Serveur d'exploration Covid (26 mars)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The revolution of the biology of the genome

Identifieur interne : 000374 ( Pmc/Corpus ); précédent : 000373; suivant : 000375

The revolution of the biology of the genome

Auteurs : Wolfgang Hennig

Source :

RBID : PMC:7091781

Abstract

Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication. Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance. Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.


Url:
DOI: 10.1038/sj.cr.7290196
PubMed: 15040884
PubMed Central: 7091781

Links to Exploration step

PMC:7091781

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The revolution of the biology of the genome</title>
<author>
<name sortKey="Hennig, Wolfgang" sort="Hennig, Wolfgang" uniqKey="Hennig W" first="Wolfgang" last="Hennig">Wolfgang Hennig</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">15040884</idno>
<idno type="pmc">7091781</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091781</idno>
<idno type="RBID">PMC:7091781</idno>
<idno type="doi">10.1038/sj.cr.7290196</idno>
<date when="2004">2004</date>
<idno type="wicri:Area/Pmc/Corpus">000374</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000374</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">The revolution of the biology of the genome</title>
<author>
<name sortKey="Hennig, Wolfgang" sort="Hennig, Wolfgang" uniqKey="Hennig W" first="Wolfgang" last="Hennig">Wolfgang Hennig</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell Research</title>
<idno type="ISSN">1001-0602</idno>
<idno type="eISSN">1748-7838</idno>
<imprint>
<date when="2004">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication. Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance. Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, J" uniqKey="Yu J">J Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goff, Sa" uniqKey="Goff S">SA Goff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Binning, G" uniqKey="Binning G">G Binning</name>
</author>
<author>
<name sortKey="Quate, Cf" uniqKey="Quate C">CF Quate</name>
</author>
<author>
<name sortKey="Gerber, C" uniqKey="Gerber C">C Gerber</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nusslein Volhard, C" uniqKey="Nusslein Volhard C">C Nüsslein-Volhard</name>
</author>
<author>
<name sortKey="Wieschaus, E" uniqKey="Wieschaus E">E Wieschaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pourquie, O" uniqKey="Pourquie O">O Pourquie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halder, G" uniqKey="Halder G">G Halder</name>
</author>
<author>
<name sortKey="Callaerts, P" uniqKey="Callaerts P">P Callaerts</name>
</author>
<author>
<name sortKey="Gehring, Wj" uniqKey="Gehring W">WJ Gehring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gehring, W" uniqKey="Gehring W">W Gehring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gibert, Jm" uniqKey="Gibert J">JM Gibert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stuart, Jm" uniqKey="Stuart J">JM Stuart</name>
</author>
<author>
<name sortKey="Segal, E" uniqKey="Segal E">E Segal</name>
</author>
<author>
<name sortKey="Koller, D" uniqKey="Koller D">D Koller</name>
</author>
<author>
<name sortKey="Kim, Sk" uniqKey="Kim S">SK Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pagliarini, Ra" uniqKey="Pagliarini R">RA Pagliarini</name>
</author>
<author>
<name sortKey="Xu, A" uniqKey="Xu A">A Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Britten, Rj" uniqKey="Britten R">RJ Britten</name>
</author>
<author>
<name sortKey="Kohne, De" uniqKey="Kohne D">DE Kohne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pardue, Ml" uniqKey="Pardue M">ML Pardue</name>
</author>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohno, S" uniqKey="Ohno S">S Ohno</name>
</author>
<author>
<name sortKey="Wolf, U" uniqKey="Wolf U">U Wolf</name>
</author>
<author>
<name sortKey="Atkin, Nb" uniqKey="Atkin N">NB Atkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lynch, M" uniqKey="Lynch M">M Lynch</name>
</author>
<author>
<name sortKey="Conery, Js" uniqKey="Conery J">JS Conery</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Efstratiatis, A" uniqKey="Efstratiatis A">A Efstratiatis</name>
</author>
<author>
<name sortKey="Posakony, Je" uniqKey="Posakony J">JE Posakony</name>
</author>
<author>
<name sortKey="Manitis, T" uniqKey="Manitis T">T Manitis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Prince, Ve" uniqKey="Prince V">VE Prince</name>
</author>
<author>
<name sortKey="Pickett, Fb" uniqKey="Pickett F">FB Pickett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piatigorsky, J" uniqKey="Piatigorsky J">J Piatigorsky</name>
</author>
<author>
<name sortKey="Wistom, G" uniqKey="Wistom G">G Wistom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eichler, Ee" uniqKey="Eichler E">EE Eichler</name>
</author>
<author>
<name sortKey="Sankoff, D" uniqKey="Sankoff D">D Sankoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohta, T" uniqKey="Ohta T">T Ohta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Britten, Rj" uniqKey="Britten R">RJ Britten</name>
