortKey="Shuman, S" uniqKey="Shuman S">S Shuman</name>
</author>
<author>
<name sortKey="Deng, L" uniqKey="Deng L">L Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahr, U" uniqKey="Bahr U">U Bahr</name>
</author>
<author>
<name sortKey="Darai, G" uniqKey="Darai G">G Darai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brennan, G" uniqKey="Brennan G">G Brennan</name>
</author>
<author>
<name sortKey="Kitzman, Jo" uniqKey="Kitzman J">JO Kitzman</name>
</author>
<author>
<name sortKey="Shendure, J" uniqKey="Shendure J">J Shendure</name>
</author>
<author>
<name sortKey="Geballe, Ap" uniqKey="Geballe A">AP Geballe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orvedahl, A" uniqKey="Orvedahl A">A Orvedahl</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, S" uniqKey="Park S">S Park</name>
</author>
<author>
<name sortKey="Buck, Md" uniqKey="Buck M">MD Buck</name>
</author>
<author>
<name sortKey="Desai, C" uniqKey="Desai C">C Desai</name>
</author>
<author>
<name sortKey="Zhang, X" uniqKey="Zhang X">X Zhang</name>
</author>
<author>
<name sortKey="Loginicheva, E" uniqKey="Loginicheva E">E Loginicheva</name>
</author>
<author>
<name sortKey="Martinez, J" uniqKey="Martinez J">J Martinez</name>
</author>
<author>
<name sortKey="Freeman, Ml" uniqKey="Freeman M">ML Freeman</name>
</author>
<author>
<name sortKey="Saitoh, T" uniqKey="Saitoh T">T Saitoh</name>
</author>
<author>
<name sortKey="Akira, S" uniqKey="Akira S">S Akira</name>
</author>
<author>
<name sortKey="Guan, Jl" uniqKey="Guan J">JL Guan</name>
</author>
<author>
<name sortKey="He, Yw" uniqKey="He Y">YW He</name>
</author>
<author>
<name sortKey="Blackman, Ma" uniqKey="Blackman M">MA Blackman</name>
</author>
<author>
<name sortKey="Handley, Sa" uniqKey="Handley S">SA Handley</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Green, Dr" uniqKey="Green D">DR Green</name>
</author>
<author>
<name sortKey="Reese, Ta" uniqKey="Reese T">TA Reese</name>
</author>
<author>
<name sortKey="Artyomov, Mn" uniqKey="Artyomov M">MN Artyomov</name>
</author>
<author>
<name sortKey="Virgin, Hw" uniqKey="Virgin H">HW Virgin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hain, D" uniqKey="Hain D">D Hain</name>
</author>
<author>
<name sortKey="Bettencourt, Br" uniqKey="Bettencourt B">BR Bettencourt</name>
</author>
<author>
<name sortKey="Okamura, K" uniqKey="Okamura K">K Okamura</name>
</author>
<author>
<name sortKey="Csorba, T" uniqKey="Csorba T">T Csorba</name>
</author>
<author>
<name sortKey="Meyer, W" uniqKey="Meyer W">W Meyer</name>
</author>
<author>
<name sortKey="Jin, Z" uniqKey="Jin Z">Z Jin</name>
</author>
<author>
<name sortKey="Biggerstaff, J" uniqKey="Biggerstaff J">J Biggerstaff</name>
</author>
<author>
<name sortKey="Siomi, H" uniqKey="Siomi H">H Siomi</name>
</author>
<author>
<name sortKey="Hutvagner, G" uniqKey="Hutvagner G">G Hutvagner</name>
</author>
<author>
<name sortKey="Lai, Ec" uniqKey="Lai E">EC Lai</name>
</author>
<author>
<name sortKey="Welte, M" uniqKey="Welte M">M Welte</name>
</author>
<author>
<name sortKey="Muller, Ha" uniqKey="Muller H">HA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, Wj" uniqKey="Meyer W">WJ Meyer</name>
</author>
<author>
<name sortKey="Schreiber, S" uniqKey="Schreiber S">S Schreiber</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y Guo</name>
</author>
<author>
<name sortKey="Volkmann, T" uniqKey="Volkmann T">T Volkmann</name>
</author>
<author>
<name sortKey="Welte, Ma" uniqKey="Welte M">MA Welte</name>
</author>
<author>
<name sortKey="Muller, Ha" uniqKey="Muller H">HA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palmer, Wh" uniqKey="Palmer W">WH Palmer</name>
</author>
<author>
<name sortKey="Obbard, Dj" uniqKey="Obbard D">DJ Obbard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Z" uniqKey="He Z">Z He</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Liang, D" uniqKey="Liang D">D Liang</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Robertson, Es" uniqKey="Robertson E">ES Robertson</name>
</author>
<author>
<name sortKey="Lan, K" uniqKey="Lan K">K Lan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perutz, Mf" uniqKey="Perutz M">MF Perutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pickett, Be" uniqKey="Pickett B">BE Pickett</name>
</author>
<author>
<name sortKey="Sadat, El" uniqKey="Sadat E">EL Sadat</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Noronha, Jm" uniqKey="Noronha J">JM Noronha</name>
</author>
<author>
<name sortKey="Squires, Rb" uniqKey="Squires R">RB Squires</name>
</author>
<author>
<name sortKey="Hunt, V" uniqKey="Hunt V">V Hunt</name>
</author>
<author>
<name sortKey="Liu, M" uniqKey="Liu M">M Liu</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Zaremba, S" uniqKey="Zaremba S">S Zaremba</name>
</author>
<author>
<name sortKey="Gu, Z" uniqKey="Gu Z">Z Gu</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L Zhou</name>
</author>
<author>
<name sortKey="Larson, Cn" uniqKey="Larson C">CN Larson</name>
</author>
<author>
<name sortKey="Dietrich, J" uniqKey="Dietrich J">J Dietrich</name>
</author>
<author>
<name sortKey="Klem, Eb" uniqKey="Klem E">EB Klem</name>
</author>
<author>
<name sortKey="Scheuermann, Rh" uniqKey="Scheuermann R">RH Scheuermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Aevermann, Bd" uniqKey="Aevermann B">BD Aevermann</name>
</author>
<author>
<name sortKey="Anderson, Tk" uniqKey="Anderson T">TK Anderson</name>
</author>
<author>
<name sortKey="Burke, Df" uniqKey="Burke D">DF Burke</name>
</author>
<author>
<name sortKey="Dauphin, G" uniqKey="Dauphin G">G Dauphin</name>
</author>
<author>
<name sortKey="Gu, Z" uniqKey="Gu Z">Z Gu</name>
</author>
<author>
<name sortKey="He, S" uniqKey="He S">S He</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S Kumar</name>
</author>
<author>
<name sortKey="Larsen, Cn" uniqKey="Larsen C">CN Larsen</name>
</author>
<author>
<name sortKey="Lee, Aj" uniqKey="Lee A">AJ Lee</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Macken, C" uniqKey="Macken C">C Macken</name>
</author>
<author>
<name sortKey="Mahaffey, C" uniqKey="Mahaffey C">C Mahaffey</name>
</author>
<author>
<name sortKey="Pickett, Be" uniqKey="Pickett B">BE Pickett</name>
</author>
<author>
<name sortKey="Reardon, B" uniqKey="Reardon B">B Reardon</name>
</author>
<author>
<name sortKey="Smith, T" uniqKey="Smith T">T Smith</name>
</author>
<author>
<name sortKey="Stewart, L" uniqKey="Stewart L">L Stewart</name>
</author>
<author>
<name sortKey="Suloway, C" uniqKey="Suloway C">C Suloway</name>
</author>
<author>
<name sortKey="Sun, G" uniqKey="Sun G">G Sun</name>
</author>
<author>
<name sortKey="Tong, L" uniqKey="Tong L">L Tong</name>
</author>
<author>
<name sortKey="Vincent, Al" uniqKey="Vincent A">AL Vincent</name>
</author>
<author>
<name sortKey="Walters, B" uniqKey="Walters B">B Walters</name>
</author>
<author>
<name sortKey="Zaremba, S" uniqKey="Zaremba S">S Zaremba</name>
</author>
<author>
<name sortKey="Zhao, H" uniqKey="Zhao H">H Zhao</name>
</author>
<author>
<name sortKey="Zhou, L" uniqKey="Zhou L">L Zhou</name>
</author>
<author>
<name sortKey="Zmasek, C" uniqKey="Zmasek C">C Zmasek</name>
</author>
<author>
<name sortKey="Klem, Eb" uniqKey="Klem E">EB Klem</name>
</author>
<author>
<name sortKey="Scheuermann, Rh" uniqKey="Scheuermann R">RH Scheuermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kidanemariam, Db" uniqKey="Kidanemariam D">DB Kidanemariam</name>
</author>
<author>
<name sortKey="Abraham, Ad" uniqKey="Abraham A">AD Abraham</name>
</author>
<author>
<name sortKey="Sukal, Ac" uniqKey="Sukal A">AC Sukal</name>
</author>
<author>
<name sortKey="Holton, Ta" uniqKey="Holton T">TA Holton</name>
</author>
<author>
<name sortKey="Dale, Jl" uniqKey="Dale J">JL Dale</name>
</author>
<author>
<name sortKey="James, Ap" uniqKey="James A">AP James</name>
</author>
<author>
<name sortKey="Harding, Rm" uniqKey="Harding R">RM Harding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Ch" uniqKey="Huang C">CH Huang</name>
</author>
<author>
<name sortKey="Chang, Yc" uniqKey="Chang Y">YC Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Xu, Cp" uniqKey="Xu C">CP Xu</name>
</author>
<author>
<name sortKey="Yan, Jy" uniqKey="Yan J">JY Yan</name>
</author>
<author>
<name sortKey="Lu, Yy" uniqKey="Lu Y">YY Lu</name>
</author>
<author>
<name sortKey="Jin, Qq" uniqKey="Jin Q">QQ Jin</name>
</author>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y Feng</name>
</author>
<author>
<name sortKey="Mo, Sh" uniqKey="Mo S">SH Mo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uccellini, L" uniqKey="Uccellini L">L Uccellini</name>
</author>
<author>
<name sortKey="Ossiboff, Rj" uniqKey="Ossiboff R">RJ Ossiboff</name>
</author>
<author>
<name sortKey="De Matos, Re" uniqKey="De Matos R">RE de Matos</name>
</author>
<author>
<name sortKey="Morrisey, Jk" uniqKey="Morrisey J">JK Morrisey</name>
</author>
<author>
<name sortKey="Petrosov, A" uniqKey="Petrosov A">A Petrosov</name>
</author>
<author>
<name sortKey="Navarrete Macias, I" uniqKey="Navarrete Macias I">I Navarrete-Macias</name>
</author>
<author>
<name sortKey="Jain, K" uniqKey="Jain K">K Jain</name>
</author>
<author>
<name sortKey="Hicks, Al" uniqKey="Hicks A">AL Hicks</name>
</author>
<author>
<name sortKey="Buckles, El" uniqKey="Buckles E">EL Buckles</name>
</author>
<author>
<name sortKey="Tokarz, R" uniqKey="Tokarz R">R Tokarz</name>
</author>
<author>
<name sortKey="Mcaloose, D" uniqKey="Mcaloose D">D McAloose</name>
</author>
<author>
<name sortKey="Lipkin, Wi" uniqKey="Lipkin W">WI Lipkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="O Dea, Ma" uniqKey="O Dea M">MA O'Dea</name>
</author>
<author>
<name sortKey="Jackson, B" uniqKey="Jackson B">B Jackson</name>
</author>
<author>
<name sortKey="Jackson, C" uniqKey="Jackson C">C Jackson</name>
</author>
<author>
<name sortKey="Xavier, P" uniqKey="Xavier P">P Xavier</name>
</author>
<author>
<name sortKey="Warren, K" uniqKey="Warren K">K Warren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gorbalenya, Ae" uniqKey="Gorbalenya A">AE Gorbalenya</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L Enjuanes</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Snijder, Ej" uniqKey="Snijder E">EJ Snijder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atanesyan, L" uniqKey="Atanesyan L">L Atanesyan</name>
</author>
<author>
<name sortKey="Gunther, V" uniqKey="Gunther V">V Gunther</name>
</author>
<author>
<name sortKey="Dichtl, B" uniqKey="Dichtl B">B Dichtl</name>
</author>
<author>
<name sortKey="Georgiev, O" uniqKey="Georgiev O">O Georgiev</name>
</author>
<author>
<name sortKey="Schaffner, W" uniqKey="Schaffner W">W Schaffner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Wy" uniqKey="Ng W">Wy Ng</name>
</author>
<author>
<name sortKey="Soto Acosta, Ruben" uniqKey="Soto Acosta R">Ruben Soto-Acosta</name>
</author>
<author>
<name sortKey="Bradrick, Shelton" uniqKey="Bradrick S">Shelton Bradrick</name>
</author>
<author>
<name sortKey="Garcia Blanco, Mariano" uniqKey="Garcia Blanco M">Mariano Garcia-Blanco</name>
</author>
<author>
<name sortKey="Ooi, Eng" uniqKey="Ooi E">Eng Ooi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Blanco, Ma" uniqKey="Garcia Blanco M">MA Garcia-Blanco</name>
</author>
<author>
<name sortKey="Vasudevan, Sg" uniqKey="Vasudevan S">SG Vasudevan</name>
</author>
<author>
<name sortKey="Bradrick, Ss" uniqKey="Bradrick S">SS Bradrick</name>
</author>
<author>
<name sortKey="Nicchitta, C" uniqKey="Nicchitta C">C Nicchitta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madhugiri, R" uniqKey="Madhugiri R">R Madhugiri</name>
</author>
<author>
<name sortKey="Karl, N" uniqKey="Karl N">N Karl</name>
</author>
<author>
<name sortKey="Petersen, D" uniqKey="Petersen D">D Petersen</name>
</author>
<author>
<name sortKey="Lamkiewicz, K" uniqKey="Lamkiewicz K">K Lamkiewicz</name>
</author>
<author>
<name sortKey="Fricke, M" uniqKey="Fricke M">M Fricke</name>
</author>
<author>
<name sortKey="Wend, U" uniqKey="Wend U">U Wend</name>
</author>
<author>
<name sortKey="Scheuer, R" uniqKey="Scheuer R">R Scheuer</name>
</author>
<author>
<name sortKey="Marz, M" uniqKey="Marz M">M Marz</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rappe, Jcf" uniqKey="Rappe J">JCF Rappe</name>
</author>
<author>
<name sortKey="De Wilde, A" uniqKey="De Wilde A">A de Wilde</name>
</author>
<author>
<name sortKey="Di, H" uniqKey="Di H">H Di</name>
</author>
<author>
<name sortKey="Muller, C" uniqKey="Muller C">C Muller</name>
</author>
<author>
<name sortKey="Stalder, H" uniqKey="Stalder H">H Stalder</name>
</author>
<author>
<name sortKey="V Kovski, P" uniqKey="V Kovski P">P V'Kovski</name>
</author>
<author>
<name sortKey="Snijder, E" uniqKey="Snijder E">E Snijder</name>
</author>
<author>
<name sortKey="Brinton, Ma" uniqKey="Brinton M">MA Brinton</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Ruggli, N" uniqKey="Ruggli N">N Ruggli</name>
</author>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V Thiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
<author>
<name sortKey="Haugg, M" uniqKey="Haugg M">M Haugg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
<author>
<name sortKey="Haugg, M" uniqKey="Haugg M">M Haugg</name>
</author>
<author>
<name sortKey="Benner, Sa" uniqKey="Benner S">SA Benner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L Zhao</name>
</author>
<author>
<name sortKey="Jha, Bk" uniqKey="Jha B">BK Jha</name>
</author>
<author>
<name sortKey="Wu, A" uniqKey="Wu A">A Wu</name>
</author>
<author>
<name sortKey="Elliott, R" uniqKey="Elliott R">R Elliott</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Gorbalenya, Ae" uniqKey="Gorbalenya A">AE Gorbalenya</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
<author>
<name sortKey="Weiss, Sr" uniqKey="Weiss S">SR Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kindler, E" uniqKey="Kindler E">E Kindler</name>
</author>
<author>
<name sortKey="Gil Cruz, C" uniqKey="Gil Cruz C">C Gil-Cruz</name>
</author>
<author>
<name sortKey="Spanier, J" uniqKey="Spanier J">J Spanier</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Wilhelm, J" uniqKey="Wilhelm J">J Wilhelm</name>
</author>
<author>
<name sortKey="Rabouw, Hh" uniqKey="Rabouw H">HH Rabouw</name>
</author>
<author>
<name sortKey="Zust, R" uniqKey="Zust R">R Zust</name>
</author>
<author>
<name sortKey="Hwang, M" uniqKey="Hwang M">M Hwang</name>
</author>
<author>
<name sortKey="V Kovski, P" uniqKey="V Kovski P">P V'Kovski</name>
</author>
<author>
<name sortKey="Stalder, H" uniqKey="Stalder H">H Stalder</name>
</author>
<author>
<name sortKey="Marti, S" uniqKey="Marti S">S Marti</name>
</author>
<author>
<name sortKey="Habjan, M" uniqKey="Habjan M">M Habjan</name>
</author>
<author>
<name sortKey="Cervantes Barragan, L" uniqKey="Cervantes Barragan L">L Cervantes-Barragan</name>
</author>
<author>
<name sortKey="Elliot, R" uniqKey="Elliot R">R Elliot</name>
</author>
<author>
<name sortKey="Karl, N" uniqKey="Karl N">N Karl</name>
</author>
<author>
<name sortKey="Gaughan, C" uniqKey="Gaughan C">C Gaughan</name>
</author>
<author>
<name sortKey="Van Kuppeveld, Fj" uniqKey="Van Kuppeveld F">FJ van Kuppeveld</name>
</author>
<author>
<name sortKey="Silverman, Rh" uniqKey="Silverman R">RH Silverman</name>
</author>
<author>
<name sortKey="Keller, M" uniqKey="Keller M">M Keller</name>
</author>
<author>
<name sortKey="Ludewig, B" uniqKey="Ludewig B">B Ludewig</name>
</author>
<author>
<name sortKey="Bergmann, Cc" uniqKey="Bergmann C">CC Bergmann</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
<author>
<name sortKey="Weiss, Sr" uniqKey="Weiss S">SR Weiss</name>
</author>
<author>
<name sortKey="Kalinke, U" uniqKey="Kalinke U">U Kalinke</name>
</author>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V Thiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenz, R" uniqKey="Lorenz R">R Lorenz</name>
</author>
<author>
<name sortKey="Luntzer, D" uniqKey="Luntzer D">D Luntzer</name>
</author>
<author>
<name sortKey="Hofacker, Il" uniqKey="Hofacker I">IL Hofacker</name>
</author>
<author>
<name sortKey="Stadler, Pf" uniqKey="Stadler P">PF Stadler</name>
</author>
<author>
<name sortKey="Wolfinger, Mt" uniqKey="Wolfinger M">MT Wolfinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorenz, R" uniqKey="Lorenz R">R Lorenz</name>
</author>
<author>
<name sortKey="Bernhart, Sh" uniqKey="Bernhart S">SH Bernhart</name>
</author>
<author>
<name sortKey="Honer Zu Siederdissen, C" uniqKey="Honer Zu Siederdissen C">C Honer Zu Siederdissen</name>
</author>
<author>
<name sortKey="Tafer, H" uniqKey="Tafer H">H Tafer</name>
</author>
<author>
<name sortKey="Flamm, C" uniqKey="Flamm C">C Flamm</name>
</author>
<author>
<name sortKey="Stadler, Pf" uniqKey="Stadler P">PF Stadler</name>
</author>
<author>
<name sortKey="Hofacker, Il" uniqKey="Hofacker I">IL Hofacker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barik, S" uniqKey="Barik S">S Barik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gao, R" uniqKey="Gao R">R Gao</name>
</author>
<author>
<name sortKey="Matsuura, T" uniqKey="Matsuura T">T Matsuura</name>
</author>
<author>
<name sortKey="Coolbaugh, M" uniqKey="Coolbaugh M">M Coolbaugh</name>
</author>
<author>
<name sortKey="Zuhlke, C" uniqKey="Zuhlke C">C Zuhlke</name>
</author>
<author>
<name sortKey="Nakamura, K" uniqKey="Nakamura K">K Nakamura</name>
</author>
<author>
<name sortKey="Rasmussen, A" uniqKey="Rasmussen A">A Rasmussen</name>
</author>
<author>
<name sortKey="Siciliano, Mj" uniqKey="Siciliano M">MJ Siciliano</name>
</author>
<author>
<name sortKey="Ashizawa, T" uniqKey="Ashizawa T">T Ashizawa</name>
</author>
<author>
<name sortKey="Lin, X" uniqKey="Lin X">X Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, Xa" uniqKey="Su X">XA Su</name>
</author>
<author>
<name sortKey="Freudenreich, Ch" uniqKey="Freudenreich C">CH Freudenreich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schutze, H" uniqKey="Schutze H">H Schutze</name>
</author>
<author>
<name sortKey="Ulferts, R" uniqKey="Ulferts R">R Ulferts</name>
</author>
<author>
<name sortKey="Schelle, B" uniqKey="Schelle B">B Schelle</name>
</author>
<author>
<name sortKey="Bayer, S" uniqKey="Bayer S">S Bayer</name>
</author>
<author>
<name sortKey="Granzow, H" uniqKey="Granzow H">H Granzow</name>
</author>
<author>
<name sortKey="Hoffmann, B" uniqKey="Hoffmann B">B Hoffmann</name>
</author>
<author>
<name sortKey="Mettenleiter, Tc" uniqKey="Mettenleiter T">TC Mettenleiter</name>
</author>
<author>
<name sortKey="Ziebuhr, J" uniqKey="Ziebuhr J">J Ziebuhr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senkevich, Tg" uniqKey="Senkevich T">TG Senkevich</name>