</author>
<author>
<name sortKey="Davidson, Eh" uniqKey="Davidson E">EH Davidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfe, Kh" uniqKey="Wolfe K">KH Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mclysaght, A" uniqKey="Mclysaght A">A McLysaght</name>
</author>
<author>
<name sortKey="Hokamp, K" uniqKey="Hokamp K">K Hokamp</name>
</author>
<author>
<name sortKey="Wolfe, Kh" uniqKey="Wolfe K">KH Wolfe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comai, L" uniqKey="Comai L">L Comai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Hs" uniqKey="Lee H">HS Lee</name>
</author>
<author>
<name sortKey="Chen, Zj" uniqKey="Chen Z">ZJ Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kashkush, K" uniqKey="Kashkush K">K Kashkush</name>
</author>
<author>
<name sortKey="Feldman, M" uniqKey="Feldman M">M Feldman</name>
</author>
<author>
<name sortKey="Levy, Aa" uniqKey="Levy A">AA Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abi Rached, L" uniqKey="Abi Rached L">L Abi-Rached</name>
</author>
<author>
<name sortKey="Gilles, A" uniqKey="Gilles A">A Gilles</name>
</author>
<author>
<name sortKey="Shiina, T" uniqKey="Shiina T">T Shiina</name>
</author>
<author>
<name sortKey="Pontarotti, P" uniqKey="Pontarotti P">P Pontarotti</name>
</author>
<author>
<name sortKey="Ionoko, H" uniqKey="Ionoko H">H Ionoko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kubo, N" uniqKey="Kubo N">N Kubo</name>
</author>
<author>
<name sortKey="Harada, K" uniqKey="Harada K">K Harada</name>
</author>
<author>
<name sortKey="Hirai, A" uniqKey="Hirai A">A Hirai</name>
</author>
<author>
<name sortKey="Kadowaki, K" uniqKey="Kadowaki K">K Kadowaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Long, M" uniqKey="Long M">M Long</name>
</author>
<author>
<name sortKey="Langley, Ch" uniqKey="Langley C">CH Langley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moran, Jv" uniqKey="Moran J">JV Moran</name>
</author>
<author>
<name sortKey="Deberardinis, Rj" uniqKey="Deberardinis R">RJ DeBerardinis</name>
</author>
<author>
<name sortKey="Kazazian, Hh" uniqKey="Kazazian H">HH Kazazian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W" uniqKey="Wang W">W Wang</name>
</author>
<author>
<name sortKey="Brunet, Fg" uniqKey="Brunet F">FG Brunet</name>
</author>
<author>
<name sortKey="Nevo, E" uniqKey="Nevo E">E Nevo</name>
</author>
<author>
<name sortKey="Long, M" uniqKey="Long M">M Long</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Rijk, A" uniqKey="Van Rijk A">A van Rijk</name>
</author>
<author>
<name sortKey="Bloemendal, H" uniqKey="Bloemendal H">H Bloemendal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubin, Gm" uniqKey="Rubin G">GM Rubin</name>
</author>
<author>
<name sortKey="Kidwell, Mg" uniqKey="Kidwell M">MG Kidwell</name>
</author>
<author>
<name sortKey="Bingham, Pm" uniqKey="Bingham P">PM Bingham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwarz Sommer, Z" uniqKey="Schwarz Sommer Z">Z Schwarz-Sommer</name>
</author>
<author>
<name sortKey="Leclercq, L" uniqKey="Leclercq L">L Leclercq</name>
</author>
<author>
<name sortKey="Saedler, H" uniqKey="Saedler H">H Saedler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fedoroff, N" uniqKey="Fedoroff N">N Fedoroff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dewannieux, M" uniqKey="Dewannieux M">M Dewannieux</name>
</author>
<author>
<name sortKey="Esnault, C" uniqKey="Esnault C">C Esnault</name>
</author>
<author>
<name sortKey="Heidmann, T" uniqKey="Heidmann T">T Heidmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kashkush, K" uniqKey="Kashkush K">K Kashkush</name>
</author>
<author>
<name sortKey="Feldman, M" uniqKey="Feldman M">M Feldman</name>
</author>
<author>
<name sortKey="Levy, Aa" uniqKey="Levy A">AA Levy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Loreto, El" uniqKey="Loreto E">EL Loreto</name>
</author>
<author>
<name sortKey="Valente, Vl" uniqKey="Valente V">VL Valente</name>
</author>
<author>
<name sortKey="Zaha, A" uniqKey="Zaha A">A Zaha</name>
</author>
<author>
<name sortKey="Silva, Jc" uniqKey="Silva J">JC Silva</name>
</author>
<author>
<name sortKey="Kidwell, Mg" uniqKey="Kidwell M">MG Kidwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dehal, P" uniqKey="Dehal P">P Dehal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brown, Jr" uniqKey="Brown J">JR Brown</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, L" uniqKey="Chen L">L Chen</name>
</author>
<author>
<name sortKey="Devries, Al" uniqKey="Devries A">AL deVries</name>
</author>
<author>
<name sortKey="Cheng, Ch" uniqKey="Cheng C">CH Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitfield, Cw" uniqKey="Whitfield C">CW Whitfield</name>
</author>
<author>
<name sortKey="Band, Mr" uniqKey="Band M">MR Band</name>
</author>
<author>
<name sortKey="Bonaldo, Mf" uniqKey="Bonaldo M">MF Bonaldo</name>
</author>
<author>
<name sortKey="Kumar, Cg" uniqKey="Kumar C">CG Kumar</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L Liu</name>
</author>
<author>
<name sortKey="Pardinas, Jr" uniqKey="Pardinas J">JR Pardinas</name>
</author>
<author>
<name sortKey="Robertson, Hm" uniqKey="Robertson H">HM Robertson</name>
</author>
<author>
<name sortKey="Soares, Mb" uniqKey="Soares M">MB Soares</name>
</author>
<author>
<name sortKey="Robinson, Ge" uniqKey="Robinson G">GE Robinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Okazaki, Y" uniqKey="Okazaki Y">Y Okazaki</name>
</author>
<author>
<name sortKey="Furuno, M" uniqKey="Furuno M">M Furuno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Rc" uniqKey="Lee R">RC Lee</name>
</author>
<author>
<name sortKey="Feinbaum, Rl" uniqKey="Feinbaum R">RL Feinbaum</name>
</author>
<author>
<name sortKey="Ambros, V" uniqKey="Ambros V">V Ambros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Rc" uniqKey="Lee R">RC Lee</name>
</author>
<author>
<name sortKey="Ambros, V" uniqKey="Ambros V">V Ambros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinhart, Bj" uniqKey="Reinhart B">BJ Reinhart</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carrington, Jc" uniqKey="Carrington J">JC Carrington</name>
</author>
<author>
<name sortKey="Ambros, V" uniqKey="Ambros V">V Ambros</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, Nc" uniqKey="Lau N">NC Lau</name>
</author>
<author>
<name sortKey="Lim, Lp" uniqKey="Lim L">LP Lim</name>
</author>
<author>
<name sortKey="Weinstein, Eg" uniqKey="Weinstein E">EG Weinstein</name>
</author>
<author>
<name sortKey="Bartel, Dp" uniqKey="Bartel D">DP Bartel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schramke, V" uniqKey="Schramke V">V Schramke</name>
</author>
<author>
<name sortKey="Allshire, R" uniqKey="Allshire R">R Allshire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Mc" uniqKey="Yao M">MC Yao</name>
</author>
<author>
<name sortKey="Fuller, P" uniqKey="Fuller P">P Fuller</name>
</author>
<author>
<name sortKey="Xi, X" uniqKey="Xi X">X Xi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ammermann, Steinbruckg" uniqKey="Ammermann S">SteinbrückG Ammermann</name>
</author>
<author>
<name sortKey="Von Berger, L" uniqKey="Von Berger L">L von Berger</name>
</author>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
<author>
<name sortKey="Walker, Pmb" uniqKey="Walker P">PMB Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lankenau, Dh" uniqKey="Lankenau D">DH Lankenau</name>
</author>
<author>
<name sortKey="Huijser, P" uniqKey="Huijser P">P Huijser</name>
</author>
<author>
<name sortKey="Jansen, E" uniqKey="Jansen E">E Jansen</name>
</author>
<author>
<name sortKey="Miedema, K" uniqKey="Miedema K">K Miedema</name>
</author>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huijser, P" uniqKey="Huijser P">P Huijser</name>
</author>
<author>
<name sortKey="Beckers, L" uniqKey="Beckers L">L Beckers</name>
</author>
<author>
<name sortKey="Top, B" uniqKey="Top B">B Top</name>
</author>
<author>
<name sortKey="Hermans, M" uniqKey="Hermans M">M Hermans</name>
</author>
<author>
<name sortKey="Sinke, R" uniqKey="Sinke R">R Sinke</name>
</author>
<author>
<name sortKey="Hennig, W" uniqKey="Hennig W">W Hennig</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Cell Res</journal-id>
<journal-id journal-id-type="iso-abbrev">Cell Res</journal-id>
<journal-title-group>
<journal-title>Cell Research</journal-title>
</journal-title-group>
<issn pub-type="ppub">1001-0602</issn>
<issn pub-type="epub">1748-7838</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">15040884</article-id>
<article-id pub-id-type="pmc">7091781</article-id>
<article-id pub-id-type="publisher-id">BF7290196</article-id>
<article-id pub-id-type="doi">10.1038/sj.cr.7290196</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>The revolution of the biology of the genome</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>HENNIG</surname>
<given-names>Wolfgang</given-names>
</name>
<address>
<email>whennig@sibs.ac.cn</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.419092.7</institution-id>
<institution-id institution-id-type="ISNI">0000 0004 0467 2285</institution-id>
<institution>German Academic Exchange Service (DAAD) Laboratory, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences,</institution>
</institution-wrap>
320 Yue Yang Road, Shanghai, 200031 China</aff>
</contrib-group>
<pub-date pub-type="ppub">
<month>2</month>
<year>2004</year>
</pub-date>
<volume>14</volume>
<issue>1</issue>
<fpage>1</fpage>
<lpage>7</lpage>
<permissions>
<copyright-statement>© Science Press 2004</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication. Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance. Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>genome structure</kwd>
<kwd>gene duplication</kwd>
<kwd>RNAi</kwd>
<kwd>gene silencing</kwd>
<kwd>chromatin</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© IBCB, SIBS, CAS 2004</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>INTRODUCTION</title>