</author>
<author>
<name sortKey="Koonin, Ev" uniqKey="Koonin E">EV Koonin</name>
</author>
<author>
<name sortKey="Bugert, Jj" uniqKey="Bugert J">JJ Bugert</name>
</author>
<author>
<name sortKey="Darai, G" uniqKey="Darai G">G Darai</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartolini, Luca" uniqKey="Bartolini L">Luca Bartolini</name>
</author>
<author>
<name sortKey="Libbey, Jane E" uniqKey="Libbey J">Jane E. Libbey</name>
</author>
<author>
<name sortKey="Ravizza, Teresa" uniqKey="Ravizza T">Teresa Ravizza</name>
</author>
<author>
<name sortKey="Fujinami, Robert S" uniqKey="Fujinami R">Robert S. Fujinami</name>
</author>
<author>
<name sortKey="Jacobson, Steven" uniqKey="Jacobson S">Steven Jacobson</name>
</author>
<author>
<name sortKey="Gaillard, William D" uniqKey="Gaillard W">William D. Gaillard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Courey, Aj" uniqKey="Courey A">AJ Courey</name>
</author>
<author>
<name sortKey="Tjian, R" uniqKey="Tjian R">R Tjian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gerber, Hp" uniqKey="Gerber H">HP Gerber</name>
</author>
<author>
<name sortKey="Seipel, K" uniqKey="Seipel K">K Seipel</name>
</author>
<author>
<name sortKey="Georgiev, O" uniqKey="Georgiev O">O Georgiev</name>
</author>
<author>
<name sortKey="Hofferer, M" uniqKey="Hofferer M">M Hofferer</name>
</author>
<author>
<name sortKey="Hug, M" uniqKey="Hug M">M Hug</name>
</author>
<author>
<name sortKey="Rusconi, S" uniqKey="Rusconi S">S Rusconi</name>
</author>
<author>
<name sortKey="Schaffner, W" uniqKey="Schaffner W">W Schaffner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perutz, Mf" uniqKey="Perutz M">MF Perutz</name>
</author>
<author>
<name sortKey="Johnson, T" uniqKey="Johnson T">T Johnson</name>
</author>
<author>
<name sortKey="Suzuki, M" uniqKey="Suzuki M">M Suzuki</name>
</author>
<author>
<name sortKey="Finch, Jt" uniqKey="Finch J">JT Finch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gemayel, R" uniqKey="Gemayel R">R Gemayel</name>
</author>
<author>
<name sortKey="Chavali, S" uniqKey="Chavali S">S Chavali</name>
</author>
<author>
<name sortKey="Pougach, K" uniqKey="Pougach K">K Pougach</name>
</author>
<author>
<name sortKey="Legendre, M" uniqKey="Legendre M">M Legendre</name>
</author>
<author>
<name sortKey="Zhu, B" uniqKey="Zhu B">B Zhu</name>
</author>
<author>
<name sortKey="Boeynaems, S" uniqKey="Boeynaems S">S Boeynaems</name>
</author>
<author>
<name sortKey="Van Der Zande, E" uniqKey="Van Der Zande E">E van der Zande</name>
</author>
<author>
<name sortKey="Gevaert, K" uniqKey="Gevaert K">K Gevaert</name>
</author>
<author>
<name sortKey="Rousseau, F" uniqKey="Rousseau F">F Rousseau</name>
</author>
<author>
<name sortKey="Schymkowitz, J" uniqKey="Schymkowitz J">J Schymkowitz</name>
</author>
<author>
<name sortKey="Babu, Mm" uniqKey="Babu M">MM Babu</name>
</author>
<author>
<name sortKey="Verstrepen, Kj" uniqKey="Verstrepen K">KJ Verstrepen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, L" uniqKey="Zhao L">L Zhao</name>
</author>
<author>
<name sortKey="Ng, Et" uniqKey="Ng E">ET Ng</name>
</author>
<author>
<name sortKey="Davidson, Tl" uniqKey="Davidson T">TL Davidson</name>
</author>
<author>
<name sortKey="Longmuss, E" uniqKey="Longmuss E">E Longmuss</name>
</author>
<author>
<name sortKey="Urschitz, J" uniqKey="Urschitz J">J Urschitz</name>
</author>
<author>
<name sortKey="Elston, M" uniqKey="Elston M">M Elston</name>
</author>
<author>
<name sortKey="Moisyadi, S" uniqKey="Moisyadi S">S Moisyadi</name>
</author>
<author>
<name sortKey="Bowles, J" uniqKey="Bowles J">J Bowles</name>
</author>
<author>
<name sortKey="Koopman, P" uniqKey="Koopman P">P Koopman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carson, Dd" uniqKey="Carson D">DD Carson</name>
</author>
<author>
<name sortKey="Summers, Md" uniqKey="Summers M">MD Summers</name>
</author>
<author>
<name sortKey="Guarino, La" uniqKey="Guarino L">LA Guarino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reichert, M" uniqKey="Reichert M">M Reichert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhu, T" uniqKey="Zhu T">T Zhu</name>
</author>
<author>
<name sortKey="Ji, Z" uniqKey="Ji Z">Z Ji</name>
</author>
<author>
<name sortKey="Xu, C" uniqKey="Xu C">C Xu</name>
</author>
<author>
<name sortKey="Peng, Z" uniqKey="Peng Z">Z Peng</name>
</author>
<author>
<name sortKey="Gu, L" uniqKey="Gu L">L Gu</name>
</author>
<author>
<name sortKey="Zhang, R" uniqKey="Zhang R">R Zhang</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ranaghan, Mj" uniqKey="Ranaghan M">MJ Ranaghan</name>
</author>
<author>
<name sortKey="Durney, Ma" uniqKey="Durney M">MA Durney</name>
</author>
<author>
<name sortKey="Mesleh, Mf" uniqKey="Mesleh M">MF Mesleh</name>
</author>
<author>
<name sortKey="Mccarren, Pr" uniqKey="Mccarren P">PR McCarren</name>
</author>
<author>
<name sortKey="Garvie, Cw" uniqKey="Garvie C">CW Garvie</name>
</author>
<author>
<name sortKey="Daniels, Ds" uniqKey="Daniels D">DS Daniels</name>
</author>
<author>
<name sortKey="Carey, Kl" uniqKey="Carey K">KL Carey</name>
</author>
<author>
<name sortKey="Skepner, Ap" uniqKey="Skepner A">AP Skepner</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
<author>
<name sortKey="Perez, Jr" uniqKey="Perez J">JR Perez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Orvedahl, A" uniqKey="Orvedahl A">A Orvedahl</name>
</author>
<author>
<name sortKey="Alexander, D" uniqKey="Alexander D">D Alexander</name>
</author>
<author>
<name sortKey="Talloczy, Z" uniqKey="Talloczy Z">Z Talloczy</name>
</author>
<author>
<name sortKey="Sun, Q" uniqKey="Sun Q">Q Sun</name>
</author>
<author>
<name sortKey="Wei, Y" uniqKey="Wei Y">Y Wei</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W Zhang</name>
</author>
<author>
<name sortKey="Burns, D" uniqKey="Burns D">D Burns</name>
</author>
<author>
<name sortKey="Leib, Da" uniqKey="Leib D">DA Leib</name>
</author>
<author>
<name sortKey="Levine, B" uniqKey="Levine B">B Levine</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashkenazi, A" uniqKey="Ashkenazi A">A Ashkenazi</name>
</author>
<author>
<name sortKey="Bento, Cf" uniqKey="Bento C">CF Bento</name>
</author>
<author>
<name sortKey="Ricketts, T" uniqKey="Ricketts T">T Ricketts</name>
</author>
<author>
<name sortKey="Vicinanza, M" uniqKey="Vicinanza M">M Vicinanza</name>
</author>
<author>
<name sortKey="Siddiqi, F" uniqKey="Siddiqi F">F Siddiqi</name>
</author>
<author>
<name sortKey="Pavel, M" uniqKey="Pavel M">M Pavel</name>
</author>
<author>
<name sortKey="Squitieri, F" uniqKey="Squitieri F">F Squitieri</name>
</author>
<author>
<name sortKey="Hardenberg, Mc" uniqKey="Hardenberg M">MC Hardenberg</name>
</author>
<author>
<name sortKey="Imarisio, S" uniqKey="Imarisio S">S Imarisio</name>
</author>
<author>
<name sortKey="Menzies, Fm" uniqKey="Menzies F">FM Menzies</name>
</author>
<author>
<name sortKey="Rubinsztein, Dc" uniqKey="Rubinsztein D">DC Rubinsztein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Utturkar, Sm" uniqKey="Utturkar S">SM Utturkar</name>
</author>
<author>
<name sortKey="Klingeman, Dm" uniqKey="Klingeman D">DM Klingeman</name>
</author>
<author>
<name sortKey="Hurt, Ra" uniqKey="Hurt R">RA Hurt</name>
</author>
<author>
<name sortKey="Brown, Sd" uniqKey="Brown S">SD Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K Kirkegaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Delorme Axford, E" uniqKey="Delorme Axford E">E Delorme-Axford</name>
</author>
<author>
<name sortKey="Abernathy, E" uniqKey="Abernathy E">E Abernathy</name>
</author>
<author>
<name sortKey="Lennemann, Nj" uniqKey="Lennemann N">NJ Lennemann</name>
</author>
<author>
<name sortKey="Bernard, A" uniqKey="Bernard A">A Bernard</name>
</author>
<author>
<name sortKey="Ariosa, A" uniqKey="Ariosa A">A Ariosa</name>
</author>
<author>
<name sortKey="Coyne, Cb" uniqKey="Coyne C">CB Coyne</name>
</author>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K Kirkegaard</name>
</author>
<author>
<name sortKey="Klionsky, Dj" uniqKey="Klionsky D">DJ Klionsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mateo, R" uniqKey="Mateo R">R Mateo</name>
</author>
<author>
<name sortKey="Nagamine, Cm" uniqKey="Nagamine C">CM Nagamine</name>
</author>
<author>
<name sortKey="Spagnolo, J" uniqKey="Spagnolo J">J Spagnolo</name>
</author>
<author>
<name sortKey="Mendez, E" uniqKey="Mendez E">E Mendez</name>
</author>
<author>
<name sortKey="Rahe, M" uniqKey="Rahe M">M Rahe</name>
</author>
<author>
<name sortKey="Gale, M" uniqKey="Gale M">M Gale</name>
</author>
<author>
<name sortKey="Yuan, J" uniqKey="Yuan J">J Yuan</name>
</author>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K Kirkegaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bird, Sw" uniqKey="Bird S">SW Bird</name>
</author>
<author>
<name sortKey="Kirkegaard, K" uniqKey="Kirkegaard K">K Kirkegaard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rees, M" uniqKey="Rees M">M Rees</name>
</author>
<author>
<name sortKey="Gorba, C" uniqKey="Gorba C">C Gorba</name>
</author>
<author>
<name sortKey="De Chiara, C" uniqKey="De Chiara C">C de Chiara</name>
</author>
<author>
<name sortKey="Bui, Tt" uniqKey="Bui T">TT Bui</name>
</author>
<author>
<name sortKey="Garcia Maya, M" uniqKey="Garcia Maya M">M Garcia-Maya</name>
</author>
<author>
<name sortKey="Drake, Af" uniqKey="Drake A">AF Drake</name>
</author>
<author>
<name sortKey="Okazawa, H" uniqKey="Okazawa H">H Okazawa</name>
</author>
<author>
<name sortKey="Pastore, A" uniqKey="Pastore A">A Pastore</name>
</author>
<author>
<name sortKey="Svergun, D" uniqKey="Svergun D">D Svergun</name>
</author>
<author>
<name sortKey="Chen, Yw" uniqKey="Chen Y">YW Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sawtell, Nm" uniqKey="Sawtell N">NM Sawtell</name>
</author>
<author>
<name sortKey="Poon, Dk" uniqKey="Poon D">DK Poon</name>
</author>
<author>
<name sortKey="Tansky, Cs" uniqKey="Tansky C">CS Tansky</name>
</author>
<author>
<name sortKey="Thompson, Rl" uniqKey="Thompson R">RL Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Laval, F" uniqKey="De Laval F">F de Laval</name>
</author>
<author>
<name sortKey="Matheus, S" uniqKey="Matheus S">S Matheus</name>
</author>
<author>
<name sortKey="Labrousse, T" uniqKey="Labrousse T">T Labrousse</name>
</author>
<author>
<name sortKey="Enfissi, A" uniqKey="Enfissi A">A Enfissi</name>
</author>
<author>
<name sortKey="Rousset, D" uniqKey="Rousset D">D Rousset</name>
</author>
<author>
<name sortKey="Briolant, S" uniqKey="Briolant S">S Briolant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oliveira Souto, I" uniqKey="Oliveira Souto I">I Oliveira Souto</name>
</author>
<author>
<name sortKey="Alejo Cancho, I" uniqKey="Alejo Cancho I">I Alejo-Cancho</name>
</author>
<author>
<name sortKey="Gascon Brustenga, J" uniqKey="Gascon Brustenga J">J Gascon Brustenga</name>
</author>
<author>
<name sortKey="Peiro Mestres, A" uniqKey="Peiro Mestres A">A Peiro Mestres</name>
</author>
<author>
<name sortKey="Munoz Gutierrez, J" uniqKey="Munoz Gutierrez J">J Munoz Gutierrez</name>
</author>
<author>
<name sortKey="Martinez Yoldi, Mj" uniqKey="Martinez Yoldi M">MJ Martinez Yoldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atkinson, B" uniqKey="Atkinson B">B Atkinson</name>
</author>
<author>
<name sortKey="Thorburn, F" uniqKey="Thorburn F">F Thorburn</name>
</author>
<author>
<name sortKey="Petridou, C" uniqKey="Petridou C">C Petridou</name>
</author>
<author>
<name sortKey="Bailey, D" uniqKey="Bailey D">D Bailey</name>
</author>
<author>
<name sortKey="Hewson, R" uniqKey="Hewson R">R Hewson</name>
</author>
<author>
<name sortKey="Simpson, Aj" uniqKey="Simpson A">AJ Simpson</name>
</author>
<author>
<name sortKey="Brooks, Tj" uniqKey="Brooks T">TJ Brooks</name>
</author>
<author>
<name sortKey="Aarons, Ej" uniqKey="Aarons E">EJ Aarons</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sissoko, D" uniqKey="Sissoko D">D Sissoko</name>
</author>
<author>
<name sortKey="Keita, M" uniqKey="Keita M">M Keita</name>
</author>
<author>
<name sortKey="Diallo, B" uniqKey="Diallo B">B Diallo</name>
</author>
<author>
<name sortKey="Aliabadi, N" uniqKey="Aliabadi N">N Aliabadi</name>
</author>
<author>
<name sortKey="Fitter, Dl" uniqKey="Fitter D">DL Fitter</name>
</author>
<author>
<name sortKey="Dahl, Ba" uniqKey="Dahl B">BA Dahl</name>
</author>
<author>
<name sortKey="Akoi Bore, J" uniqKey="Akoi Bore J">J Akoi Bore</name>
</author>
<author>
<name sortKey="Raymond Koundouno, F" uniqKey="Raymond Koundouno F">F Raymond Koundouno</name>
</author>
<author>
<name sortKey="Singethan, K" uniqKey="Singethan K">K Singethan</name>
</author>
<author>
<name sortKey="Meisel, S" uniqKey="Meisel S">S Meisel</name>
</author>
<author>
<name sortKey="Enkirch, T" uniqKey="Enkirch T">T Enkirch</name>
</author>
<author>
<name sortKey="Mazzarelli, A" uniqKey="Mazzarelli A">A Mazzarelli</name>
</author>
<author>
<name sortKey="Amburgey, V" uniqKey="Amburgey V">V Amburgey</name>
</author>
<author>
<name sortKey="Faye, O" uniqKey="Faye O">O Faye</name>
</author>
<author>
<name sortKey="Alpha Sall, A" uniqKey="Alpha Sall A">A Alpha Sall</name>
</author>
<author>
<name sortKey="Magassouba, N" uniqKey="Magassouba N">N Magassouba</name>
</author>
<author>
<name sortKey="Carroll, Mw" uniqKey="Carroll M">MW Carroll</name>
</author>
<author>
<name sortKey="Anglaret, X" uniqKey="Anglaret X">X Anglaret</name>
</author>
<author>
<name sortKey="Malvy, D" uniqKey="Malvy D">D Malvy</name>
</author>
<author>
<name sortKey="Formenty, P" uniqKey="Formenty P">P Formenty</name>
</author>
<author>
<name sortKey="Bruce Aylward, R" uniqKey="Bruce Aylward R">R Bruce Aylward</name>
</author>
<author>
<name sortKey="Keita, S" uniqKey="Keita S">S Keita</name>
</author>
<author>
<name sortKey="Harouna Djingarey, M" uniqKey="Harouna Djingarey M">M Harouna Djingarey</name>
</author>
<author>
<name sortKey="Loman, Nj" uniqKey="Loman N">NJ Loman</name>
</author>
<author>
<name sortKey="Gunther, S" uniqKey="Gunther S">S Gunther</name>
</author>
<author>
<name sortKey="Duraffour, S" uniqKey="Duraffour S">S Duraffour</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deen, Gf" uniqKey="Deen G">GF Deen</name>
</author>
<author>
<name sortKey="Broutet, N" uniqKey="Broutet N">N Broutet</name>
</author>
<author>
<name sortKey="Xu, W" uniqKey="Xu W">W Xu</name>
</author>
<author>
<name sortKey="Knust, B" uniqKey="Knust B">B Knust</name>
</author>
<author>
<name sortKey="Sesay, Fr" uniqKey="Sesay F">FR Sesay</name>
</author>
<author>
<name sortKey="Mcdonald, Slr" uniqKey="Mcdonald S">SLR McDonald</name>
</author>
<author>
<name sortKey="Ervin, E" uniqKey="Ervin E">E Ervin</name>
</author>
<author>
<name sortKey="Marrinan, Je" uniqKey="Marrinan J">JE Marrinan</name>
</author>
<author>
<name sortKey="Gaillard, P" uniqKey="Gaillard P">P Gaillard</name>
</author>
<author>
<name sortKey="Habib, N" uniqKey="Habib N">N Habib</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H Liu</name>
</author>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W Liu</name>
</author>
<author>
<name sortKey="Thorson, Ae" uniqKey="Thorson A">AE Thorson</name>
</author>
<author>
<name sortKey="Yamba, F" uniqKey="Yamba F">F Yamba</name>
</author>
<author>
<name sortKey="Massaquoi, Ta" uniqKey="Massaquoi T">TA Massaquoi</name>
</author>
<author>
<name sortKey="James, F" uniqKey="James F">F James</name>
</author>
<author>
<name sortKey="Ariyarajah, A" uniqKey="Ariyarajah A">A Ariyarajah</name>
</author>
<author>
<name sortKey="Ross, C" uniqKey="Ross C">C Ross</name>
</author>
<author>
<name sortKey="Bernstein, K" uniqKey="Bernstein K">K Bernstein</name>
</author>
<author>
<name sortKey="Coursier, A" uniqKey="Coursier A">A Coursier</name>
</author>
<author>
<name sortKey="Klena, J" uniqKey="Klena J">J Klena</name>
</author>
<author>
<name sortKey="Carino, M" uniqKey="Carino M">M Carino</name>
</author>
<author>
<name sortKey="Wurie, Ah" uniqKey="Wurie A">AH Wurie</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y Zhang</name>
</author>
<author>
<name sortKey="Dumbuya, Ms" uniqKey="Dumbuya M">MS Dumbuya</name>
</author>
<author>
<name sortKey="Abad, N" uniqKey="Abad N">N Abad</name>
</author>
<author>
<name sortKey="Idriss, B" uniqKey="Idriss B">B Idriss</name>
</author>
<author>
<name sortKey="Wi, T" uniqKey="Wi T">T Wi</name>
</author>
<author>
<name sortKey="Bennett, Sd" uniqKey="Bennett S">SD Bennett</name>
</author>
<author>
<name sortKey="Davies, T" uniqKey="Davies T">T Davies</name>
</author>
<author>
<name sortKey="Ebrahim, Fk" uniqKey="Ebrahim F">FK Ebrahim</name>
</author>
<author>
<name sortKey="Meites, E" uniqKey="Meites E">E Meites</name>
</author>
<author>
<name sortKey="Naidoo, D" uniqKey="Naidoo D">D Naidoo</name>
</author>
<author>
<name sortKey="Smith, Sj" uniqKey="Smith S">SJ Smith</name>
</author>
<author>
<name sortKey="Ongpin, P" uniqKey="Ongpin P">P Ongpin</name>
</author>
<author>
<name sortKey="Malik, T" uniqKey="Malik T">T Malik</name>
</author>
<author>
<name sortKey="Banerjee, A" uniqKey="Banerjee A">A Banerjee</name>
</author>
<author>
<name sortKey="Erickson, Br" uniqKey="Erickson B">BR Erickson</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Xu, K" uniqKey="Xu K">K Xu</name>
</author>
<author>
<name sortKey="Brault, A" uniqKey="Brault A">A Brault</name>
</author>
<author>
<name sortKey="Durski, Kn" uniqKey="Durski K">KN Durski</name>
</author>
<author>
<name sortKey="Winter, J" uniqKey="Winter J">J Winter</name>
</author>
<author>
<name sortKey="Sealy, T" uniqKey="Sealy T">T Sealy</name>
</author>
<author>
<name sortKey="Nichol, St" uniqKey="Nichol S">ST Nichol</name>
</author>
<author>
<name sortKey="Lamunu, M" uniqKey="Lamunu M">M Lamunu</name>
</author>
<author>
<name sortKey="Bangura, J" uniqKey="Bangura J">J Bangura</name>
</author>
<author>
<name sortKey="Landoulsi, S" uniqKey="Landoulsi S">S Landoulsi</name>
</author>
<author>
<name sortKey="Jambai, A" uniqKey="Jambai A">A Jambai</name>
</author>
<author>
<name sortKey="Morgan, O" uniqKey="Morgan O">O Morgan</name>
</author>
<author>
<name sortKey="Wu, G" uniqKey="Wu G">G Wu</name>
</author>
<author>
<name sortKey="Liang, M" uniqKey="Liang M">M Liang</name>
</author>
<author>
<name sortKey="Su, Q" uniqKey="Su Q">Q Su</name>
</author>
<author>
<name sortKey="Lan, Y" uniqKey="Lan Y">Y Lan</name>
</author>
<author>
<name sortKey="Hao, Y" uniqKey="Hao Y">Y Hao</name>
</author>
<author>
<name sortKey="Formenty, P" uniqKey="Formenty P">P Formenty</name>
</author>
<author>
<name sortKey="Stroher, U" uniqKey="Stroher U">U Stroher</name>
</author>
<author>
<name sortKey="Sahr, F" uniqKey="Sahr F">F Sahr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garcia Blanco, Ma" uniqKey="Garcia Blanco M">MA Garcia-Blanco</name>
</author>
<author>
<name sortKey="Cullen, Br" uniqKey="Cullen B">BR Cullen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kudelova, M" uniqKey="Kudelova M">M Kudelova</name>
</author>
<author>
<name sortKey="Rajcani, J" uniqKey="Rajcani J">J Rajcani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pyles, Rb" uniqKey="Pyles R">RB Pyles</name>
</author>
<author>
<name sortKey="Sawtell, Nm" uniqKey="Sawtell N">NM Sawtell</name>
</author>
<author>
<name sortKey="Thompson, Rl" uniqKey="Thompson R">RL Thompson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Payne, Sl" uniqKey="Payne S">SL Payne</name>
</author>
<author>
<name sortKey="Elder, Jh" uniqKey="Elder J">JH Elder</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steagall, Wk" uniqKey="Steagall W">WK Steagall</name>
</author>
<author>
<name sortKey="Robek, Md" uniqKey="Robek M">MD Robek</name>
</author>
<author>
<name sortKey="Perry, St" uniqKey="Perry S">ST Perry</name>
</author>
<author>
<name sortKey="Fuller, Fj" uniqKey="Fuller F">FJ Fuller</name>
</author>
<author>
<name sortKey="Payne, Sl" uniqKey="Payne S">SL Payne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kato, A" uniqKey="Kato A">A Kato</name>
</author>
<author>
<name sortKey="Arii, J" uniqKey="Arii J">J Arii</name>
</author>
<author>
<name sortKey="Koyanagi, Y" uniqKey="Koyanagi Y">Y Koyanagi</name>
</author>
<author>
<name sortKey="Kawaguchi, Y" uniqKey="Kawaguchi Y">Y Kawaguchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Topalis, D" uniqKey="Topalis D">D Topalis</name>
</author>
<author>
<name sortKey="Gillemot, S" uniqKey="Gillemot S">S Gillemot</name>
</author>
<author>
<name sortKey="Snoeck, R" uniqKey="Snoeck R">R Snoeck</name>
</author>
<author>
<name sortKey="Andrei, G" uniqKey="Andrei G">G Andrei</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Den Bergh, B" uniqKey="Van Den Bergh B">B Van den Bergh</name>
</author>
<author>
<name sortKey="Fauvart, M" uniqKey="Fauvart M">M Fauvart</name>
</author>
<author>
<name sortKey="Michiels, J" uniqKey="Michiels J">J Michiels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahr, U" uniqKey="Bahr U">U Bahr</name>
</author>
<author>
<name sortKey="Darai, G" uniqKey="Darai G">G Darai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruce, Ag" uniqKey="Bruce A">AG Bruce</name>
</author>
<author>
<name sortKey="Thouless, Me" uniqKey="Thouless M">ME Thouless</name>
</author>
<author>
<name sortKey="Haines, As" uniqKey="Haines A">AS Haines</name>
</author>
<author>
<name sortKey="Pallen, Mj" uniqKey="Pallen M">MJ Pallen</name>
</author>
<author>
<name sortKey="Grundhoff, A" uniqKey="Grundhoff A">A Grundhoff</name>
</author>
<author>
<name sortKey="Rose, Tm" uniqKey="Rose T">TM Rose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruce, Ag" uniqKey="Bruce A">AG Bruce</name>
</author>
<author>
<name sortKey="Ryan, Jt" uniqKey="Ryan J">JT Ryan</name>
</author>
<author>
<name sortKey="Thomas, Mj" uniqKey="Thomas M">MJ Thomas</name>
</author>
<author>
<name sortKey="Peng, X" uniqKey="Peng X">X Peng</name>
</author>
<author>
<name sortKey="Grundhoff, A" uniqKey="Grundhoff A">A Grundhoff</name>
</author>
<author>
<name sortKey="Tsai, Cc" uniqKey="Tsai C">CC Tsai</name>
</author>
<author>
<name sortKey="Rose, Tm" uniqKey="Rose T">TM Rose</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okeke, Mi" uniqKey="Okeke M">MI Okeke</name>
</author>
<author>
<name sortKey="Okoli, As" uniqKey="Okoli A">AS Okoli</name>
</author>
<author>
<name sortKey="Nilssen, O" uniqKey="Nilssen O">O Nilssen</name>
</author>
<author>
<name sortKey="Moens, U" uniqKey="Moens U">U Moens</name>
</author>
<author>
<name sortKey="Tryland, M" uniqKey="Tryland M">M Tryland</name>
</author>
<author>
<name sortKey="Bohn, T" uniqKey="Bohn T">T Bohn</name>
</author>
<author>
<name sortKey="Traavik, T" uniqKey="Traavik T">T Traavik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okeke, Mi" uniqKey="Okeke M">MI Okeke</name>
</author>
<author>
<name sortKey="Adekoya, Oa" uniqKey="Adekoya O">OA Adekoya</name>
</author>
<author>
<name sortKey="Moens, U" uniqKey="Moens U">U Moens</name>
</author>
<author>
<name sortKey="Tryland, M" uniqKey="Tryland M">M Tryland</name>
</author>
<author>
<name sortKey="Traavik, T" uniqKey="Traavik T">T Traavik</name>
</author>
<author>
<name sortKey="Nilssen, O" uniqKey="Nilssen O">O Nilssen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hoffmann, D" uniqKey="Hoffmann D">D Hoffmann</name>
</author>
<author>
<name sortKey="Franke, A" uniqKey="Franke A">A Franke</name>
</author>
<author>
<name sortKey="Jenckel, M" uniqKey="Jenckel M">M Jenckel</name>
</author>
<author>
<name sortKey="Tamosiunaite, A" uniqKey="Tamosiunaite A">A Tamosiunaite</name>
</author>
<author>
<name sortKey="Schluckebier, J" uniqKey="Schluckebier J">J Schluckebier</name>
</author>
<author>
<name sortKey="Granzow, H" uniqKey="Granzow H">H Granzow</name>
</author>
<author>
<name sortKey="Hoffmann, B" uniqKey="Hoffmann B">B Hoffmann</name>
</author>
<author>
<name sortKey="Fischer, S" uniqKey="Fischer S">S Fischer</name>
</author>
<author>
<name sortKey="Ulrich, Rg" uniqKey="Ulrich R">RG Ulrich</name>
</author>
<author>
<name sortKey="Hoper, D" uniqKey="Hoper D">D Hoper</name>
</author>
<author>
<name sortKey="Goller, K" uniqKey="Goller K">K Goller</name>
</author>
<author>
<name sortKey="Osterrieder, N" uniqKey="Osterrieder N">N Osterrieder</name>
</author>
<author>
<name sortKey="Beer, M" uniqKey="Beer M">M Beer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, Z" uniqKey="Xu Z">Z Xu</name>
</author>
<author>
<name sortKey="Zikos, D" uniqKey="Zikos D">D Zikos</name>
</author>
<author>
<name sortKey="Osterrieder, N" uniqKey="Osterrieder N">N Osterrieder</name>
</author>
<author>
<name sortKey="Tischer, Bk" uniqKey="Tischer B">BK Tischer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Funahashi, S" uniqKey="Funahashi S">S Funahashi</name>
</author>
<author>
<name sortKey="Sato, T" uniqKey="Sato T">T Sato</name>
</author>
<author>
<name sortKey="Shida, H" uniqKey="Shida H">H Shida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kastenmayer, Rj" uniqKey="Kastenmayer R">RJ Kastenmayer</name>
</author>
<author>
<name sortKey="Maruri Avidal, L" uniqKey="Maruri Avidal L">L Maruri-Avidal</name>
</author>
<author>
<name sortKey="Americo, Jl" uniqKey="Americo J">JL Americo</name>
</author>
<author>
<name sortKey="Earl, Pl" uniqKey="Earl P">PL Earl</name>
</author>
<author>
<name sortKey="Weisberg, As" uniqKey="Weisberg A">AS Weisberg</name>
</author>
<author>
<name sortKey="Moss, B" uniqKey="Moss B">B Moss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carroll, Ds" uniqKey="Carroll D">DS Carroll</name>
</author>
<author>
<name sortKey="Emerson, Gl" uniqKey="Emerson G">GL Emerson</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Sammons, S" uniqKey="Sammons S">S Sammons</name>
</author>
<author>
<name sortKey="Olson, V" uniqKey="Olson V">V Olson</name>
</author>
<author>
<name sortKey="Frace, M" uniqKey="Frace M">M Frace</name>
</author>
<author>
<name sortKey="Nakazawa, Y" uniqKey="Nakazawa Y">Y Nakazawa</name>
</author>
<author>
<name sortKey="Czerny, Cp" uniqKey="Czerny C">CP Czerny</name>
</author>
<author>
<name sortKey="Tryland, M" uniqKey="Tryland M">M Tryland</name>
</author>
<author>
<name sortKey="Kolodziejek, J" uniqKey="Kolodziejek J">J Kolodziejek</name>
</author>
<author>
<name sortKey="Nowotny, N" uniqKey="Nowotny N">N Nowotny</name>
</author>
<author>
<name sortKey="Olsen Rasmussen, M" uniqKey="Olsen Rasmussen M">M Olsen-Rasmussen</name>
</author>
<author>
<name sortKey="Khristova, M" uniqKey="Khristova M">M Khristova</name>
</author>
<author>
<name sortKey="Govil, D" uniqKey="Govil D">D Govil</name>
</author>
<author>
<name sortKey="Karem, K" uniqKey="Karem K">K Karem</name>
</author>
<author>
<name sortKey="Damon, Ik" uniqKey="Damon I">IK Damon</name>
</author>
<author>
<name sortKey="Meyer, H" uniqKey="Meyer H">H Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Perutz, Mf" uniqKey="Perutz M">MF Perutz</name>
</author>
<author>
<name sortKey="Pope, Bj" uniqKey="Pope B">BJ Pope</name>
</author>
<author>
<name sortKey="Owen, D" uniqKey="Owen D">D Owen</name>
</author>
<author>
<name sortKey="Wanker, Ee" uniqKey="Wanker E">EE Wanker</name>
</author>
<author>
<name sortKey="Scherzinger, E" uniqKey="Scherzinger E">E Scherzinger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bettencourt, C" uniqKey="Bettencourt C">C Bettencourt</name>
</author>
<author>
<name sortKey="Hensman Moss, D" uniqKey="Hensman Moss D">D Hensman-Moss</name>
</author>
<author>
<name sortKey="Flower, M" uniqKey="Flower M">M Flower</name>
</author>
<author>
<name sortKey="Wiethoff, S" uniqKey="Wiethoff S">S Wiethoff</name>
</author>
<author>
<name sortKey="Brice, A" uniqKey="Brice A">A Brice</name>
</author>
<author>
<name sortKey="Goizet, C" uniqKey="Goizet C">C Goizet</name>
</author>
<author>
<name sortKey="Stevanin, G" uniqKey="Stevanin G">G Stevanin</name>
</author>
<author>
<name sortKey="Koutsis, G" uniqKey="Koutsis G">G Koutsis</name>
</author>
<author>
<name sortKey="Karadima, G" uniqKey="Karadima G">G Karadima</name>
</author>
<author>
<name sortKey="Panas, M" uniqKey="Panas M">M Panas</name>
</author>
<author>
<name sortKey="Yescas Gomez, P" uniqKey="Yescas Gomez P">P Yescas-Gomez</name>
</author>
<author>
<name sortKey="Garcia Velazquez, Le" uniqKey="Garcia Velazquez L">LE Garcia-Velazquez</name>
</author>
<author>
<name sortKey="Alonso Vilatela, Me" uniqKey="Alonso Vilatela M">ME Alonso-Vilatela</name>
</author>
<author>
<name sortKey="Lima, M" uniqKey="Lima M">M Lima</name>
</author>
<author>
<name sortKey="Raposo, M" uniqKey="Raposo M">M Raposo</name>
</author>
<author>
<name sortKey="Traynor, B" uniqKey="Traynor B">B Traynor</name>
</author>
<author>
<name sortKey="Sweeney, M" uniqKey="Sweeney M">M Sweeney</name>
</author>
<author>
<name sortKey="Wood, N" uniqKey="Wood N">N Wood</name>
</author>
<author>
<name sortKey="Giunti, P" uniqKey="Giunti P">P Giunti</name>
</author>
<author>
<name sortKey="Network, S" uniqKey="Network S">S Network</name>
</author>
<author>
<name sortKey="Durr, A" uniqKey="Durr A">A Durr</name>
</author>
<author>
<name sortKey="Holmans, P" uniqKey="Holmans P">P Holmans</name>
</author>
<author>
<name sortKey="Houlden, H" uniqKey="Houlden H">H Houlden</name>
</author>
<author>
<name sortKey="Tabrizi, Sj" uniqKey="Tabrizi S">SJ Tabrizi</name>
</author>
<author>
<name sortKey="Jones, L" uniqKey="Jones L">L Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cortes, Cj" uniqKey="Cortes C">CJ Cortes</name>
</author>
<author>
<name sortKey="La Spada, Ar" uniqKey="La Spada A">AR La Spada</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baxter, Vk" uniqKey="Baxter V">VK Baxter</name>
</author>
<author>
<name sortKey="Glowinski, R" uniqKey="Glowinski R">R Glowinski</name>
</author>
<author>
<name sortKey="Braxton, Am" uniqKey="Braxton A">AM Braxton</name>
</author>
<author>
<name sortKey="Potter, Mc" uniqKey="Potter M">MC Potter</name>
</author>
<author>
<name sortKey="Slusher, Bs" uniqKey="Slusher B">BS Slusher</name>
</author>
<author>
<name sortKey="Griffin, De" uniqKey="Griffin D">DE Griffin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weight, Ak" uniqKey="Weight A">AK Weight</name>
</author>
<author>
<name sortKey="Belser, Ja" uniqKey="Belser J">JA Belser</name>
</author>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
<author>
<name sortKey="Chen, J" uniqKey="Chen J">J Chen</name>
</author>
<author>
<name sortKey="Klibanov, Am" uniqKey="Klibanov A">AM Klibanov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, S" uniqKey="Yang S">S Yang</name>
</author>
<author>
<name sortKey="Chang, R" uniqKey="Chang R">R Chang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
<author>
<name sortKey="Zhao, T" uniqKey="Zhao T">T Zhao</name>
</author>
<author>
<name sortKey="Hong, Y" uniqKey="Hong Y">Y Hong</name>
</author>
<author>
<name sortKey="Kong, He" uniqKey="Kong H">HE Kong</name>
</author>
<author>
<name sortKey="Sun, X" uniqKey="Sun X">X Sun</name>
</author>
<author>
<name sortKey="Qin, Z" uniqKey="Qin Z">Z Qin</name>
</author>
<author>
<name sortKey="Jin, P" uniqKey="Jin P">P Jin</name>
</author>
<author>
<name sortKey="Li, S" uniqKey="Li S">S Li</name>
</author>
<author>
<name sortKey="Li, Xj" uniqKey="Li X">XJ Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moore, Lr" uniqKey="Moore L">LR Moore</name>
</author>
<author>
<name sortKey="Rajpal, G" uniqKey="Rajpal G">G Rajpal</name>
</author>
<author>
<name sortKey="Dillingham, It" uniqKey="Dillingham I">IT Dillingham</name>
</author>
<author>
<name sortKey="Qutob, M" uniqKey="Qutob M">M Qutob</name>
</author>
<author>
<name sortKey="Blumenstein, Kg" uniqKey="Blumenstein K">KG Blumenstein</name>
</author>
<author>
<name sortKey="Gattis, D" uniqKey="Gattis D">D Gattis</name>
</author>
<author>
<name sortKey="Hung, G" uniqKey="Hung G">G Hung</name>
</author>
<author>
<name sortKey="Kordasiewicz, Hb" uniqKey="Kordasiewicz H">HB Kordasiewicz</name>
</author>
<author>
<name sortKey="Paulson, Hl" uniqKey="Paulson H">HL Paulson</name>
</author>
<author>
<name sortKey="Mcloughlin, Hs" uniqKey="Mcloughlin H">HS McLoughlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Keiser, Ms" uniqKey="Keiser M">MS Keiser</name>
</author>
<author>
<name sortKey="Kordasiewicz, Hb" uniqKey="Kordasiewicz H">HB Kordasiewicz</name>
</author>
<author>
<name sortKey="Mcbride, Jl" uniqKey="Mcbride J">JL McBride</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y Wang</name>
</author>
<author>
<name sortKey="Santerre, M" uniqKey="Santerre M">M Santerre</name>
</author>
<author>
<name sortKey="Tempera, I" uniqKey="Tempera I">I Tempera</name>
</author>
<author>
<name sortKey="Martin, K" uniqKey="Martin K">K Martin</name>
</author>
<author>
<name sortKey="Mukerjee, R" uniqKey="Mukerjee R">R Mukerjee</name>
</author>
<author>
<name sortKey="Sawaya, Be" uniqKey="Sawaya B">BE Sawaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beck, A" uniqKey="Beck A">A Beck</name>
</author>
<author>
<name sortKey="Tesh, Rb" uniqKey="Tesh R">RB Tesh</name>
</author>
<author>
<name sortKey="Wood, Tg" uniqKey="Wood T">TG Wood</name>
</author>
<author>
<name sortKey="Widen, Sg" uniqKey="Widen S">SG Widen</name>
</author>
<author>
<name sortKey="Ryman, Kd" uniqKey="Ryman K">KD Ryman</name>
</author>
<author>
<name sortKey="Barrett, Ad" uniqKey="Barrett A">AD Barrett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sanders, Bp" uniqKey="Sanders B">BP Sanders</name>
</author>
<author>
<name sortKey="Liu, Y" uniqKey="Liu Y">Y Liu</name>
</author>
<author>
<name sortKey="Brandjes, A" uniqKey="Brandjes A">A Brandjes</name>
</author>
<author>
<name sortKey="Van Hoek, V" uniqKey="Van Hoek V">V van Hoek</name>
</author>
<author>
<name sortKey="De Los Rios Oakes, I" uniqKey="De Los Rios Oakes I">I de Los Rios Oakes</name>
</author>
<author>
<name sortKey="Lewis, J" uniqKey="Lewis J">J Lewis</name>
</author>
<author>
<name sortKey="Wimmer, E" uniqKey="Wimmer E">E Wimmer</name>
</author>
<author>
<name sortKey="Custers, Jh" uniqKey="Custers J">JH Custers</name>
</author>
<author>
<name sortKey="Schuitemaker, H" uniqKey="Schuitemaker H">H Schuitemaker</name>
</author>
<author>
<name sortKey="Cello, J" uniqKey="Cello J">J Cello</name>
</author>
<author>
<name sortKey="Edo Matas, D" uniqKey="Edo Matas D">D Edo-Matas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
<author>
<name sortKey="Bowen, Dm" uniqKey="Bowen D">DM Bowen</name>
</author>
<author>
<name sortKey="Lewis, Ja" uniqKey="Lewis J">JA Lewis</name>
</author>
<author>
<name sortKey="Choi, K" uniqKey="Choi K">K Choi</name>
</author>
<author>
<name sortKey="Paul, A" uniqKey="Paul A">A Paul</name>
</author>
<author>
<name sortKey="Van Noort, Gjv" uniqKey="Van Noort G">GJV van Noort</name>
</author>
<author>
<name sortKey="Lu, Wz" uniqKey="Lu W">WZ Lu</name>
</author>
<author>
<name sortKey="Filippov, Dv" uniqKey="Filippov D">DV Filippov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Danecek, P" uniqKey="Danecek P">P Danecek</name>
</author>
<author>
<name sortKey="Lu, W" uniqKey="Lu W">W Lu</name>
</author>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, Ch" uniqKey="Schein C">CH Schein</name>
</author>
<author>
<name sortKey="Ye, M" uniqKey="Ye M">M Ye</name>
</author>
<author>
<name sortKey="Paul, Av" uniqKey="Paul A">AV Paul</name>
</author>
<author>
<name sortKey="Oberste, Ms" uniqKey="Oberste M">MS Oberste</name>
</author>
<author>
<name sortKey="Chapman, N" uniqKey="Chapman N">N Chapman</name>
</author>
<author>
<name sortKey="Van Der Heden Van Noort, Gj" uniqKey="Van Der Heden Van Noort G">GJ van der Heden van Noort</name>
</author>
<author>
<name sortKey="Filippov, Dv" uniqKey="Filippov D">DV Filippov</name>
</author>
<author>
<name sortKey="Choi, Kh" uniqKey="Choi K">KH Choi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doi, K" uniqKey="Doi K">K Doi</name>
</author>
<author>
<name sortKey="Monjo, T" uniqKey="Monjo T">T Monjo</name>
</author>
<author>
<name sortKey="Hoang, Ph" uniqKey="Hoang P">PH Hoang</name>
</author>
<author>
<name sortKey="Yoshimura, J" uniqKey="Yoshimura J">J Yoshimura</name>
</author>
<author>
<name sortKey="Yurino, H" uniqKey="Yurino H">H Yurino</name>
</author>
<author>
<name sortKey="Mitsui, J" uniqKey="Mitsui J">J Mitsui</name>
</author>
<author>
<name sortKey="Ishiura, H" uniqKey="Ishiura H">H Ishiura</name>
</author>
<author>
<name sortKey="Takahashi, Y" uniqKey="Takahashi Y">Y Takahashi</name>
</author>
<author>
<name sortKey="Ichikawa, Y" uniqKey="Ichikawa Y">Y Ichikawa</name>
</author>
<author>
<name sortKey="Goto, J" uniqKey="Goto J">J Goto</name>
</author>
<author>
<name sortKey="Tsuji, S" uniqKey="Tsuji S">S Tsuji</name>
</author>
<author>
<name sortKey="Morishita, S" uniqKey="Morishita S">S Morishita</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mol Neurobiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Mol. Neurobiol</journal-id>
<journal-title-group>
<journal-title>Molecular Neurobiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0893-7648</issn>
<issn pub-type="epub">1559-1182</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>New York</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">30182336</article-id>
<article-id pub-id-type="pmc">6399083</article-id>
<article-id pub-id-type="publisher-id">1269</article-id>