<p id="Par2">It is a general conception that the discovery of the structure of DNA and the understanding of its basic functions in the cell, as established in the second half of the 20th century, has been the central achievement in biology of the last 5 decades: This knowledge has taught us the basic principles of inheritance. Only recently we start to realize that the increasing knowledge on DNA has much more fundamental consequences for understanding biology. The results of the sequencing of an increasing number of complete genomes and the comparative evaluation of information in the genomic DNA sequences have opened new and unexpected aspects, which influence all fields of biology.</p>
<p id="Par3">The two probably most important of these aspects emerging from the genomic sequencing data concern the evolution of genomes and the functional organization of genomes. The recent sequencing data of genomes reveal also that our picture on the genome changes considerably if high accuracy sequencing data are compared with the conclusions drawn from earlier shotgun sequencing approaches
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
. The availability of databases on DNA sequences represented at the RNA level - such as EST and cDNA databases - and the comparisons of these data with the sequences of the complete genome has as well yielded unexpected views on the extent of transcription of the genome. Together with the discovery of RNAi, this opens revolutionary views on eukaryotic genomes - their evolution as well as their function. What are these new views and what are their consequences for future research in biology?</p>
<p id="Par4">The analysis of the genomic sequences has also stimulated the development of new techniques, which will allow the functional evaluation of the genome. Considerable parts of prior laboratory work have been shifted to the computer. Comparisons of nucleic acid sequences, which could earlier only done by nucleic acid hybridization experiments, can now be carried out at much larger scales, with better resolution and with exactly determined precision by sequence searches and by the alignments of nucleic acid sequences as they are available in databases. As a consequence new concepts for handling of biological data are required. At present, such concepts are, however, hardly in their initial phases of development. Future research in biology will be substantially based on tools of bioin-formatics, but we are not yet sufficiently prepared for this in terms of the state of bioinformatics.</p>
<p id="Par5">On the experimental side, new laboratory techniques concern especially three fields of biology. The investigation of the transcriptional aspects of genomes - summarized under the term transcriptom - has yielded possibilities to compare gene expression at the RNA level in a large scale by the development of
<italic>microarray techniques</italic>
for nucleic acid sequences. Current approaches are directed towards the registration of gene activities and their changing patterns at all cellular and developmental levels. These approaches are complemented by studies of RNA expression by in situ hybridization. Such studies are systematically performed, for example, on
<italic>Drosophila</italic>
embryos by collecting the expression patterns of all available transcripts using whole mount in situ hybridization on embryos. The data was deposited in databases and become freely available to researchers.</p>
<p id="Par6">A comparable approach is made at the protein level. Proteomics tries to collect expression patterns of proteins in a way similar to the recording of transcripts by microarrays. The techniques of proteomics are still less elaborate than those of RNA investigations, but new developments like protein microarrays will soon enhance the power of this field. Even though this approach appears not very different from that towards the transcriptom, proteomics faces with the fact of a much higher complexity of its targets: Proteins exists in many modifications (for example in phosphorylated, acetylated, methylated form or in many other modifications) and in multiple splicing variants. It becomes evident that it will be necessary to register and functionally evaluate millions of protein molecules in their cellular context and in their respective relationship. The development of bioinformatic tools for handling such information and for the use of it in multiple biological contexts will be one of the most intriguing and demanding tasks in future biology.</p>
<p id="Par7">A third field, which has been developing rapidly in recent years, is the diverse microscopy techniques such as confocal microscopy, laser scanning microscopy and various techniques in electron microscopy. An example is the atomic force microscope (Binning et al. 1986
<sup>
<xref ref-type="bibr" rid="CR3">3</xref>
</sup>