<article-id pub-id-type="doi">10.1007/s12035-018-1269-4</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Polyglutamine Repeats in Viruses</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0002-8290-2109</contrib-id>
<name>
<surname>Schein</surname>
<given-names>Catherine H.</given-names>
</name>
<address>
<email>chschein@utmb.edu</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 1547 9964</institution-id>
<institution-id institution-id-type="GRID">grid.176731.5</institution-id>
<institution>Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity,</institution>
<institution>University of Texas Medical Branch,</institution>
</institution-wrap>
Galveston, TX USA</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>4</day>
<month>9</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2019</year>
</pub-date>
<volume>56</volume>
<issue>5</issue>
<fpage>3664</fpage>
<lpage>3675</lpage>
<history>
<date date-type="received">
<day>15</day>
<month>3</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>19</day>
<month>7</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>© Springer Science+Business Media, LLC, part of Springer Nature 2018</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">This review explores the presence and functions of polyglutamine (polyQ) in viral proteins. In mammals, mutations in polyQ segments (and CAG repeats at the nucleotide level) have been linked to neural disorders and ataxias. PolyQ regions in normal human proteins have documented functional roles, in transcription factors and, more recently, in regulating autophagy. Despite the high frequency of polyQ repeats in eukaryotic genomes, little attention has been given to the presence or possible role of polyQ sequences in virus genomes. A survey described here revealed that polyQ repeats occur rarely in RNA viruses, suggesting that they have detrimental effects on virus replication at the nucleotide or protein level. However, there have been sporadic reports of polyQ segments in potyviruses and in reptilian nidoviruses (among the largest RNA viruses known). Conserved polyQ segments are found in the regulatory control proteins of many DNA viruses. Variable length polyQ tracts are found in proteins that contribute to transmissibility (cowpox A-type inclusion protein (ATI)) and control of latency (herpes viruses). New longer-read sequencing methods, using original biological samples, should reveal more details on the presence and functional role of polyQ in viruses, as well as the nucleotide regions that encode them. Given the known toxic effects of polyQ repeats, the role of these segments in neurovirulent and tumorigenic viruses should be further explored.</p>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (10.1007/s12035-018-1269-4) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Neurotropic viruses</kwd>
<kwd>Glutamine repeat diseases</kwd>
<kwd>A-type inclusion protein</kwd>
<kwd>Deoxyuridine 5′-triphosphate nucleotide hydrolase (DUT)</kwd>
<kwd>Herpes virus latency</kwd>
<kwd>Cowpox virus</kwd>
<kwd>RNA viruses</kwd>
<kwd>Virus transmissibility</kwd>
<kwd>Protein inclusions containing virus</kwd>
<kwd>Beclin-1 control of autophagy</kwd>
<kwd>Kaposi’s sarcoma</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source>
<institution-wrap>
<institution-id institution-id-type="FundRef">http://dx.doi.org/10.13039/100000060</institution-id>
<institution>National Institute of Allergy and Infectious Diseases</institution>
</institution-wrap>
</funding-source>
<award-id>R21 AI105985-02</award-id>
</award-group>
</funding-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Science+Business Media, LLC, part of Springer Nature 2019</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Introduction</title>
<p id="Par2">Mutations in human proteins that result in longer polyQ repeat sequences have been linked to dementias and ataxias [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Their toxicity has been attributed, at the protein level, to aggregation of long polyQ protein tracts, interference with autophagy [
<xref ref-type="bibr" rid="CR2">2</xref>
] and to their ability to bind RNA in several model organisms, including marmosets [
<xref ref-type="bibr" rid="CR3">3</xref>
],
<italic>Drosophila</italic>
, and
<italic>E. coli</italic>
[
<xref ref-type="bibr" rid="CR4">4</xref>
<xref ref-type="bibr" rid="CR7">7</xref>
]. Proteins containing mutated longer repeats may also lose their function. For example, expanded polyQ repeats in ataxin-3 may interfere with miRNA function in Machado-Josef disease [
<xref ref-type="bibr" rid="CR8">8</xref>
] and expansion of the polyQ tract in the androgen receptor reduces its DNA binding capacity [
<xref ref-type="bibr" rid="CR9">9</xref>
]. The mechanisms of polyQ toxicity are dependent on the protein encoded, and even alternative reading frames of the DNA [
<xref ref-type="bibr" rid="CR10">10</xref>
,
<xref ref-type="bibr" rid="CR11">11</xref>
]. For example, aggregated polyQ containing protein, huntingtin, is found in the brain of Huntington’s disease (HD) victims. However, a rare disease similar in clinical appearance to HD, Huntington’s disease-like 2 (HDL2), has been linked to repeat regions in RNA and alternative transcripts causing loss of expression of other proteins, such as junctophilin-3 [
<xref ref-type="bibr" rid="CR12">12</xref>
]. Targeting such repeats at the protein or RNA level may provide novel therapies for these diseases [
<xref ref-type="bibr" rid="CR13">13</xref>
<xref ref-type="bibr" rid="CR15">15</xref>
].</p>
<p id="Par3">While the mechanisms for the function and toxicity of extended polyQ segments (or the nucleic regions that encode them) in eukaryotic proteins continue to be actively studied [
<xref ref-type="bibr" rid="CR16">16</xref>
], there has been little exploration of their occurrence and possible roles, even in neurovirulent viruses. This is particularly curious, in light of the documented role of polyQ tracts in transcription factors (TFs) and their abundance in eukaryotic genomes [
<xref ref-type="bibr" rid="CR17">17</xref>
], even constituting a “polyQ interactome” [
<xref ref-type="bibr" rid="CR16">16</xref>
]. The first goal of this work was to determine whether viral proteins contain polyQ repeats at all. One might anticipate that longer polyQ sequences, based on their tendency to aggregate and to interfere with transcription, would be selected against in rapidly replicating viruses under extreme environmental pressure. Sequence selection in DNA viruses during chronic infections, on the other hand, would favor compatibility with host cell transcription and translation mechanisms and immune evasion [
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
], rather than rapid growth [
<xref ref-type="bibr" rid="CR20">20</xref>
<xref ref-type="bibr" rid="CR23">23</xref>
]. As this study has found, polyQ segments are indeed rare in the catalogued sequences of smaller RNA viruses, but even very long repeats have been found in several large RNA and DNA viruses.</p>
<p id="Par4">The second goal is to suggest what functions, if any, such repeat sequences, at the protein or nucleotide level, could play in viral replication, chronic infection, or neuro-pathogenesis. Clues for the potential role of the repeats could be gleaned from their roles in eukaryotic proteins, where they are present in many transcription factors. In addition, Q-rich repeats in the N-terminus of the Argonaute-2 protein of
<italic>Drosophila</italic>
and other insects [
<xref ref-type="bibr" rid="CR24">24</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
] are essential for antiviral activity [
<xref ref-type="bibr" rid="CR26">26</xref>
] and one in a cellular protein, TLE2, contributes to this protein’s ability to control lytic reactivation of Kaposi’s sarcoma-associated herpesvirus [
<xref ref-type="bibr" rid="CR27">27</xref>
]. As discussed below, the polyQ segments found in several viral proteins could indeed affect the ability of viruses to control the activities or transcription of their own or cellular proteins, while their possible role in neurovirulence remains to be established.</p>
<p id="Par5">While it may be surprising that polyQ sequences in neurovirulent viruses have not been a major topic of study, it should be emphasized that the extent of very long repeat segments would be difficult to detect by short-read sequencing of the large viruses in which they have been found. In addition, CAG triplet repeats are known to be unstable [
<xref ref-type="bibr" rid="CR28">28</xref>
] and may be specifically excised during the transition from latency to active growth, or after adaptation to cell culture. Newer methods, designed to specifically determine repeat sequences in direct isolates from infected tissues, should reveal more details about the presence and roles of repeated sequences.</p>
<sec id="Sec2">
<title>Section 1: Long PolyQ Segments in Larger RNA and DNA Viruses</title>
<sec id="FPar1">
<title>Searching for polyQ tracts in viruses</title>
<p id="Par6">Searching the published sequences of many different virus families revealed that while they are not present in smaller RNA viruses, surprisingly long tracts of polyQ have been found in larger RNA and DNA viruses. The search also suggested that repeats may be much more common in viruses than is indicated by the currently archived sequences.</p>
<p id="Par7">At the start of this work, the ViPR database [
<xref ref-type="bibr" rid="CR29">29</xref>
], which allows rapid access to the published sequences of over 75,000 viral genomes or genome segments, was used to determine which RNA and DNA viruses contain polyQ repeats. A new resource, the Influenza research database [
<xref ref-type="bibr" rid="CR30">30</xref>
], was used to screen influenza virus sequences. Once Q-rich sequences were identified, BLAST searches starting from the viral proteins that contained them were used to determine the extent of their conservation in the same virus family and to find other virus proteins containing similar tracts. BLAST was also used to find viral proteins containing repeats similar to those of the Argonaut-2 proteins.</p>
</sec>
<sec id="FPar2">
<title>The Vast Majority of Published RNA Virus Genomes Contain No Extended PolyQ Repeats</title>
<p id="Par8">If long polyQ repeats are intrinsically toxic for the function of proteins, or stimulate aggregation [
<xref ref-type="bibr" rid="CR31">31</xref>
], one would expect that rapid evolving RNA viruses would selectively eliminate them. Table
<xref rid="Tab1" ref-type="table">1</xref>
summarizes searches of over 20,000 genome sequences of many families of pathogenic viruses, including single-strand RNA viruses (Flavivirus, Reoviruses, Picornaviruses, Bunyaviridae, etc.), 43,000 segments of the dsRNA Reoviridae from the ViPR database and over 100,000 strains of Influenza from the Influenza research database [
<xref ref-type="bibr" rid="CR30">30</xref>
]. This revealed that only a few RNA viruses contain even a QQQQ sequence. Longer polyQ sequences, which would be anticipated to cause aggregation of the viral proteins (or, as discussed later, interfere with autophagy), were not found. As long repeats of many other amino acids (especially D, T, L, E, P) and mixed basic or acidic residues occur very frequently, this would suggest that there is some selection against longer polyQ tracts, either at the RNA or protein level. Literature searches have revealed sporadic reports of polyQ segments in some small RNA viruses, including potyviruses [
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
], and even a coxsackie A24 isolate [
<xref ref-type="bibr" rid="CR34">34</xref>
], whereby the lack of consistency among closely related viruses suggests these have no functional role.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Maximum length of polyQ repeats (Qn) found in published genomes of mammalian RNA and DNA virus groups. The second column shows the number of genomes searched for each group of viruses, and the last column lists some of the proteins that contain the longer polyQ repeats. See Table
<xref rid="Tab2" ref-type="table">2</xref>
for examples of herpes proteins with polyQ repeats and Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
for longer repeats</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Group</th>
<th>Genomes</th>
<th>
<italic>Q</italic>
<sub>n</sub>
</th>
<th>Found in</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="4">+-strand RNA</td>
</tr>
<tr>
<td> Coronavirus</td>
<td>1727</td>
<td>4</td>
<td>GKGQQQQGQ is conserved in the nucleocapsid of Bat corona virus and SARS</td>
</tr>
<tr>
<td> Flavivirus</td>
<td>10,242</td>
<td>4</td>
<td>Hepacivirus NS4B (22 total)</td>
</tr>
<tr>
<td> Caliciviridae</td>
<td>1215</td>
<td>4</td>
<td>Norwalk p22, (15 total)</td>
</tr>
<tr>
<td> Hepeviridae</td>
<td>316</td>
<td>3</td>
<td>Hepatitis E (13 total)</td>
</tr>
<tr>
<td> Picornaviridae</td>
<td>3704</td>
<td>4</td>
<td>Sapelovirus; human parechovirus (17 total)</td>
</tr>
<tr>
<td> Togaviridae</td>
<td>1342</td>
<td>3</td>
<td>Alphaviruses including VEEV, Ross River, Sindbis, Semliki Forest and Aura (542 total)</td>
</tr>
<tr>
<td colspan="4">-strand RNA</td>
</tr>
<tr>
<td> Arenaviridae</td>
<td>961</td>
<td>4</td>
<td>Sabia virus nucleocapsid (3 total)</td>
</tr>
<tr>
<td> Bunyaviridae</td>
<td>6273</td>
<td>4</td>
<td>Brazoran nucleocapsid, Enseada polymerase, Southbay virus L Protein (6 total)</td>
</tr>
<tr>
<td> Filoviridae</td>
<td>497</td>
<td>3</td>
<td>Ebolaviruses (several times; 1726 total)</td>
</tr>
<tr>
<td> Paramyxoviridae</td>
<td>2590</td>
<td>4</td>
<td>Mumps, Tuhoko, Newcastle, Avian and Bat paramyxovirus nucleocapsid (106 total)</td>
</tr>
<tr>
<td> Influenza</td>
<td>107,759</td>
<td>3</td>
<td>Many virus proteins</td>
</tr>
<tr>
<td> Rhabdoviridae</td>
<td>1136</td>
<td>4</td>
<td>Rice yellow stunt virus nucleocapsid (1 result)</td>
</tr>
<tr>
<td colspan="4">dsRNA</td>
</tr>
<tr>
<td> Reoviridae</td>
<td>43,913 segments</td>
<td>4</td>
<td>In 16 sequences: Rotavirus NSP3, orthoreovirus cell attachment factor sigma 1, Cypovirus VP4, Eyach VP8</td>
</tr>
<tr>
<td colspan="4">
<bold>DNA viruses:</bold>
</td>
</tr>
<tr>
<td> Herpesviridae</td>
<td>796</td>
<td>33</td>
<td>Tupaiid T2; RF1 of Rhadinovirus type 1 (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
)</td>
</tr>
<tr>
<td> Poxviridae</td>
<td>391</td>
<td>22</td>
<td>Cowpox virus A-type inclusion body protein (ATI) (Table
<xref rid="Tab3" ref-type="table">3</xref>
)</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par9">More meaningfully, BLAST searches beginning with a Q-rich sequence from DNA viruses (see below) identified a polyQ sequence in the first open reading frame of a nidovirus isolated from a python, representing a novel genus of Torovirus [
<xref ref-type="bibr" rid="CR35">35</xref>
]. A similar polyQ sequence is also found in the ORF1 of the
<italic>Morelia viridis</italic>
(
<italic>Boa constrictor</italic>
) nidovirus, but not in that of a nidovirus isolated from lizards [
<xref ref-type="bibr" rid="CR36">36</xref>
]. Nidoviruses (which include the Coronaviridae) have the longest known RNA virus genome, with continuous positive sense strands of 26–32 kBases [
<xref ref-type="bibr" rid="CR37">37</xref>
]. In contrast, other +-strand RNA viruses range from 7.5 to 12 kb, and negative-strand RNA viruses have genome lengths ranging from 7 to 19 kb. Bunyavirdae can be up to 22.7 kb in total length, but their longest (L) segments do not exceed 12 kb.</p>
<p id="Par10">It is possible that these long polyQ insertions may play a role, at the RNA level, during genome replication or adapting to changing environments [
<xref ref-type="bibr" rid="CR38">38</xref>
]. As for other RNA virus families [
<xref ref-type="bibr" rid="CR39">39</xref>
,
<xref ref-type="bibr" rid="CR40">40</xref>
], several studies have indicated the importance of dsRNA folding domains near the 5′ end of coronavirus genomes [
<xref ref-type="bibr" rid="CR41">41</xref>
]. Formation of dsRNA intermediates [
<xref ref-type="bibr" rid="CR42">42</xref>
], important for the interferon response [
<xref ref-type="bibr" rid="CR43">43</xref>
<xref ref-type="bibr" rid="CR46">46</xref>
], as well as viral enzymes that interfere with the OAS/RNaseL system that would target these [
<xref ref-type="bibr" rid="CR47">47</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
], are characteristic of infection by several different nidoviruses. These include the coronaviruses, MERS and SARS. The repeat RNA sequence encoding the polyQ region in the 5′ region of the python virus may fold as an independent domain containing extended segments of dsRNA (Fig. 
<xref rid="Fig1" ref-type="fig">S1</xref>
, [
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
]), whereby the low energy of folding generates a dynamic, unstable structure [
<xref ref-type="bibr" rid="CR51">51</xref>
]. The CAG repeat region might be excised completely during rapid growth, as CAG repeats are known to be unstable [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR53">53</xref>
]. Alternatively, it may be transcribed past during generation of subgenomic RNAs, which in nidoviruses proceeds by selective transcription of parts of the open reading frames [
<xref ref-type="bibr" rid="CR54">54</xref>
].</p>
</sec>
<sec id="FPar3">
<title>PolyQ Repeats in DNA Viruses</title>
<p id="Par11">Searches within two diverse and well-studied DNA virus families, poxviridae and herpes, indicated that several of these large viruses, known to cause chronic neurotropic infections, contain long polyQ segments (Tables 
<xref rid="Tab1" ref-type="table">1</xref>
,
<xref rid="Tab2" ref-type="table">2</xref>
and Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). These DNA virus genomes are 145–200 kbp, 5–10 times longer than those of the RNA viruses. Many herpes virus proteins contain variable length polyQ repeats in conserved regions (Table
<xref rid="Tab2" ref-type="table">2</xref>
shows some examples), and even longer polyQ repeats have also been found (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). In addition to direct polyQ repeats, there are long, Q-rich repeats in other viral proteins. For example, there is a long, variable length, Q-rich repeat in the MC006L protein of the pox virus,
<italic>Molluscum contagiosum</italic>
[
<xref ref-type="bibr" rid="CR55">55</xref>
]. This virus causes the formation of wart-like blisters on the skin of infected individuals, and characteristic cellular inclusions.
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Examples of herpes proteins containing polyQ repeat segments</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Virus</th>
<th>Protein</th>
<th>Residues</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human herpesvirus 5</td>
<td>Multifunctional expression regulator</td>
<td>703–713</td>
<td>QQQQQQQQQQQ</td>
</tr>
<tr>
<td>Human herpesvirus 5</td>
<td>Protein UL133</td>
<td>247–257</td>
<td>QQQQQQQHQTG</td>
</tr>
<tr>
<td>Human herpesvirus 5</td>
<td>Tegument protein pp150</td>
<td>399–409</td>
<td>RQQNLQQRQQQ</td>
</tr>
<tr>
<td>Elephant endotheliotropic herpesvirus 4</td>
<td>Protein ORF-S</td>
<td>316–326</td>
<td>QQQQQQQQQQQ</td>
</tr>
<tr>
<td>Elephant endotheliotropic herpesvirus 4</td>
<td>Protein U59</td>
<td>74–84</td>
<td>QQQQQQQQQRQ</td>
</tr>
<tr>
<td>Tupaiid herpesvirus 1 2</td>
<td>T2 (see also Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
)</td>
<td>496–506</td>
<td>QQQQQQQQQQQ</td>
</tr>
<tr>
<td>Murid herpesvirus 1 C4A</td>
<td>m18</td>
<td>60–70</td>
<td>QQQQQQQQQQE</td>
</tr>
<tr>
<td>Murid herpesvirus 1 C4A</td>
<td>M25</td>
<td>335–345</td>
<td>QRQQQQQQQQQ</td>
</tr>
<tr>
<td>Murid herpesvirus 1 C4A</td>
<td>M34</td>
<td>176–186</td>
<td>REQQHQQQQQG</td>
</tr>
<tr>
<td>Murid herpesvirus 1 K181</td>
<td>Apoptosis inhibitor</td>
<td>112–122</td>
<td>QQQQEKQQQQQ</td>
</tr>
<tr>
<td>Equid herpesvirus 2 86/67</td>
<td>Capsid maturation protease</td>
<td>606–616</td>
<td>QPQQQQQPQQQ</td>
</tr>
<tr>
<td>Equid herpesvirus 2 86/67</td>
<td>Capsid scaffold protein</td>
<td>299–309</td>
<td>QPQQQQQPQQQ</td>
</tr>
<tr>
<td>Equid herpesvirus 5 2–141/67</td>
<td>DNA packaging protein UL32</td>
<td>248–258</td>
<td>KQQQGQGQRQQ</td>
</tr>
<tr>
<td>Equid herpesvirus 5 2–141/67</td>
<td>DNA packaging tegument protein UL25</td>
<td>415–425</td>
<td>KQQQSQQQQQS</td>
</tr>
<tr>
<td>Equid herpesvirus 5 2–141/67</td>
<td>Uracil-DNA glycosylase (UDG)</td>
<td>12–22</td>
<td>QQQQQQPQDDQ</td>
</tr>
<tr>
<td>Equid herpesvirus 5 2–141/67</td>
<td>Envelope glycoprotein B</td>
<td>789–799</td>
<td>QQQQQQQQQQQ</td>
</tr>
<tr>
<td>Equid herpesvirus 5</td>
<td>Glycoprotein B</td>
<td>790–800</td>
<td>QQQQQQQQQQQ</td>
</tr>
<tr>
<td>Suid alphaherpesvirus 1</td>
<td>VP1/2</td>
<td>2258–2268</td>
<td>QQQQQQQQQRQ</td>
</tr>
<tr>
<td>Suid herpesvirus 1</td>
<td>Protein V57</td>
<td>106–116</td>
<td>QQQQQQQQQQR</td>
</tr>
<tr>
<td>Suid alphaherpesvirus 1</td>
<td>ICP27</td>
<td>62–72</td>
<td>QRQQQQQRQQQ</td>
</tr>
<tr>
<td>Suid herpesvirus 1</td>
<td>Early regulation protein UL54</td>
<td>64–74</td>
<td>QRQQQQQQRQQ</td>
</tr>
<tr>
<td>Suid herpesvirus 1</td>
<td>UL3.5</td>
<td>106–116</td>
<td>QQQQQQQQQQR</td>
</tr>
</tbody>
</table>
</table-wrap>
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Extensive polyQ repeats and Q-rich (underlined) regions are present in several different herpes and pox virus proteins</p>
</caption>
<graphic xlink:href="12035_2018_1269_Fig1_HTML" id="MO2"></graphic>
</fig>
</p>
<p id="Par12">As discussed below, the longest repeats were found in DNA virus proteins that function in enhancing transmissibility (cowpox ATI) or contribute to viral latency (herpes viruses).</p>
</sec>
</sec>
<sec id="Sec3">
<title>Section 2: Exploring the Function of Glutamine Repeats in Viral Proteins</title>
<p id="Par13">The RNA virus results, coupled with the fact that polyQ expansions in human proteins can lead to disease, suggest that polyQ segments are probably selected against in rapidly growing viruses. This leads to the question: what possible functions could they serve for the virus itself or interaction with host cells? This is an important question to answer as the repeats occur in proteins from viruses triggering hard-to-treat neuropathies and epilepsy [
<xref ref-type="bibr" rid="CR56">56</xref>
] and isolated from latently infected tissues and tumors.</p>
<sec id="FPar4">
<title>PolyQ Repeats Serve Important Functions in Mammalian Proteins</title>
<p id="Par14">Although studied for their role in disease, polyQ segments in mammalian proteins have important regulatory functions. After a polyQ repeat was found to be an activation domain [
<xref ref-type="bibr" rid="CR57">57</xref>
] of the TF, SP1, the role of such segments in TFs was extensively studied [
<xref ref-type="bibr" rid="CR58">58</xref>
] long before they were documented to have pathogenic characteristics possibly related to folding and formation of aggregates in cells (e.g., [
<xref ref-type="bibr" rid="CR59">59</xref>
]). More recently, the length of polyQ inserts was directly related to their ability to enhance TF activity [
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
]. Variable length Q-rich repeats may also modulate TF activity in eukaryotic cells by modulating their solubility [
<xref ref-type="bibr" rid="CR60">60</xref>
] or by recruiting other factors to the DNA binding complex. A polyQ repeat in murine SRY (sex determining region on the Y chromosome) both stabilizes the protein and serves as a transactivation domain [
<xref ref-type="bibr" rid="CR61">61</xref>
]. However, the region is found only in rodent SRY and can be replaced by an irrelevant protein (mCherry).</p>
<p id="Par15">Consistent with a possible role for polyQ tracts in viral proteins in controlling transcription, the first report of a polyQ tract in a DNA virus was in a baculovirus regulatory protein, where the authors noted the similarity of the amino acid repeats to those in SP1 [
<xref ref-type="bibr" rid="CR62">62</xref>
]. As Table
<xref rid="Tab2" ref-type="table">2</xref>
illustrates, polyQ tracts are present in several regulatory proteins of herpes viruses.</p>
<p id="Par16">Further evidence for a functional roles in controlling virus replication is that Q-rich tetratricopeptide repeats are upregulated during bovine leukemia virus infection [
<xref ref-type="bibr" rid="CR63">63</xref>
], as well as in human breast cancer cells [
<xref ref-type="bibr" rid="CR64">64</xref>
]. The Q-rich N-terminal region of a cellular protein, transducing inhibitor of SPLIT (TLE2), contributes to this protein’s ability to control lytic reactivation of Kaposi’s sarcoma-associated herpesvirus [
<xref ref-type="bibr" rid="CR27">27</xref>
].</p>
</sec>
<sec id="FPar5">
<title>PolyQ Regions in Viral Proteins May Mediate Neurovirulence Through Interference with Autophagy</title>
<p id="Par17">Recent reports suggest that polyQ segments may also serve to downregulate autophagy, which serves as a barrier to the growth of neurovirulent herpes viruses (whereby RNA viruses may use the membranous structures characteristic of autophagy for their own replication). These examples suggest possible roles for the longer repeats in proteins of viruses that typically cause latent infections, including herpes simplex, Epstein Barr, β- and ɣ-herpes viruses (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). Mutations in beclin-1, a protein which triggers the process, were previously linked to development of neurodegenerative diseases [
<xref ref-type="bibr" rid="CR65">65</xref>
]. Neurovirulent herpes simplex virus produces a protein that specifically binds to and interferes with beclin-1 function [
<xref ref-type="bibr" rid="CR66">66</xref>
], called neurovirulence factor ICP34.5 (or gamma1 34.5, ɣ34.5).</p>
<p id="Par18">Figure
<xref rid="Fig2" ref-type="fig">2</xref>
(based on [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
]) shows how an expansion of the polyQ repeat in mutant ataxin-3, as well as excess polyQ from other cellular (or viral) proteins, could interfere with the interaction of ataxin-3 and beclin-1 to inhibit autophagy. The polyQ region of wt-ataxin-3, a deubiquitinase, is expanded in spinocerebellar ataxia type 3. The normal length polyQ region mediates binding of ataxin-3 to beclin-1, preventing its degradation and allowing it to stimulate autophagy (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
, top line). Soluble, mutated polyQ segments can inhibit this binding, thus preventing beclin-1 degradation and upregulation of autophagy, preventing efficient clearance of aging cellular, as well as viral, proteins. Another indication that polyQ sequences from the virus, or some other repeat in ɣ34.5, may also be involved in this regulation is that there is a discontinuity within the (otherwise well conserved) ɣ34.5 sequence in many herpes isolates (see
<xref ref-type="sec" rid="Sec4">supplementary material</xref>
). Such discontinuities usually indicate repeat insertions [
<xref ref-type="bibr" rid="CR68">68</xref>
].
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Soluble polyQ segments (of cell or viral origin) may prevent beclin-1-induced autophagy, which depends on the DNA binding ability of the polyQ segment of wt-ataxin-3 (based on [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR67">67</xref>
]). Scheme A shows that under normal cell conditions, ataxin-3 binding (mediated by its polyQ region) to beclin-1 (BECN) protects it from proteosomal degradation. This allows beclin-1 to stimulate autophagy, which eliminates both aging cellular proteins and those of viral invaders. Scheme B suggests that viral proteins’ polyQ, similar to the extended polyQ loop of mutant ataxin-3, can interfere with this control by preventing ataxin-3 from binding. Beclin-1 is now degraded and cannot stimulate autophagy, resulting in even more accumulation of polyQ tracts, defective cellular, and viral proteins that will interfere with normal metabolism</p>
</caption>
<graphic xlink:href="12035_2018_1269_Fig2_HTML" id="MO3"></graphic>
</fig>
</p>
<p id="Par19">This finding ties in with many years of research on the effect of inhibiting autophagy on replication and neurovirulence of various viruses [
<xref ref-type="bibr" rid="CR69">69</xref>
]. While neurovirulent viruses such as herpes are indeed held in check by autophagy, some RNA viruses subvert the process for their own replication (e.g., picornaviruses [
<xref ref-type="bibr" rid="CR70">70</xref>
], dengue [
<xref ref-type="bibr" rid="CR71">71</xref>
]). Although poliovirus requires autophagy for non-lytic spread, its replication is not affected by beclin-1 inhibition [
<xref ref-type="bibr" rid="CR72">72</xref>
], suggesting it uses other ways to trigger the process.</p>
</sec>
<sec id="FPar6">
<title>Role of PolyQ Regions in Maintaining Latency</title>
<p id="Par20">As is probably the case with the polyQ repeat in murine SRY, polyQ repeat regions in viral proteins are generally variable in length and may be unstructured or “disordered” [
<xref ref-type="bibr" rid="CR73">73</xref>
]. However, some of the examples where the repeats are found suggest they have important functions that would not be obvious during in vitro replication. Once they have infected a cell, viruses enter different growth phases, ranging from almost no replication to rapid growth leading to cell lysis. A herpes virus-infected ganglion may contain less than 1000 copies of the virus/cell in the latent state and still successfully reactivate after stress (from heat, UV light exposure or infection with, for example, a rhinovirus) [
<xref ref-type="bibr" rid="CR74">74</xref>
]. Although RNA viruses are generally considered to be “hit and run”, with rapid clearance from the serum, recent experience with Zika [
<xref ref-type="bibr" rid="CR75">75</xref>
<xref ref-type="bibr" rid="CR77">77</xref>
] and Ebola [
<xref ref-type="bibr" rid="CR78">78</xref>
,
<xref ref-type="bibr" rid="CR79">79</xref>
] viruses has shown that some may also persist within body compartments where they are protected from the immune response.</p>
<p id="Par21">This leads us to a complicated equation: a virus seeking to survive intracellularly must sacrifice rapid growth for its ability to evade immune detection. Variable polyQ repeats may allow a virus to adjust to changing levels of required cellular factors [
<xref ref-type="bibr" rid="CR80">80</xref>
], and determine whether the virus is able to actively replicate, or assume a lysogenic state. Herpes viruses in particular are known to incorporate genes from the cells they infect into their genomes that may aid in maintaining lysogeny. PolyQ insertions at the amino acid or RNA level may directly contribute to viral latency by lowering the transcription or activity of the affected proteins. Alternatively, their presence, or the RNA tracts encoding them, could contribute to neurovirulence by mechanisms demonstrated for human proteins (e.g., huntingtin).</p>
<p id="Par22">Many herpes virus proteins contain conserved, variable length polyQ segments (Table
<xref rid="Tab2" ref-type="table">2</xref>
gives a sampling), including regulatory proteins, an apoptosis inhibitor, and uracil-DNA glycosylase (UDG), all factors that may affect viral replication positively or negatively. It may also be pertinent that a long, Q-rich repeat is present immediately after the catalytic domain of the deoxyuridine 5′-triphosphate nucleotide hydrolase (DUT) gene of the red deer parapox virus (RDPV). Similar sequences have not been reported in the DUT enzymes of other viruses, nor has the role of the polyQ sequence been determined in RDPV. However, UDG and DUT enzymes, which remove or prevent insertion of U residues in viral DNA, are found in all herpes viruses [
<xref ref-type="bibr" rid="CR81">81</xref>
]. Their enzymatic activity is essential for neurovirulence, neuroinvasion, and escape from latency of herpes viruses [
<xref ref-type="bibr" rid="CR82">82</xref>
]. Mutation of the virus encoded DUT inhibits transcription of equine infectious anemia virus (EILV, a lentivirus and retrovirus). On the other hand, EILV can replicate in non-dividing cells [
<xref ref-type="bibr" rid="CR83">83</xref>
] if it allows incorporation of U into its DNA [
<xref ref-type="bibr" rid="CR84">84</xref>
].</p>
<p id="Par23">Accordingly, insertion or amplification of the polyQ segment in UDG or DUT could slow replication to help maintain a latent state. As single point mutations (D71E in the active site, or those preventing phosphorylation of S187 [
<xref ref-type="bibr" rid="CR85">85</xref>
]) are sufficient to reduce neurovirulence, DUT may also be a target for antiviral drug design [
<xref ref-type="bibr" rid="CR86">86</xref>
]. However, such inhibitors must be very efficient, as residual low levels of the enzyme might have the negative effect of prolonging viral latency (analogous to antibiotic treatment selecting for slow-growing bacterial persister cells [
<xref ref-type="bibr" rid="CR87">87</xref>
]).</p>
<p id="Par24">The long polyQ repeats in other herpes virus proteins (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) may also help to suppress virus growth during latency. These include the direct repeats of polyQ that occur in the low complexity C-terminal regions of the Tupaiid T2 protein (β-Herpes group F, isolated from a lymphoma in a tree shrew [
<xref ref-type="bibr" rid="CR88">88</xref>
]) and the RF1 protein of Radinovirus type 1 (ɣ-Herpesvirus), isolated from a Kaposi’s sarcoma-like lesion in a macaque [
<xref ref-type="bibr" rid="CR89">89</xref>
]. It is possible that these polyQ repeats were directly incorporated from the host cell genes, as their sequences are quite similar to some host proteins (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). Further evidence that these polyQ repeats were incorporated in an adventitious fashion from the host cell is that repeats are not found in the published sequences of the (otherwise similar) N1 proteins of Radinoviruses type 2 [
<xref ref-type="bibr" rid="CR91">91</xref>
]. Longer repetitive regions could slow growth by decreasing transcription of an essential enzyme, making its RNA more vulnerable to cellular nucleases, and at the protein level, reducing its solubility [
<xref ref-type="bibr" rid="CR92">92</xref>
] or enhancing its degradability. Under growth conditions allowing the virus to resume lytic growth, where the enzyme activity is required to ensure efficient replication, the region encoding the polyQ segment could be rapidly removed at the gene level.
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>The polyQ region in the Tupaiid T2 protein (herpes virus group F, isolated from a lymphoma in a tree shrew) is flanked by poly-prolines (P), similar to polyQ expansions in huntingtn, and ataxins associated with neurological disease. Proline residues may also affect protein solubility [
<xref ref-type="bibr" rid="CR90">90</xref>
]. Two other mammalian proteins that also contain long polyQ repeats are shown for comparison. The T2 repeat is encoded primarily by CAG codons, as is the case with huntingtn, and the nidovirus repeat (Fig. 
<xref rid="Fig1" ref-type="fig">S1</xref>
)</p>
</caption>
<graphic xlink:href="12035_2018_1269_Fig3_HTML" id="MO4"></graphic>
</fig>
</p>
</sec>
<sec id="FPar7">
<title>PolyQ Repeats in Proteins that Mediate Virus Transmissibility</title>
<p id="Par25">As with the RNA viruses, the published sequences of only a few Poxviridae proteins contain even a tetrad QQQQ repeat. However, there is a conserved polyQ insertion of variable length in the A-type inclusion proteins (ATI) of cowpox (CWPX) viruses (Table
<xref rid="Tab3" ref-type="table">3</xref>
). As with the Q-rich repeat in the MC006L protein of
<italic>Molluscum contagiosum</italic>
(Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
), this repeat is a variable area in an otherwise well-conserved protein (
<xref ref-type="sec" rid="Sec4">Supplementary material</xref>
). The ATI with the longest polyQ segment is in strain FM2292, isolated from a lesion in a vole, which causes skin lesions and mild symptoms in its host. Although the length of the polyQ segment in the CWPX strains in Table
<xref rid="Tab3" ref-type="table">3</xref>
is not directly related to pathogenicity, ATI plays a role in a more difficult to measure parameter: transmissibility. The ATI protein, together with the p4C protein [
<xref ref-type="bibr" rid="CR93">93</xref>
,
<xref ref-type="bibr" rid="CR94">94</xref>
], allows CWPX to form protein inclusions that, when excreted from the animal, protect the virus from the elements. Inclusions that sequester the virus (V
<sup>+</sup>
phenotype) contribute to the high transmissibility of CWPX in the wild. As Jennings noted centuries ago, nearly all milkmaids had been infected with CWPX, as were probably most cows. It is significant that in a comparison of three CWPX strains, only the FM2292 virus, which contained the longest polyQ insertion in its ATI, made V
<sup>+</sup>
inclusions containing virus particles [
<xref ref-type="bibr" rid="CR95">95</xref>
]. Two strains with shorter polyQ segments, the index strain Brighton Red and a similar strain from rat, formed inclusions that contained no internalized virus particles (V
<sup>0</sup>
). The ATIs of these three strains differ primarily in their polyQ repeat region length (Table
<xref rid="Tab3" ref-type="table">3</xref>
and supplementary).