). The potential to localize macromolecules with very high sensitivity and precision in the cell or even in subcellular compartments and to analyze their localization and dynamics - which can, for example, be achieved by photo bleaching - in the cell in a three-dimensional fashion has provided new insights in cellular processes and will be essential for research in cellular and developmental biology in the future. Added to these techniques are new genetic techniques which allows to introduce and express molecules, marked for example with fluorescent label (like Green Fluorescent Protein, GPF, and its variants), in a controlled fashion and with increasing precision and efficiency to manipulate single genes. This permits to establish the precise time of expression of molecules, the subcellular localization and the developmental pattern of distinct molecules, even if present in small amounts in single cells. Such techniques will be essential for integrating our knowledge and to transfer it into a cellular or tissue level.</p>
<p id="Par8">In the subsequent part of this review I shall concentrate on two aspects of the recent developments in molecular biology, the changing views on evolution of the eukaryotic genome, based on genome research, and on the consequences of RNAi mechanisms for understanding regulatory mechanisms at the genome level.</p>
</sec>
<sec id="Sec2">
<title>GENOMES: A NEW WORLD</title>
<p id="Par9">To Charles Darwin probably hardly anything in modern biology would have been more exciting than our new insights in the evolution of genomes. Though biologists (except the few political indoctrinated cranks like those having promoted Lyssenkoism) during the last century have not questioned the descendence theory as the basis for understanding biological evolution, the analysis of DNA sequencing data has yielded many unexpected facts in additional support of Darwin's descendence theory. These facts can very simply be summarized by the statement that probably most - if not all - of the major genetics traits have evolved very early on an evolutionary scale and have been maintained throughout the history of all phyla. This holds not only true for fundamental cellular mechanisms such as DNA replication and repair, cell cycle control and the basic mechanisms of mitosis and meiosis but also, for example, for major principles of the early embryonic development of organisms. Such principles are conserved as are known since years from the study of genes involved in early
<italic>Drosophila</italic>
development and segmentation
<sup>
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
. The amazing maintenance of genetic tools in evolution reaches, however, much further: The development of entire organs is also based on very old principles as has first been demonstrated for the development of the eye
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
</sup>
. While classical comparative anatomy taught us that the ingenious invention of the eye has by nature been achieved several times independently in analogous ways (in insects, cephalopods, mammals), this dogma has now been proven wrong. The principle genes required for the construction of an eye are the same and have been designed early in evolution, even though the details of their involvement in the construction of eyes in different phyla might be different. But even more surprising: The key gene for eye development recovered from the mouse genome (Aniridia) can be used to create an insect eye in
<italic>Drosophila</italic>
in ectopic positions or even replace the respective
<italic>Drosophila</italic>
gene (
<italic>eyeless</italic>
)
<sup>
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
. Similar conclusions on evolutionary conservation of developmental pathways have been made for other gene products, as for example heart myosin, or for key genes in development like
<italic>engrailed</italic>
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
and have recently been proven on a more universal level by general expression studies of groups of related genes
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
.</p>
<p id="Par10">One might argue that the evolutionary conservation of cellular processes such as cell cycle regulation, chromosome separation or DNA repair is not so unexpected as they define the basis of the function of a cell. But that the development of morphologically widely different organs has a similar ancient basis, is probably one of the most intriguing findings in modern biology. Such conclusions will have substantial consequences in practical and theoretical terms: The investigation of simple model organisms can supply us with the basis of knowledge which can be applied with little or no changes to mammals or even men
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
, where experiments are complicated, time consuming, expensive or not even be possible
<sup>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
. There are consequences for our judgment on the probability of those diseases, such as, for example, induced by viruses, can be transferred between organisms: An example is provided by the recent corona virus problems (“SARS”)