<table-wrap id="Tab3">
<label>Table 3</label>
<caption>
<p>Variable length polyQ repeat region in the highly conserved A-type inclusion proteins of cowpox strains. The last three lines show data from Hoffman et al. 2015, where the ability of three strains to form virus containing inclusion bodies (V
<sup>+</sup>
phenotype), which aid in transmissibility, was compared</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Cowpox strain</th>
<th>PolyQ region and surrounding area of the ATI</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumGri07/1Russia, 1990</td>
<td>ATGGDK
<underline>EEQEQQHQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>HumBer07/1</td>
<td>ATGGDK
<underline>EEQEQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>EleGri07/1</td>
<td>ATGGDK
<underline>EEQEQQHQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>CatBer07/1</td>
<td>ATGGDK
<underline>EEQEQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>Cowpox virus MonKre08/4</td>
<td>ATGGDK
<underline>EEQEQQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>JagKre08/2</td>
<td>ATGGDK
<underline>EEQEQQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>JagKre08/1</td>
<td>ATGGDK
<underline>EEQEQQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>HumMag07/1</td>
<td>ATGGDK
<underline>EEQEQQHQEQQHQQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>HumLan08/1</td>
<td>ATGGDK
<underline>EEQEQQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>BeaBer04/1</td>
<td>ATGGDK
<underline>EEQEQQHQQQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>BH71/10</td>
<td>ATGGDK
<underline>EEQEQQQQQQQQQQQQQ</underline>
PVKVVQSQPDDG</td>
</tr>
<tr>
<td>Germany_2002_MKY (marmoset, fatal)</td>
<td>ATGGDK
<underline>EEQEQQQQQQ</underline>
PVKVVQTQPDDDGI</td>
</tr>
<tr>
<td>Germany_1998_2</td>
<td>ATGGDK
<underline>EEQEQQHQQQ</underline>
PVKVVQTQPDDDDG</td>
</tr>
<tr>
<td>Germany_1990_2 (human, fatal)</td>
<td>ATGGDK
<underline>EEQEQQQQQQQQQQQQ</underline>
PVKVVQSQPDDD</td>
</tr>
<tr>
<td>Germany_1980_EP4 (Elephant, 1980)</td>
<td>ATGGDK
<underline>EEQQQQQQQQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>CPR06</td>
<td>ATGGDK
<underline>EEQEQQ</underline>
PVKVVQSKPDDGITPYN</td>
</tr>
<tr>
<td>CPXV Amadeus 2015</td>
<td>ATGGDK
<underline>EEQEQQHQQQQQQQQ</underline>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>RatHei09/1 V
<sup>0</sup>
</td>
<td>ATGGDK
<bold>
<underline>EEQEQQQHQQQQQQQQ</underline>
</bold>
PVKVVQTQPDDDG</td>
</tr>
<tr>
<td>Brighton Red V
<sup>0</sup>
</td>
<td>ATGGDK
<bold>
<underline>EEQEQQ</underline>
</bold>
PVKVVQSKPDDGITPYN</td>
</tr>
<tr>
<td>FM2292: V
<sup>+</sup>
</td>
<td>ATGGDK
<bold>
<underline>EQQQQQQQQQQQQQQQQQQQQQQ</underline>
</bold>
PVKVVQSQPDDG</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par26">Growth in cell culture alone does not indicate that ATI is an essential gene [
<xref ref-type="bibr" rid="CR96">96</xref>
], although it is one of the most abundant CWPX proteins, amounting to as much as half of all protein synthesis in the “late-late stages” of replication [
<xref ref-type="bibr" rid="CR97">97</xref>
]. Deleting the ATI gene leads to a faster growing virus [
<xref ref-type="bibr" rid="CR98">98</xref>
]. However, as discussed above, ATI enhances transmissibility from animal to animal, as well as virus survival outside the host. The presence of a longer polyQ sequence could reduce its transcription, synthesis, or solubility during restrictive growth in an organism, where ATI’s activity is not required.</p>
<p id="Par27">Smallpox and vaccinia virus (VV) strains lack polyQ segments in their ATIs and form only virus-free inclusions (V
<sup>0</sup>
phenotype). CWPX and VV strains also differ in the ATI interacting protein, p4C, in that only CWPX strains contain long repeats (up to 28) of aspartate (D) residues. These results suggest strongly that this amino acid repeat, together with the polyQ segment in the ATI, aid in sequestering virus particles into the V
<sup>+</sup>
inclusions, which further the extracorporeal survival of the virus.</p>
<p id="Par28">Recent direct, deep sequencing of fresh CWPX isolates from diseased animals indicated diversity in both genome length and coding areas from the Brighton Red reference strain, including an additional 6000 bp ORF [
<xref ref-type="bibr" rid="CR95">95</xref>
]. As Table
<xref rid="Tab3" ref-type="table">3</xref>
illustrates, freshly isolated strains have the longest polyQ region in the ATI, which makes it difficult to determine a “wild type” length of polyQ. It is, for example, possible that the polyQ repeats in CWPX ATI can be selected against during growth in tissue culture. In keeping with this, there is no polyQ repeat in the (extensively passaged [
<xref ref-type="bibr" rid="CR98">98</xref>
]) Brighton Red strain, first isolated in 1937 in England from human lesions. This strain would be expected to transmit poorly in the wild, thanks to its V
<sup>0</sup>
phenotype. More recently isolated German strains (1998 and 2002) have shorter polyQ regions than isolates from 1980 or 1990, but it is unknown how often these have been transferred in cell culture [
<xref ref-type="bibr" rid="CR99">99</xref>
].</p>
</sec>
<sec id="FPar8">
<title>PolyQ Repeats as a Key to Antiviral Therapy</title>
<p id="Par29">As noted in the introduction to this article, a primary reason for documenting the presence of polyQ segments in viruses is the role polyQ sequences in human proteins have been shown to play in human neurological syndromes [
<xref ref-type="bibr" rid="CR100">100</xref>
<xref ref-type="bibr" rid="CR102">102</xref>
]. Considering the importance of glutamine metabolism for central nervous system function, it would be instructive to specifically test the role of the Q-rich regions on virus latency or replication in neuronal cells. Glutamine itself is extremely important in brain chemistry, and inhibitors similar to this amino acid have antiviral activity. A Q analogue, 6-diazo-5-oxo-l-norleucine (DON), can delay encephalitis caused by alphaviruses, such as Sindbis, by reducing the amount of glutamate synthesized from glutamine [
<xref ref-type="bibr" rid="CR103">103</xref>
]. Adding polyQ tracts to the antiviral agent zanamivir greatly enhanced its anti-influenza activity [
<xref ref-type="bibr" rid="CR104">104</xref>
].</p>
<p id="Par30">As Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
shows, the viral proteins that contain long polyQ segments are very similar to those implicated in Huntington’s disease and human ataxias, and may thus be targeted by protein- [
<xref ref-type="bibr" rid="CR16">16</xref>
] or gene-based [
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR101">101</xref>
,
<xref ref-type="bibr" rid="CR105">105</xref>
<xref ref-type="bibr" rid="CR107">107</xref>
] therapies similar to those now being tested. Going forward, diagnostics should, as much as possible, distinguish polyQ sequences due to a latent virus from those indicating a mutation in a human gene. The flanking regions, which contain proline repeats (PolyP), may also affect the solubility of the proteins [
<xref ref-type="bibr" rid="CR90">90</xref>
]. To date, there have been few investigations of a direct role for these polyQ repeats in initiating neural damage. Aiding in establishing a latent infection could, in itself, contribute to neurovirulence, due to the presence of viral products [
<xref ref-type="bibr" rid="CR108">108</xref>
].</p>
</sec>
</sec>
</sec>
<sec id="Sec5">
<title>Conclusions</title>
<p id="Par31">PolyQ repeats in viruses could play important roles in controlling transcription, latency, transmissibility, and neurovirulence, whereby the latter three aspects of virus pathogenicity are independent of the ability of the virus to grow to high titer in cell culture. Long polyQ tracts in the protein products of neurotropic and cancer-related DNA viruses could chronically disturb their host cells, by mechanisms similar to those identified for huntingtin and other ataxia-related proteins that contain similar repeats.</p>
<p id="Par32">Just as B cells and other somatic cells may change their genome structure upon differentiation, it is probable that rapidly growing viruses (and those adapted to tissue culture) have different sequences than those in a latent state. Serial cultivation can favor rapid growth and the loss of pathogenic characteristics, an attenuation process used since the first vaccines against Yellow Fever [
<xref ref-type="bibr" rid="CR109">109</xref>
] and poliovirus [
<xref ref-type="bibr" rid="CR110">110</xref>
]. The instability of repeated CAG regions that encode polyQ repeat sequences might be a mechanism for adapting virus replication to changes in environmental factors [
<xref ref-type="bibr" rid="CR38">38</xref>
]. This means that they may be selectively excised during generation of subgenomic RNAs or resumption of active growth after latent periods. Thus, rational reference sequences of viruses should be based on those obtained from direct isolates of diseased tissue or consensus sequences covering many isolates [
<xref ref-type="bibr" rid="CR111">111</xref>
<xref ref-type="bibr" rid="CR113">113</xref>
].</p>
<p id="Par33">As the Brighton Red example illustrates, historical reference strains, many of which have been transferred multiple times in labs across the globe, may have long ago eliminated their unstable polyQ repeat regions. As more direct sequences from infected tissues become available, it is possible that polyQ repeats will be found in many other viral proteins. Several methods have been validated for identifying such long repeat sequences [
<xref ref-type="bibr" rid="CR114">114</xref>
], which may be difficult to identify with more traditional methods. For example, sequences up to 20 kb can be generated from a single read using “PacBio” or MinIon technology and related methods. This should allow further determination of the accurate length of repeat regions, and better characterization of their importance for neurovirulent virus infections.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic Supplementary Material</title>
<sec id="Sec4">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="12035_2018_1269_MOESM1_ESM.pdf">
<label>ESM 1</label>
<caption>
<p>(PDF 512 kb)</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>The author thanks all those who sent papers and apologizes in advance for any oversight of relevant literature. The resources of the Department of Biochemistry and Molecular Biology at the University of Texas Medical Branch were used in preparing this manuscript. Dr. Tom Horvath helped prepare Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
.</p>
</ack>
<notes>
<title>Compliance with Ethical Standards</title>
<notes notes-type="COI-statement">
<title>Conflict of Interest</title>
<p id="Par34">The authors declare that they have no conflict of interest.</p>
</notes>
<notes>
<title>Research Involving Human Participants and/or Animals</title>
<p id="Par35">There are no human or animal participants.</p>
</notes>
<notes>
<title>Informed Consent</title>
<p id="Par36">None required.</p>
</notes>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kovtun</surname>
<given-names>IV</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bjoras</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klungland</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>McMurray</surname>
<given-names>CT</given-names>
</name>
</person-group>
<article-title>OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells</article-title>
<source>Nature</source>
<year>2007</year>
<volume>447</volume>
<issue>7143</issue>
<fpage>447</fpage>
<lpage>452</lpage>
<pub-id pub-id-type="doi">10.1038/nature05778</pub-id>
<pub-id pub-id-type="pmid">17450122</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashkenazi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bento</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Ricketts</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Vicinanza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Siddiqi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pavel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Squitieri</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hardenberg</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Imarisio</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Polyglutamine tracts regulate beclin 1-dependent autophagy</article-title>
<source>Nature</source>
<year>2017</year>
<volume>545</volume>
<issue>7652</issue>
<fpage>108</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="doi">10.1038/nature22078</pub-id>
<pub-id pub-id-type="pmid">28445460</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomioka</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ishibashi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Minakawa</surname>
<given-names>EN</given-names>
</name>
<name>
<surname>Motohashi</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Takayama</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Saito</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Popiel</surname>
<given-names>HA</given-names>
</name>
<name>
<surname>Puentes</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Owari</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Nakatani</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nogami</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Noguchi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yonekawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Fujita</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Aizawa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagano</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yamada</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Nishino</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ichinohe</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Wada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kohsaka</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nagai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Seki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms</article-title>
<source>eNeuro</source>
<year>2017</year>
<volume>4</volume>
<issue>2</issue>
<fpage>ENEURO.0250</fpage>
<lpage>ENEU16.2017</lpage>
<pub-id pub-id-type="doi">10.1523/ENEURO.0250-16.2017</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Colton</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Wakefield</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Nair</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Strittmatter</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Vitek</surname>
<given-names>MP</given-names>
</name>
</person-group>
<article-title>Disrupted spermine homeostasis: a novel mechanism in polyglutamine-mediated aggregation and cell death</article-title>
<source>J Neurosci</source>
<year>2004</year>
<volume>24</volume>
<issue>32</issue>
<fpage>7118</fpage>
<lpage>7127</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.1233-04.2004</pub-id>
<pub-id pub-id-type="pmid">15306645</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moulder</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Onodera</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Strittmatter</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>EM</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Generation of neuronal intranuclear inclusions by polyglutamine-GFP: analysis of inclusion clearance and toxicity as a function of polyglutamine length</article-title>
<source>J Neurosci</source>
<year>1999</year>
<volume>19</volume>
<issue>2</issue>
<fpage>705</fpage>
<lpage>715</lpage>
<pub-id pub-id-type="doi">10.1523/JNEUROSCI.19-02-00705.1999</pub-id>
<pub-id pub-id-type="pmid">9880591</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onodera</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Hester</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Roses</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Strittmatter</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Oligomerization of expanded-polyglutamine domain fluorescent fusion proteins in cultured mammalian cells</article-title>
<source>Biochem Biophys Res Commun</source>
<year>1997</year>
<volume>238</volume>
<issue>2</issue>
<fpage>599</fpage>
<lpage>605</lpage>
<pub-id pub-id-type="doi">10.1006/bbrc.1997.7337</pub-id>
<pub-id pub-id-type="pmid">9299559</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Onodera</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Roses</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Vance</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Strittmatter</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Toxicity of expanded polyglutamine-domain proteins in Escherichia coli</article-title>
<source>FEBS Lett</source>
<year>1996</year>
<volume>399</volume>
<issue>1–2</issue>
<fpage>135</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1016/S0014-5793(96)01301-4</pub-id>
<pub-id pub-id-type="pmid">8980137</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carmona</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Cunha-Santos</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Onofre</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Simoes</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Vijayakumar</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Pereira de Almeida</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease</article-title>
<source>Mol Ther</source>
<year>2017</year>
<volume>25</volume>
<issue>4</issue>
<fpage>1038</fpage>
<lpage>1055</lpage>
<pub-id pub-id-type="doi">10.1016/j.ymthe.2017.01.021</pub-id>
<pub-id pub-id-type="pmid">28236575</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belikov</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bott</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Fischbeck</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Wrange</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>The polyglutamine-expanded androgen receptor has increased DNA binding and reduced transcriptional activity</article-title>
<source>Biochem Biophys Rep</source>
<year>2015</year>
<volume>3</volume>
<fpage>134</fpage>
<lpage>139</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrep.2015.07.014</pub-id>
<pub-id pub-id-type="pmid">29124176</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ratovitski</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Chaerkady</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kammers</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Zavala</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pletnikova</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Troncoso</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Rudnicki</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Margolis</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Cole</surname>
<given-names>RN</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Quantitative proteomic analysis reveals similarities between Huntington’s disease (HD) and Huntington’s disease-like 2 (HDL2) human brains</article-title>
<source>J Proteome Res</source>
<year>2016</year>
<volume>15</volume>
<issue>9</issue>
<fpage>3266</fpage>
<lpage>3283</lpage>
<pub-id pub-id-type="doi">10.1021/acs.jproteome.6b00448</pub-id>
<pub-id pub-id-type="pmid">27486686</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lanz</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Wieland</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Hug</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rusconi</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A transcriptional repressor obtained by alternative translation of a trinucleotide repeat</article-title>
<source>Nucleic Acids Res</source>
<year>1995</year>
<volume>23</volume>
<issue>1</issue>
<fpage>138</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1093/nar/23.1.138</pub-id>
<pub-id pub-id-type="pmid">7532856</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seixas</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>SE</given-names>
</name>
<name>
<surname>Takeshima</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pavlovich</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sachs</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Pruitt</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Silveira</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Margolis</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Rudnicki</surname>
<given-names>DD</given-names>
</name>
</person-group>
<article-title>Loss of junctophilin-3 contributes to Huntington disease-like 2 pathogenesis</article-title>
<source>Ann Neurol</source>
<year>2012</year>
<volume>71</volume>
<issue>2</issue>
<fpage>245</fpage>
<lpage>257</lpage>
<pub-id pub-id-type="doi">10.1002/ana.22598</pub-id>
<pub-id pub-id-type="pmid">22367996</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Monteys</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Ebanks</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Keiser</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>BL</given-names>
</name>
</person-group>
<article-title>CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo</article-title>
<source>Mol Ther</source>
<year>2017</year>
<volume>25</volume>
<issue>1</issue>
<fpage>12</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/j.ymthe.2016.11.010</pub-id>
<pub-id pub-id-type="pmid">28129107</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keiser</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Monteys</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Corbau</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gonzalez-Alegre</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>BL</given-names>
</name>
</person-group>
<article-title>RNAi prevents and reverses phenotypes induced by mutant human ataxin-1</article-title>
<source>Ann Neurol</source>
<year>2016</year>
<volume>80</volume>
<issue>5</issue>
<fpage>754</fpage>
<lpage>765</lpage>
<pub-id pub-id-type="doi">10.1002/ana.24789</pub-id>
<pub-id pub-id-type="pmid">27686464</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Batra</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nelles</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Pirie</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Blue</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Marina</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Chaim</surname>
<given-names>IA</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Aigner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Markmiller</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Corbett</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Swanson</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Yeo</surname>
<given-names>GW</given-names>
</name>
</person-group>
<article-title>Elimination of toxic microsatellite repeat expansion RNA by RNA-targeting Cas9</article-title>
<source>Cell</source>
<year>2017</year>
<volume>170</volume>
<issue>5</issue>
<fpage>899</fpage>
<lpage>912</lpage>
<pub-id pub-id-type="doi">10.1016/j.cell.2017.07.010</pub-id>
<pub-id pub-id-type="pmid">28803727</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ripaud</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chumakova</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Antonin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hastie</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Pinkert</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Korner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ruff</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Pappu</surname>
<given-names>RV</given-names>
</name>
<name>
<surname>Hornburg</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hartl</surname>
<given-names>FU</given-names>
</name>
<name>
<surname>Hipp</surname>
<given-names>MS</given-names>
</name>
</person-group>
<article-title>Overexpression of Q-rich prion-like proteins suppresses polyQ cytotoxicity and alters the polyQ interactome</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<issue>51</issue>
<fpage>18219</fpage>
<lpage>18224</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1421313111</pub-id>
<pub-id pub-id-type="pmid">25489109</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bettencourt</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Hogan</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Nimali</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Polyglutamine expansion in Drosophila: thermal stress and Hsp70 as selective agents</article-title>
<source>J Biosci</source>
<year>2007</year>
<volume>32</volume>
<issue>3</issue>
<fpage>537</fpage>
<lpage>547</lpage>
<pub-id pub-id-type="doi">10.1007/s12038-007-0053-9</pub-id>
<pub-id pub-id-type="pmid">17536173</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bugert</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Darai</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Poxvirus homologues of cellular genes</article-title>
<source>Virus Genes</source>
<year>2000</year>
<volume>21</volume>
<issue>1–2</issue>
<fpage>111</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="doi">10.1023/A:1008140615106</pub-id>
<pub-id pub-id-type="pmid">11022794</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Pitha</surname>
<given-names>PM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Condit</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>McFadden</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Merghoub</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Houghton</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>JW</given-names>
</name>
<name>
<surname>Shuman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Innate immune response of human plasmacytoid dendritic cells to poxvirus infection is subverted by vaccinia E3 via its Z-DNA/RNA binding domain</article-title>
<source>PLoS One</source>
<year>2012</year>
<volume>7</volume>
<issue>5</issue>
<fpage>e36823</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0036823</pub-id>
<pub-id pub-id-type="pmid">22606294</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahr</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Darai</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Re-evaluation and in silico annotation of the Tupaia herpesvirus proteins</article-title>
<source>Virus Genes</source>
<year>2004</year>
<volume>28</volume>
<issue>1</issue>
<fpage>99</fpage>
<lpage>120</lpage>
<pub-id pub-id-type="doi">10.1023/B:VIRU.0000012267.97659.e0</pub-id>
<pub-id pub-id-type="pmid">14739655</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brennan</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kitzman</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Shendure</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Geballe</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>Experimental evolution identifies vaccinia virus mutations in A24R and A35R that antagonize the protein kinase R pathway and accompany collapse of an extragenic gene amplification</article-title>
<source>J Virol</source>
<year>2015</year>
<volume>89</volume>
<issue>19</issue>
<fpage>9986</fpage>
<lpage>9997</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01233-15</pub-id>
<pub-id pub-id-type="pmid">26202237</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orvedahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Autophagy in mammalian antiviral immunity</article-title>
<source>Curr Top Microbiol Immunol</source>
<year>2009</year>
<volume>335</volume>
<fpage>267</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="doi">10.1007/978-3-642-00302-8_13</pub-id>
<pub-id pub-id-type="pmid">19802570</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Buck</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Desai</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Loginicheva</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Freeman</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Akira</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>He</surname>
<given-names>YW</given-names>
</name>
<name>
<surname>Blackman</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Handley</surname>
<given-names>SA</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Reese</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Artyomov</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Virgin</surname>
<given-names>HW</given-names>
</name>
</person-group>
<article-title>Autophagy genes enhance murine gammaherpesvirus 68 reactivation from latency by preventing virus-induced systemic inflammation</article-title>
<source>Cell Host Microbe</source>
<year>2016</year>
<volume>19</volume>
<issue>1</issue>
<fpage>91</fpage>
<lpage>101</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2015.12.010</pub-id>
<pub-id pub-id-type="pmid">26764599</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hain</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bettencourt</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Okamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Csorba</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Biggerstaff</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Siomi</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hutvagner</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Lai</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Welte</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Natural variation of the amino-terminal glutamine-rich domain in Drosophila argonaute2 is not associated with developmental defects</article-title>
<source>PLoS One</source>
<year>2010</year>
<volume>5</volume>
<issue>12</issue>
<fpage>e15264</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0015264</pub-id>
<pub-id pub-id-type="pmid">21253006</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Volkmann</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Welte</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>HA</given-names>
</name>
</person-group>
<article-title>Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos</article-title>
<source>PLoS Genet</source>
<year>2006</year>
<volume>2</volume>
<issue>8</issue>
<fpage>e134</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pgen.0020134</pub-id>
<pub-id pub-id-type="pmid">16934003</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palmer</surname>
<given-names>WH</given-names>
</name>
<name>
<surname>Obbard</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>Variation and evolution in the glutamine-rich repeat region of Drosophila Argonaute-2</article-title>
<source>G3 (Bethesda)</source>
<year>2016</year>
<volume>6</volume>
<issue>8</issue>
<fpage>2563</fpage>
<lpage>2572</lpage>
<pub-id pub-id-type="doi">10.1534/g3.116.031880</pub-id>
<pub-id pub-id-type="pmid">27317784</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Cellular corepressor TLE2 inhibits replication-and-transcription-activator-mediated transactivation and lytic reactivation of Kaposi’s sarcoma-associated herpesvirus</article-title>
<source>J Virol</source>
<year>2010</year>
<volume>84</volume>
<issue>4</issue>
<fpage>2047</fpage>
<lpage>2062</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01984-09</pub-id>
<pub-id pub-id-type="pmid">19939918</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perutz</surname>
<given-names>MF</given-names>
</name>
</person-group>
<article-title>Glutamine repeats and neurodegenerative diseases: molecular aspects</article-title>
<source>Trends Biochem Sci</source>
<year>1999</year>
<volume>24</volume>
<issue>2</issue>
<fpage>58</fpage>
<lpage>63</lpage>
<pub-id pub-id-type="doi">10.1016/S0968-0004(98)01350-4</pub-id>
<pub-id pub-id-type="pmid">10098399</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pickett</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Sadat</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Noronha</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Squires</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Hunt</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zaremba</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Larson</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Dietrich</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klem</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Scheuermann</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>ViPR: an open bioinformatics database and analysis resource for virology research</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<issue>Database issue</issue>
<fpage>D593</fpage>
<lpage>D598</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkr859</pub-id>
<pub-id pub-id-type="pmid">22006842</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Aevermann</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>TK</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Dauphin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>He</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Larsen</surname>
<given-names>CN</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Macken</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mahaffey</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pickett</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Reardon</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Suloway</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Vincent</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Walters</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Zaremba</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zmasek</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Klem</surname>
<given-names>EB</given-names>
</name>
<name>
<surname>Scheuermann</surname>
<given-names>RH</given-names>
</name>
</person-group>
<article-title>Influenza research database: an integrated bioinformatics resource for influenza virus research</article-title>
<source>Nucleic Acids Res</source>
<year>2017</year>
<volume>45</volume>
<issue>D1</issue>
<fpage>D466</fpage>
<lpage>D474</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw857</pub-id>
<pub-id pub-id-type="pmid">27679478</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Flickinger</surname>
<given-names>MC</given-names>
</name>
</person-group>
<article-title>Protein aggregation and precipitation, measurement and control</article-title>
<source>Encyclopedia of industrial biotechnology</source>
<year>2010</year>
<publisher-loc>Hoboken</publisher-loc>
<publisher-name>John Wiley & Sons, Inc.</publisher-name>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kidanemariam</surname>
<given-names>DB</given-names>
</name>
<name>
<surname>Abraham</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Sukal</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Holton</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Dale</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>James</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Harding</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Complete genome sequence of a novel zantedeschia mild mosaic virus isolate: the first report from Australia and from Alocasia sp</article-title>
<source>Arch Virol</source>
<year>2016</year>
<volume>161</volume>
<issue>4</issue>
<fpage>1079</fpage>
<lpage>1082</lpage>
<pub-id pub-id-type="doi">10.1007/s00705-015-2745-z</pub-id>
<pub-id pub-id-type="pmid">26744062</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>YC</given-names>
</name>
</person-group>
<article-title>Identification and molecular characterization of Zantedeschia mild mosaic virus, a new calla lily-infecting potyvirus</article-title>
<source>Arch Virol</source>
<year>2005</year>
<volume>150</volume>
<issue>6</issue>
<fpage>1221</fpage>
<lpage>1230</lpage>
<pub-id pub-id-type="doi">10.1007/s00705-004-0488-3</pub-id>
<pub-id pub-id-type="pmid">15703845</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>YY</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>QQ</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Mo</surname>
<given-names>SH</given-names>
</name>
</person-group>
<article-title>Study on the complete sequence of CA24 variant isolated during the acute hemorrhagic conjunctivitis outbreaks in Zhejiang province during 2002 to 2010</article-title>
<source>Zhonghua Liu Xing Bing Xue Za Zhi</source>
<year>2013</year>
<volume>34</volume>
<issue>5</issue>
<fpage>496</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="pmid">24016443</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uccellini</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ossiboff</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>de Matos</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Morrisey</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Petrosov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Navarrete-Macias</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hicks</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Buckles</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Tokarz</surname>
<given-names>R</given-names>
</name>
<name>
<surname>McAloose</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lipkin</surname>
<given-names>WI</given-names>
</name>
</person-group>
<article-title>Identification of a novel nidovirus in an outbreak of fatal respiratory disease in ball pythons (Python regius)</article-title>
<source>Virol J</source>
<year>2014</year>
<volume>11</volume>
<fpage>144</fpage>
<pub-id pub-id-type="doi">10.1186/1743-422X-11-144</pub-id>
<pub-id pub-id-type="pmid">25106433</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Dea</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Xavier</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Warren</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Discovery and partial genomic characterisation of a novel nidovirus associated with respiratory disease in wild shingleback lizards (Tiliqua rugosa)</article-title>
<source>PLoS One</source>
<year>2016</year>
<volume>11</volume>
<issue>11</issue>
<fpage>e0165209</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0165209</pub-id>
<pub-id pub-id-type="pmid">27828982</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Enjuanes</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>Nidovirales: evolving the largest RNA virus genome</article-title>
<source>Virus Res</source>
<year>2006</year>
<volume>117</volume>
<issue>1</issue>
<fpage>17</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1016/j.virusres.2006.01.017</pub-id>
<pub-id pub-id-type="pmid">16503362</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atanesyan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Dichtl</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Georgiev</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Schaffner</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Polyglutamine tracts as modulators of transcriptional activation from yeast to mammals</article-title>
<source>Biol Chem</source>
<year>2012</year>
<volume>393</volume>
<issue>1–2</issue>
<fpage>63</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1515/BC-2011-252</pub-id>
<pub-id pub-id-type="pmid">22628299</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>Wy</given-names>
</name>
<name>
<surname>Soto-Acosta</surname>
<given-names>Ruben</given-names>
</name>
<name>
<surname>Bradrick</surname>
<given-names>Shelton</given-names>
</name>
<name>
<surname>Garcia-Blanco</surname>
<given-names>Mariano</given-names>
</name>
<name>
<surname>Ooi</surname>
<given-names>Eng</given-names>
</name>
</person-group>
<article-title>The 5′ and 3′ Untranslated Regions of the Flaviviral Genome</article-title>
<source>Viruses</source>
<year>2017</year>
<volume>9</volume>
<issue>6</issue>
<fpage>137</fpage>
<pub-id pub-id-type="doi">10.3390/v9060137</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Blanco</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Vasudevan</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Bradrick</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Nicchitta</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Flavivirus RNA transactions from viral entry to genome replication</article-title>
<source>Antivir Res</source>
<year>2016</year>
<volume>134</volume>
<fpage>244</fpage>
<lpage>249</lpage>
<pub-id pub-id-type="doi">10.1016/j.antiviral.2016.09.010</pub-id>
<pub-id pub-id-type="pmid">27666184</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madhugiri</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Karl</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Petersen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lamkiewicz</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Fricke</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wend</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Scheuer</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Marz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Structural and functional conservation of cis-acting RNA elements in coronavirus 5′-terminal genome regions</article-title>
<source>Virology</source>
<year>2017</year>
<volume>517</volume>
<fpage>44</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2017.11.025</pub-id>
<pub-id pub-id-type="pmid">29223446</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rappe</surname>
<given-names>JCF</given-names>
</name>
<name>
<surname>de Wilde</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Di</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stalder</surname>
<given-names>H</given-names>
</name>
<name>
<surname>V'Kovski</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Snijder</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Brinton</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ruggli</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Thiel</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Antiviral activity of K22 against members of the order Nidovirales</article-title>
<source>Virus Res</source>
<year>2018</year>
<volume>246</volume>
<fpage>28</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="doi">10.1016/j.virusres.2018.01.002</pub-id>
<pub-id pub-id-type="pmid">29337162</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>From housekeeper to microsurgeon: the diagnostic and therapeutic potential of ribonucleases</article-title>
<source>Nat Biotechnol</source>
<year>1997</year>
<volume>15</volume>
<issue>6</issue>
<fpage>529</fpage>
<lpage>536</lpage>
<pub-id pub-id-type="doi">10.1038/nbt0697-529</pub-id>
<pub-id pub-id-type="pmid">9181574</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Producing soluble recombinant RNases and assays to measure their interaction with interferon-gamma in vitro</article-title>
<source>Methods Mol Biol</source>
<year>2001</year>
<volume>160</volume>
<fpage>113</fpage>
<lpage>137</lpage>
<pub-id pub-id-type="doi">10.1385/1-59259-233-3:113</pub-id>
<pub-id pub-id-type="pmid">11265278</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Haugg</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Deletions at the C-terminus of interferon gamma reduce RNA binding and activation of double-stranded-RNA cleavage by bovine seminal ribonuclease</article-title>
<source>Biochem J</source>
<year>1995</year>
<volume>307</volume>
<issue>Pt 1</issue>
<fpage>123</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.1042/bj3070123</pub-id>
<pub-id pub-id-type="pmid">7717966</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Haugg</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Benner</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>Interferon-gamma activates the cleavage of double-stranded RNA by bovine seminal ribonuclease</article-title>
<source>FEBS Lett</source>
<year>1990</year>
<volume>270</volume>
<issue>1–2</issue>
<fpage>229</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="doi">10.1016/0014-5793(90)81275-S</pub-id>
<pub-id pub-id-type="pmid">2121524</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Jha</surname>
<given-names>BK</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Elliott</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gorbalenya</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>SR</given-names>
</name>
</person-group>
<article-title>Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology</article-title>
<source>Cell Host Microbe</source>
<year>2012</year>
<volume>11</volume>
<issue>6</issue>
<fpage>607</fpage>
<lpage>616</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2012.04.011</pub-id>
<pub-id pub-id-type="pmid">22704621</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kindler</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gil-Cruz</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Spanier</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wilhelm</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rabouw</surname>
<given-names>HH</given-names>
</name>
<name>
<surname>Zust</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hwang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>V'Kovski</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stalder</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Marti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Habjan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cervantes-Barragan</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Elliot</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Karl</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gaughan</surname>
<given-names>C</given-names>
</name>
<name>
<surname>van Kuppeveld</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Silverman</surname>
<given-names>RH</given-names>
</name>
<name>
<surname>Keller</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ludewig</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bergmann</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>SR</given-names>
</name>
<name>
<surname>Kalinke</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Thiel</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication</article-title>
<source>PLoS Pathog</source>
<year>2017</year>
<volume>13</volume>
<issue>2</issue>
<fpage>e1006195</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1006195</pub-id>
<pub-id pub-id-type="pmid">28158275</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorenz</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Luntzer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hofacker</surname>
<given-names>IL</given-names>
</name>
<name>
<surname>Stadler</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Wolfinger</surname>
<given-names>MT</given-names>
</name>
</person-group>
<article-title>SHAPE directed RNA folding</article-title>
<source>Bioinformatics</source>
<year>2016</year>
<volume>32</volume>
<issue>1</issue>
<fpage>145</fpage>
<lpage>147</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btv523</pub-id>
<pub-id pub-id-type="pmid">26353838</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lorenz</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bernhart</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Honer Zu Siederdissen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tafer</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Flamm</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stadler</surname>
<given-names>PF</given-names>
</name>
<name>
<surname>Hofacker</surname>
<given-names>IL</given-names>
</name>
</person-group>
<article-title>ViennaRNA Package 2.0</article-title>
<source>Algorithms Mol Biol</source>
<year>2011</year>
<volume>6</volume>
<fpage>26</fpage>
<pub-id pub-id-type="doi">10.1186/1748-7188-6-26</pub-id>
<pub-id pub-id-type="pmid">22115189</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barik</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Amino acid repeats avert mRNA folding through conservative substitutions and synonymous codons, regardless of codon bias</article-title>
<source>Heliyon</source>
<year>2017</year>
<volume>3</volume>
<issue>12</issue>
<fpage>e00492</fpage>
<pub-id pub-id-type="doi">10.1016/j.heliyon.2017.e00492</pub-id>
<pub-id pub-id-type="pmid">29387823</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gao</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Matsuura</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Coolbaugh</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zuhlke</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Nakamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Siciliano</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Ashizawa</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17</article-title>
<source>Eur J Hum Genet</source>
<year>2008</year>
<volume>16</volume>
<issue>2</issue>
<fpage>215</fpage>
<lpage>222</lpage>
<pub-id pub-id-type="doi">10.1038/sj.ejhg.5201954</pub-id>
<pub-id pub-id-type="pmid">18043721</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Su</surname>
<given-names>XA</given-names>
</name>
<name>
<surname>Freudenreich</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2017</year>
<volume>114</volume>
<issue>40</issue>
<fpage>E8392</fpage>
<lpage>E8401</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1711283114</pub-id>
<pub-id pub-id-type="pmid">28923949</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schutze</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Ulferts</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schelle</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Bayer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Granzow</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mettenleiter</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Ziebuhr</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Characterization of white bream virus reveals a novel genetic cluster of nidoviruses</article-title>
<source>J Virol</source>
<year>2006</year>
<volume>80</volume>
<issue>23</issue>
<fpage>11598</fpage>
<lpage>11609</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01758-06</pub-id>
<pub-id pub-id-type="pmid">16987966</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senkevich</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Koonin</surname>
<given-names>EV</given-names>
</name>
<name>
<surname>Bugert</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Darai</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses</article-title>
<source>Virology</source>
<year>1997</year>
<volume>233</volume>
<issue>1</issue>
<fpage>19</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1006/viro.1997.8607</pub-id>
<pub-id pub-id-type="pmid">9201214</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartolini</surname>
<given-names>Luca</given-names>
</name>
<name>
<surname>Libbey</surname>
<given-names>Jane E.</given-names>
</name>
<name>
<surname>Ravizza</surname>
<given-names>Teresa</given-names>
</name>
<name>
<surname>Fujinami</surname>
<given-names>Robert S.</given-names>
</name>
<name>
<surname>Jacobson</surname>
<given-names>Steven</given-names>
</name>
<name>
<surname>Gaillard</surname>
<given-names>William D.</given-names>
</name>
</person-group>
<article-title>Viral Triggers and Inflammatory Mechanisms in Pediatric Epilepsy</article-title>
<source>Molecular Neurobiology</source>
<year>2018</year>
<volume>56</volume>
<issue>3</issue>
<fpage>1897</fpage>
<lpage>1907</lpage>
<pub-id pub-id-type="doi">10.1007/s12035-018-1215-5</pub-id>
<pub-id pub-id-type="pmid">29978423</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Courey</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Tjian</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif</article-title>
<source>Cell</source>
<year>1988</year>
<volume>55</volume>
<issue>5</issue>
<fpage>887</fpage>
<lpage>898</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(88)90144-4</pub-id>
<pub-id pub-id-type="pmid">3142690</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gerber</surname>
<given-names>HP</given-names>
</name>
<name>
<surname>Seipel</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Georgiev</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hofferer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Hug</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rusconi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Schaffner</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Transcriptional activation modulated by homopolymeric glutamine and proline stretches</article-title>
<source>Science</source>
<year>1994</year>
<volume>263</volume>
<issue>5148</issue>
<fpage>808</fpage>
<lpage>811</lpage>
<pub-id pub-id-type="doi">10.1126/science.8303297</pub-id>
<pub-id pub-id-type="pmid">8303297</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perutz</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Johnson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Suzuki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Finch</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>1994</year>
<volume>91</volume>
<issue>12</issue>
<fpage>5355</fpage>
<lpage>5358</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.91.12.5355</pub-id>
<pub-id pub-id-type="pmid">8202492</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gemayel</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chavali</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pougach</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Legendre</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Boeynaems</surname>
<given-names>S</given-names>
</name>
<name>
<surname>van der Zande</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Gevaert</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Rousseau</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Schymkowitz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Babu</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Verstrepen</surname>
<given-names>KJ</given-names>
</name>
</person-group>
<article-title>Variable glutamine-rich repeats modulate transcription factor activity</article-title>
<source>Mol Cell</source>
<year>2015</year>
<volume>59</volume>
<issue>4</issue>
<fpage>615</fpage>
<lpage>627</lpage>
<pub-id pub-id-type="doi">10.1016/j.molcel.2015.07.003</pub-id>
<pub-id pub-id-type="pmid">26257283</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ng</surname>
<given-names>ET</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>TL</given-names>
</name>
<name>
<surname>Longmuss</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Urschitz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Elston</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moisyadi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bowles</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Koopman</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<issue>32</issue>
<fpage>11768</fpage>
<lpage>11773</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1400666111</pub-id>
<pub-id pub-id-type="pmid">25074915</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carson</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Summers</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Guarino</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>Molecular analysis of a baculovirus regulatory gene</article-title>
<source>Virology</source>
<year>1991</year>
<volume>182</volume>
<issue>1</issue>
<fpage>279</fpage>
<lpage>286</lpage>
<pub-id pub-id-type="doi">10.1016/0042-6822(91)90671-W</pub-id>
<pub-id pub-id-type="pmid">2024466</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reichert</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Proteome analysis of sheep B lymphocytes in the course of bovine leukemia virus-induced leukemia</article-title>
<source>Exp Biol Med (Maywood)</source>
<year>2017</year>
<volume>242</volume>
<issue>13</issue>
<fpage>1363</fpage>
<lpage>1375</lpage>
<pub-id pub-id-type="doi">10.1177/1535370217705864</pub-id>
<pub-id pub-id-type="pmid">28436273</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhu</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ji</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Expression and prognostic role of SGTA in human breast carcinoma correlates with tumor cell proliferation</article-title>
<source>J Mol Histol</source>
<year>2014</year>
<volume>45</volume>
<issue>6</issue>
<fpage>665</fpage>
<lpage>677</lpage>
<pub-id pub-id-type="doi">10.1007/s10735-014-9586-z</pub-id>
<pub-id pub-id-type="pmid">25027991</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ranaghan</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Durney</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Mesleh</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>McCarren</surname>
<given-names>PR</given-names>
</name>
<name>
<surname>Garvie</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Daniels</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Carey</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Skepner</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Perez</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>The autophagy-related beclin-1 protein requires the coiled-coil and BARA domains to form a homodimer with submicromolar affinity</article-title>
<source>Biochemistry</source>
<year>2017</year>
<volume>56</volume>
<issue>51</issue>
<fpage>6639</fpage>
<lpage>6651</lpage>
<pub-id pub-id-type="doi">10.1021/acs.biochem.7b00936</pub-id>
<pub-id pub-id-type="pmid">29185708</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Orvedahl</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alexander</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Talloczy</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wei</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Burns</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Leib</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>HSV-1 ICP34.5 confers neurovirulence by targeting the beclin 1 autophagy protein</article-title>
<source>Cell Host Microbe</source>
<year>2007</year>
<volume>1</volume>
<issue>1</issue>
<fpage>23</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2006.12.001</pub-id>
<pub-id pub-id-type="pmid">18005679</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ashkenazi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bento</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Ricketts</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Vicinanza</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Siddiqi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Pavel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Squitieri</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Hardenberg</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Imarisio</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Menzies</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Polyglutamine tracts regulate autophagy</article-title>
<source>Autophagy</source>
<year>2017</year>
<volume>13</volume>
<issue>9</issue>
<fpage>1613</fpage>
<lpage>1614</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2017.1336278</pub-id>
<pub-id pub-id-type="pmid">28722507</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Utturkar</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Klingeman</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Hurt</surname>
<given-names>RA</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Brown</surname>
<given-names>SD</given-names>
</name>
</person-group>
<article-title>A case study into microbial genome assembly gap sequences and finishing strategies</article-title>
<source>Front Microbiol</source>
<year>2017</year>
<volume>8</volume>
<fpage>1272</fpage>
<pub-id pub-id-type="doi">10.3389/fmicb.2017.01272</pub-id>
<pub-id pub-id-type="pmid">28769883</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kirkegaard</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Subversion of the cellular autophagy pathway by viruses</article-title>
<source>Curr Top Microbiol Immunol</source>
<year>2009</year>
<volume>335</volume>
<fpage>323</fpage>
<lpage>333</lpage>
<pub-id pub-id-type="doi">10.1007/978-3-642-00302-8_16</pub-id>
<pub-id pub-id-type="pmid">19802573</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Delorme-Axford</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Abernathy</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lennemann</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Bernard</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ariosa</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Coyne</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Kirkegaard</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Klionsky</surname>
<given-names>DJ</given-names>
</name>
</person-group>
<article-title>The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy</article-title>
<source>Autophagy</source>
<year>2018</year>
<volume>14</volume>
<issue>5</issue>
<fpage>898</fpage>
<lpage>912</lpage>
<pub-id pub-id-type="doi">10.1080/15548627.2018.1441648</pub-id>
<pub-id pub-id-type="pmid">29465287</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mateo</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Nagamine</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Spagnolo</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Mendez</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rahe</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gale</surname>
<given-names>M</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Yuan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kirkegaard</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Inhibition of cellular autophagy deranges dengue virion maturation</article-title>
<source>J Virol</source>
<year>2013</year>
<volume>87</volume>
<issue>3</issue>
<fpage>1312</fpage>
<lpage>1321</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02177-12</pub-id>
<pub-id pub-id-type="pmid">23175363</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bird</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Kirkegaard</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Escape of non-enveloped virus from intact cells</article-title>
<source>Virology</source>
<year>2015</year>
<volume>479-480</volume>
<fpage>444</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2015.03.044</pub-id>
<pub-id pub-id-type="pmid">25890822</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rees</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Gorba</surname>
<given-names>C</given-names>
</name>
<name>
<surname>de Chiara</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bui</surname>
<given-names>TT</given-names>
</name>
<name>
<surname>Garcia-Maya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Drake</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Okazawa</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pastore</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Svergun</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>YW</given-names>
</name>
</person-group>
<article-title>Solution model of the intrinsically disordered polyglutamine tract-binding protein-1</article-title>
<source>Biophys J</source>
<year>2012</year>
<volume>102</volume>
<issue>7</issue>
<fpage>1608</fpage>
<lpage>1616</lpage>
<pub-id pub-id-type="doi">10.1016/j.bpj.2012.02.047</pub-id>
<pub-id pub-id-type="pmid">22500761</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sawtell</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Tansky</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>The latent herpes simplex virus type 1 genome copy number in individual neurons is virus strain specific and correlates with reactivation</article-title>
<source>J Virol</source>
<year>1998</year>
<volume>72</volume>
<issue>7</issue>
<fpage>5343</fpage>
<lpage>5350</lpage>
<pub-id pub-id-type="pmid">9620987</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Laval</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Matheus</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Labrousse</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Enfissi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rousset</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Briolant</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Kinetics of Zika viral load in semen</article-title>
<source>N Engl J Med</source>
<year>2017</year>
<volume>377</volume>
<issue>7</issue>
<fpage>697</fpage>
<lpage>699</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMc1612600</pub-id>