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
. Not at least, we may be induced to raise ethical questions and questions on medical security for the use of primates for experimentation, or on the implications of gene transfer with retroviruses as vectors or organ transplantations between mammals.</p>
</sec>
<sec id="Sec3">
<title>GENOME COMPLEXITY</title>
<p id="Par11">One of the puzzling features in the comparison of eukaryotic genomes has always been their extremely variable size
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. How is this compatible with the idea that the principle genetic systems are very similar throughout eukaryotes? How can we understand the increasing complexity of organisms if we assume a high degree of genetic stability in terms of equipment with similar genes?</p>
<p id="Par12">First ideas regarding the question of maintenance of principle genetic information have been obtained long ago after it was recognized that eukaryotes posses a considerable part of their DNA sequences in multiple copies, the so-called repetitive DNA fraction (review
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
). Initially it was assumed that repetitive DNA is mainly found in a portion of the genome called heterochromatin, which is considered genetically reactively inert (for discussion see
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
).But soon it was recognized that repetitive DNA is found all over the genome and includes genes as well. This together with the analysis of the globin genes of vertebrates had soon led to the proposal that gene duplications play an important role in evolution
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
. The analysis of complete genome sequences has substantiated this assumption and has proven that considerable proportions of the genome can be considered as duplicated DNA sequences. The rate of gene duplications in the human genome is, according to recent estimates, 0.5-1% in 1 million years
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
. Consequently, the genome would be duplicated in approximately 200 Million years, a period short in terms of evolution. Obviously, not all duplications will be fixed in the genome, but they nevertheless provide ample possibilities for selection. Duplicated genes might remain identical in their products or they might diverge giving rise to proteins of different functions. Classic examples for the latter kind of genes are the globin genes, which diverged and are expressed in distinct developmental patterns (see
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
) and, more recently, the HOX genes. The evolutionary history of the Hox genes is particularly well investigated and allows to identify their duplication patters within vertebrates in detail
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
. Gene duplications and the possible mechanisms for divergence were discussed for the eye crystalline genes by Piatogorsky and Wistom
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
. Examples of genes retained in an identical or very similar sequence are the genes coding for histone proteins or for ribosomal RNAs.</p>
<p id="Par13">The detailed analysis of genes derived from duplications has revealed remarkable features
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
: The divergence of duplicated genes occurs much more rapidly in regulatory regions than within the protein-coding part of the gene. This may have different consequences, depending on the kind of mutations: If the regulatory sequence becomes nonfunctional, the gene is functionally eliminated and will degenerate by mutation. A modified regulatory region may, however, also lead to a change in the gene expression pattern and initiate the evolution of a new, specific task for this gene product. This, in turn, may be accompanied or followed by divergence of the coding DNA sequence as well
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. The networks formed by regulatory sequences appear of a major importance for the evolutionary fate of a duplicated gene. The existence of such regulatory networks has been proposed very early by Britten and Davidson
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
.</p>
<p id="Par14">An additional mechanism contributes to duplication of (parts of) genomes: In many organisms, polyploidization occurred
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
</sup>
. Polyploidization appears often to be accompanied by a rapid evolution of the duplicated parts of the genome
<sup>
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
. Some of the polyploid genes become inactive by silencing effects (see below) while others diverge into new function, comparable to the situation described for single-gene duplication
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