<pub-id pub-id-type="pmid">28813216</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oliveira Souto</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Alejo-Cancho</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Gascon Brustenga</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Peiro Mestres</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Munoz Gutierrez</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Martinez Yoldi</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Persistence of Zika virus in semen 93 days after the onset of symptoms</article-title>
<source>Enferm Infecc Microbiol Clin</source>
<year>2018</year>
<volume>36</volume>
<issue>1</issue>
<fpage>21</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.1016/j.eimc.2016.10.009</pub-id>
<pub-id pub-id-type="pmid">28007310</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atkinson</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Thorburn</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Petridou</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hewson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Simpson</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Brooks</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Aarons</surname>
<given-names>EJ</given-names>
</name>
</person-group>
<article-title>Presence and persistence of Zika virus RNA in semen, United Kingdom, 2016</article-title>
<source>Emerg Infect Dis</source>
<year>2017</year>
<volume>23</volume>
<issue>4</issue>
<fpage>611</fpage>
<lpage>615</lpage>
<pub-id pub-id-type="doi">10.3201/eid2304.161692</pub-id>
<pub-id pub-id-type="pmid">27997333</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sissoko</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Keita</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Diallo</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Aliabadi</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fitter</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Dahl</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Akoi Bore</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Raymond Koundouno</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Singethan</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Meisel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Enkirch</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mazzarelli</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Amburgey</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Faye</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Alpha Sall</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Magassouba</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>MW</given-names>
</name>
<name>
<surname>Anglaret</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Malvy</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Formenty</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bruce Aylward</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Keita</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Harouna Djingarey</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Loman</surname>
<given-names>NJ</given-names>
</name>
<name>
<surname>Gunther</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Duraffour</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Ebola virus persistence in breast milk after no reported illness: a likely source of virus transmission from mother to child</article-title>
<source>Clin Infect Dis</source>
<year>2017</year>
<volume>64</volume>
<issue>4</issue>
<fpage>513</fpage>
<lpage>516</lpage>
<pub-id pub-id-type="doi">10.1093/cid/ciw793</pub-id>
<pub-id pub-id-type="pmid">27940938</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deen</surname>
<given-names>GF</given-names>
</name>
<name>
<surname>Broutet</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Knust</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sesay</surname>
<given-names>FR</given-names>
</name>
<name>
<surname>McDonald</surname>
<given-names>SLR</given-names>
</name>
<name>
<surname>Ervin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Marrinan</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Gaillard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Habib</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Thorson</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Yamba</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Massaquoi</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>James</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Ariyarajah</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ross</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bernstein</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Coursier</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Klena</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Carino</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wurie</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Dumbuya</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Abad</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Idriss</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wi</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>SD</given-names>
</name>
<name>
<surname>Davies</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ebrahim</surname>
<given-names>FK</given-names>
</name>
<name>
<surname>Meites</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Naidoo</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Ongpin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Banerjee</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Erickson</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Brault</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Durski</surname>
<given-names>KN</given-names>
</name>
<name>
<surname>Winter</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sealy</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nichol</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Lamunu</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bangura</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Landoulsi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Jambai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Morgan</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Liang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Formenty</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Stroher</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Sahr</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Ebola RNA persistence in semen of Ebola virus disease survivors-final report</article-title>
<source>N Engl J Med</source>
<year>2017</year>
<volume>377</volume>
<issue>15</issue>
<fpage>1428</fpage>
<lpage>1437</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1511410</pub-id>
<pub-id pub-id-type="pmid">26465681</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garcia-Blanco</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Cullen</surname>
<given-names>BR</given-names>
</name>
</person-group>
<article-title>Molecular basis of latency in pathogenic human viruses</article-title>
<source>Science</source>
<year>1991</year>
<volume>254</volume>
<issue>5033</issue>
<fpage>815</fpage>
<lpage>820</lpage>
<pub-id pub-id-type="doi">10.1126/science.1658933</pub-id>
<pub-id pub-id-type="pmid">1658933</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Kudelova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Rajcani</surname>
<given-names>J</given-names>
</name>
</person-group>
<person-group person-group-type="editor">
<name>
<surname>Gluckman</surname>
<given-names>TR</given-names>
</name>
</person-group>
<article-title>Gammaherpesviruses and oncogenesis</article-title>
<source>Herpesviridae: viral structure, life cycle and infections</source>
<year>2009</year>
<publisher-loc>Hauppauge</publisher-loc>
<publisher-name>Nova Science Publishers</publisher-name>
<fpage>187</fpage>
<lpage>226</lpage>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pyles</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Sawtell</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Thompson</surname>
<given-names>RL</given-names>
</name>
</person-group>
<article-title>Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency</article-title>
<source>J Virol</source>
<year>1992</year>
<volume>66</volume>
<issue>11</issue>
<fpage>6706</fpage>
<lpage>6713</lpage>
<pub-id pub-id-type="pmid">1328686</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Payne</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Elder</surname>
<given-names>JH</given-names>
</name>
</person-group>
<article-title>The role of retroviral dUTPases in replication and virulence</article-title>
<source>Curr Protein Pept Sci</source>
<year>2001</year>
<volume>2</volume>
<issue>4</issue>
<fpage>381</fpage>
<lpage>388</lpage>
<pub-id pub-id-type="doi">10.2174/1389203013381008</pub-id>
<pub-id pub-id-type="pmid">12374097</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steagall</surname>
<given-names>WK</given-names>
</name>
<name>
<surname>Robek</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Perry</surname>
<given-names>ST</given-names>
</name>
<name>
<surname>Fuller</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Payne</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages</article-title>
<source>Virology</source>
<year>1995</year>
<volume>210</volume>
<issue>2</issue>
<fpage>302</fpage>
<lpage>313</lpage>
<pub-id pub-id-type="doi">10.1006/viro.1995.1347</pub-id>
<pub-id pub-id-type="pmid">7542416</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kato</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Arii</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Koyanagi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kawaguchi</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Phosphorylation of herpes simplex virus 1 dUTPase regulates viral virulence and genome integrity by compensating for low cellular dUTPase activity in the central nervous system</article-title>
<source>J Virol</source>
<year>2015</year>
<volume>89</volume>
<issue>1</issue>
<fpage>241</fpage>
<lpage>248</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02497-14</pub-id>
<pub-id pub-id-type="pmid">25320299</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Topalis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gillemot</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Snoeck</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Andrei</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Distribution and effects of amino acid changes in drug-resistant alpha and beta herpesviruses DNA polymerase</article-title>
<source>Nucleic Acids Res</source>
<year>2016</year>
<volume>44</volume>
<issue>20</issue>
<fpage>9530</fpage>
<lpage>9554</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw875</pub-id>
<pub-id pub-id-type="pmid">27694307</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Van den Bergh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fauvart</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Michiels</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Formation, physiology, ecology, evolution and clinical importance of bacterial persisters</article-title>
<source>FEMS Microbiol Rev</source>
<year>2017</year>
<volume>41</volume>
<issue>3</issue>
<fpage>219</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="doi">10.1093/femsre/fux001</pub-id>
<pub-id pub-id-type="pmid">28333307</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahr</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Darai</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Analysis and characterization of the complete genome of tupaia (tree shrew) herpesvirus</article-title>
<source>J Virol</source>
<year>2001</year>
<volume>75</volume>
<issue>10</issue>
<fpage>4854</fpage>
<lpage>4870</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.75.10.4854-4870.2001</pub-id>
<pub-id pub-id-type="pmid">11312357</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruce</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Thouless</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Haines</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Pallen</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Grundhoff</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>Complete genome sequence of pig-tailed macaque rhadinovirus 2 and its evolutionary relationship with rhesus macaque rhadinovirus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus</article-title>
<source>J Virol</source>
<year>2015</year>
<volume>89</volume>
<issue>7</issue>
<fpage>3888</fpage>
<lpage>3909</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03597-14</pub-id>
<pub-id pub-id-type="pmid">25609822</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Solubility as a function of protein structure and solvent components</article-title>
<source>Bio/Technology</source>
<year>1990</year>
<volume>8</volume>
<issue>4</issue>
<fpage>308</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="pmid">1369261</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bruce</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Ryan</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Grundhoff</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tsai</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>TM</given-names>
</name>
</person-group>
<article-title>Next-generation sequence analysis of the genome of RFHVMn, the macaque homolog of Kaposi’s sarcoma (KS)-associated herpesvirus, from a KS-like tumor of a pig-tailed macaque</article-title>
<source>J Virol</source>
<year>2013</year>
<volume>87</volume>
<issue>24</issue>
<fpage>13676</fpage>
<lpage>13693</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02331-13</pub-id>
<pub-id pub-id-type="pmid">24109218</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Controlling oligomerization of pharmaceutical proteins</article-title>
<source>Pharm Acta Helv</source>
<year>1994</year>
<volume>69</volume>
<issue>3</issue>
<fpage>119</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="doi">10.1016/0031-6865(94)90012-4</pub-id>
<pub-id pub-id-type="pmid">7846082</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okeke</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Okoli</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Nilssen</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Moens</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Tryland</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Bohn</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Traavik</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Molecular characterization and phylogenetics of Fennoscandian cowpox virus isolates based on the p4c and atip genes</article-title>
<source>Virol J</source>
<year>2014</year>
<volume>11</volume>
<fpage>119</fpage>
<pub-id pub-id-type="doi">10.1186/1743-422X-11-119</pub-id>
<pub-id pub-id-type="pmid">24972911</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okeke</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Adekoya</surname>
<given-names>OA</given-names>
</name>
<name>
<surname>Moens</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Tryland</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Traavik</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Nilssen</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>Comparative sequence analysis of A-type inclusion (ATI) and P4c proteins of orthopoxviruses that produce typical and atypical ATI phenotypes</article-title>
<source>Virus Genes</source>
<year>2009</year>
<volume>39</volume>
<issue>2</issue>
<fpage>200</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="doi">10.1007/s11262-009-0376-8</pub-id>
<pub-id pub-id-type="pmid">19533319</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hoffmann</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Franke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Jenckel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tamosiunaite</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Schluckebier</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Granzow</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Fischer</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ulrich</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Hoper</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Goller</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Osterrieder</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Beer</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Out of the reservoir: phenotypic and genotypic characterization of a novel cowpox virus isolated from a common vole</article-title>
<source>J Virol</source>
<year>2015</year>
<volume>89</volume>
<issue>21</issue>
<fpage>10959</fpage>
<lpage>10969</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01195-15</pub-id>
<pub-id pub-id-type="pmid">26311891</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Zikos</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Osterrieder</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tischer</surname>
<given-names>BK</given-names>
</name>
</person-group>
<article-title>Generation of a complete single-gene knockout bacterial artificial chromosome library of cowpox virus and identification of its essential genes</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<issue>1</issue>
<fpage>490</fpage>
<lpage>502</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02385-13</pub-id>
<pub-id pub-id-type="pmid">24155400</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Funahashi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sato</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Shida</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus</article-title>
<source>J Gen Virol</source>
<year>1988</year>
<volume>69</volume>
<issue>Pt 1</issue>
<fpage>35</fpage>
<lpage>47</lpage>
<pub-id pub-id-type="doi">10.1099/0022-1317-69-1-35</pub-id>
<pub-id pub-id-type="pmid">2826668</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kastenmayer</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Maruri-Avidal</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Americo</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Earl</surname>
<given-names>PL</given-names>
</name>
<name>
<surname>Weisberg</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Moss</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Elimination of A-type inclusion formation enhances cowpox virus replication in mice: implications for orthopoxvirus evolution</article-title>
<source>Virology</source>
<year>2014</year>
<volume>452-453</volume>
<fpage>59</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2013.12.030</pub-id>
<pub-id pub-id-type="pmid">24606683</pub-id>
</element-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carroll</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Emerson</surname>
<given-names>GL</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Sammons</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Olson</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Frace</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nakazawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Czerny</surname>
<given-names>CP</given-names>
</name>
<name>
<surname>Tryland</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kolodziejek</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Nowotny</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Olsen-Rasmussen</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Khristova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Govil</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Karem</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Damon</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Chasing Jenner’s vaccine: revisiting cowpox virus classification</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<issue>8</issue>
<fpage>e23086</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0023086</pub-id>
<pub-id pub-id-type="pmid">21858000</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perutz</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Pope</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Owen</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wanker</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Scherzinger</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2002</year>
<volume>99</volume>
<issue>8</issue>
<fpage>5596</fpage>
<lpage>5600</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.042681599</pub-id>
<pub-id pub-id-type="pmid">11960015</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bettencourt</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Hensman-Moss</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Flower</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wiethoff</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Brice</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Goizet</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stevanin</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Koutsis</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Karadima</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Panas</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yescas-Gomez</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Garcia-Velazquez</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Alonso-Vilatela</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Lima</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Raposo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Traynor</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sweeney</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Giunti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Network</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Durr</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Holmans</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Houlden</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Tabrizi</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>DNA repair pathways underlie a common genetic mechanism modulating onset in polyglutamine diseases</article-title>
<source>Ann Neurol</source>
<year>2016</year>
<volume>79</volume>
<issue>6</issue>
<fpage>983</fpage>
<lpage>990</lpage>
<pub-id pub-id-type="doi">10.1002/ana.24656</pub-id>
<pub-id pub-id-type="pmid">27044000</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cortes</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>La Spada</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>X-linked spinal and bulbar muscular atrophy: from clinical genetic features and molecular pathology to mechanisms underlying disease toxicity</article-title>
<source>Adv Exp Med Biol</source>
<year>2018</year>
<volume>1049</volume>
<fpage>103</fpage>
<lpage>133</lpage>
<pub-id pub-id-type="doi">10.1007/978-3-319-71779-1_5</pub-id>
<pub-id pub-id-type="pmid">29427100</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baxter</surname>
<given-names>VK</given-names>
</name>
<name>
<surname>Glowinski</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Braxton</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Potter</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Slusher</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Griffin</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis</article-title>
<source>Virology</source>
<year>2017</year>
<volume>508</volume>
<fpage>134</fpage>
<lpage>149</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2017.05.013</pub-id>
<pub-id pub-id-type="pmid">28531865</pub-id>
</element-citation>
</ref>
<ref id="CR104">
<label>104.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weight</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Belser</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klibanov</surname>
<given-names>AM</given-names>
</name>
</person-group>
<article-title>Zanamivir conjugated to poly-L-glutamine is much more active against influenza viruses in mice and ferrets than the drug itself</article-title>
<source>Pharm Res</source>
<year>2014</year>
<volume>31</volume>
<issue>2</issue>
<fpage>466</fpage>
<lpage>474</lpage>
<pub-id pub-id-type="doi">10.1007/s11095-013-1175-4</pub-id>
<pub-id pub-id-type="pmid">24065587</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>HE</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Qin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>XJ</given-names>
</name>
</person-group>
<article-title>CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease</article-title>
<source>J Clin Invest</source>
<year>2017</year>
<volume>127</volume>
<issue>7</issue>
<fpage>2719</fpage>
<lpage>2724</lpage>
<pub-id pub-id-type="doi">10.1172/JCI92087</pub-id>
<pub-id pub-id-type="pmid">28628038</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moore</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Rajpal</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Dillingham</surname>
<given-names>IT</given-names>
</name>
<name>
<surname>Qutob</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Blumenstein</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Gattis</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hung</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kordasiewicz</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Paulson</surname>
<given-names>HL</given-names>
</name>
<name>
<surname>McLoughlin</surname>
<given-names>HS</given-names>
</name>
</person-group>
<article-title>Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models</article-title>
<source>Mol Ther Nucleic Acids</source>
<year>2017</year>
<volume>7</volume>
<fpage>200</fpage>
<lpage>210</lpage>
<pub-id pub-id-type="doi">10.1016/j.omtn.2017.04.005</pub-id>
<pub-id pub-id-type="pmid">28624196</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Keiser</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Kordasiewicz</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>McBride</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Gene suppression strategies for dominantly inherited neurodegenerative diseases: lessons from Huntington’s disease and spinocerebellar ataxia</article-title>
<source>Hum Mol Genet</source>
<year>2016</year>
<volume>25</volume>
<issue>R1</issue>
<fpage>R53</fpage>
<lpage>R64</lpage>
<pub-id pub-id-type="doi">10.1093/hmg/ddv442</pub-id>
<pub-id pub-id-type="pmid">26503961</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Santerre</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Tempera</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Martin</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Mukerjee</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Sawaya</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>HIV-1 Vpr disrupts mitochondria axonal transport and accelerates neuronal aging</article-title>
<source>Neuropharmacology</source>
<year>2017</year>
<volume>117</volume>
<fpage>364</fpage>
<lpage>375</lpage>
<pub-id pub-id-type="doi">10.1016/j.neuropharm.2017.02.008</pub-id>
<pub-id pub-id-type="pmid">28212984</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beck</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Tesh</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>TG</given-names>
</name>
<name>
<surname>Widen</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Ryman</surname>
<given-names>KD</given-names>
</name>
<name>
<surname>Barrett</surname>
<given-names>AD</given-names>
</name>
</person-group>
<article-title>Comparison of the live attenuated yellow fever vaccine 17D-204 strain to its virulent parental strain Asibi by deep sequencing</article-title>
<source>J Infect Dis</source>
<year>2014</year>
<volume>209</volume>
<issue>3</issue>
<fpage>334</fpage>
<lpage>344</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jit546</pub-id>
<pub-id pub-id-type="pmid">24141982</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanders</surname>
<given-names>BP</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Brandjes</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van Hoek</surname>
<given-names>V</given-names>
</name>
<name>
<surname>de Los Rios Oakes</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wimmer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Custers</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Schuitemaker</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Cello</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Edo-Matas</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Brunenders: a partially attenuated historic poliovirus type I vaccine strain</article-title>
<source>J Gen Virol</source>
<year>2015</year>
<volume>96</volume>
<issue>9</issue>
<fpage>2614</fpage>
<lpage>2622</lpage>
<pub-id pub-id-type="doi">10.1099/vir.0.000197</pub-id>
<pub-id pub-id-type="pmid">26018960</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>A</given-names>
</name>
<name>
<surname>van Noort</surname>
<given-names>GJV</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>WZ</given-names>
</name>
<name>
<surname>Filippov</surname>
<given-names>DV</given-names>
</name>
</person-group>
<article-title>Physicochemical property consensus sequences for functional analysis, design of multivalent antigens and targeted antivirals</article-title>
<source>BMC Bioinformatics</source>
<year>2012</year>
<volume>13</volume>
<fpage>S9</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-13-s13-s9</pub-id>
<pub-id pub-id-type="pmid">23320474</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Danecek</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>PCP consensus sequences of flaviviruses: correlating variance with vector competence and disease phenotype</article-title>
<source>J Mol Biol</source>
<year>2010</year>
<volume>396</volume>
<issue>3</issue>
<fpage>550</fpage>
<lpage>563</lpage>
<pub-id pub-id-type="doi">10.1016/j.jmb.2009.11.070</pub-id>
<pub-id pub-id-type="pmid">19969003</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Ye</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Paul</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Oberste</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Chapman</surname>
<given-names>N</given-names>
</name>
<name>
<surname>van der Heden van Noort</surname>
<given-names>GJ</given-names>
</name>
<name>
<surname>Filippov</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>KH</given-names>
</name>
</person-group>
<article-title>Sequence specificity for uridylylation of the viral peptide linked to the genome (VPg) of enteroviruses</article-title>
<source>Virology</source>
<year>2015</year>
<volume>484</volume>
<fpage>80</fpage>
<lpage>85</lpage>
<pub-id pub-id-type="doi">10.1016/j.virol.2015.05.016</pub-id>
<pub-id pub-id-type="pmid">26074065</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Doi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Monjo</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hoang</surname>
<given-names>PH</given-names>
</name>
<name>
<surname>Yoshimura</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yurino</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Mitsui</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Ishiura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Takahashi</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Ichikawa</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Goto</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tsuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Morishita</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing</article-title>
<source>Bioinformatics</source>
<year>2014</year>
<volume>30</volume>
<issue>6</issue>
<fpage>815</fpage>
<lpage>822</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btt647</pub-id>
<pub-id pub-id-type="pmid">24215022</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000396 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000396 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:6399083
   |texte=   Polyglutamine Repeats in Viruses
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:30182336" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021