. Polyploidization events can hence explain the surprisingly large differences in the genome sizes of closely related organisms
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
. Those ploidization steps have occurred can, however, often only be recognized by a detailed analysis of the complete genome sequence.</p>
<p id="Par15">These two genomic mechanisms - gene duplication and ploidization - seem to account for much of the evolution of genomes. There exist other possibilities affecting gene evolution which one might consider as means for a “fine adjustment”. The fragmentation of eukaryotic genes into exons and introns appears to be important not only from the viewpoint that it offers a wide range for regulatory possibilities - for example by placing enhancers and silencers into the introns - but also by the opportunity to create varieties of gene products by various combinations of exons through differential splicing. Thus, in principle one might envisage this situation as a possibility to combine different 'genes' into one transcription unit
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
. Although our evidence in this regard is scarce, this situation may be functionally important since it guarantees that the amino acid sequences of different products in the recombined exons remain identical. Hence, interactions with other molecules may remain guaranteed for a particular part of a protein even if other exons are added and enforce different functions.</p>
<p id="Par16">The exon-intron structure of genes has also been considered in the context of recombination between the exons of different genes which may create new genes with new functions, for example by combining a DNA-binding domain in one exon with a protein-interacting domain of a different exon into a new combination. The evidence for such exon 're-shuffling' events is limited and it may have been of limited significance in the evolution of the genome but has certainly contributed to it
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
.</p>
<p id="Par17">The question arises how a long-distance recombinations of exons might occur
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. One possibility is gene conversion induced by restricted nucleotide similarities inducing regional pairing and subsequent recombination of DNA sequences in the context of repair processes after single- or double-stranded breaks in DNA. Another - probably more frequent - mechanism is the transposition of DNA induced by mobile elements. The evidence of the importance of mobile DNA elements for the genome structure and hence for evolution has amply increased during the past years
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
,
<xref ref-type="bibr" rid="CR35">35</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
and even functional interactions between different transposons have been demonstrated
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
. Moreover, insertion of transposons can modify the expression patterns of genes
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
.</p>
<p id="Par18">Another possibility of introducing novel functions into a genome is still rather speculative. While it is clear that lateral gene transfer plays a role in prokaryotes, it is still unclear whether it can be considered as relevant for eukaryotic genome evolution. Some cases of lateral gene transfer have been documented
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
and the analysis of the complete genome sequence of
<italic>Ciona</italic>
has provided some additional indirect evidence that such events may have taken place
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
. The mechanisms of such lateral transfer of DNA sequences are more or less open to speculation
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
. But clearly, the transfer of genomic sequence integrated into [or: (retro-) viral] genomes seems a realistic possibility to explain lateral gene transfer. The argument of the host specificity of viruses has become rather questionable after it seems evident that relative minor changes in viral genomes may induce the possibility of infecting new hosts. This has for example been assumed to be the case for the infection of humans by corona virus originating from animals
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
leading to SARS epidemies. Also other viruses, for example hematorhagic viruses, may evolve in similar ways and change their hosts after relatively insignificant mutations.</p>
<p id="Par19">The examples given before emphasize the major mechanisms for genome evolution as we see them today. It is sensible to ask whether there are other ways to generate completely new genes. The answer is difficult to give as one cannot exclude that a gene considered as 'new' is in fact a strongly diverged duplicated gene. More likely than the accidental de novo-evolution of a gene is that new genes might evolve from the combined action of various mechanisms. For example, a protein coding DNA sequences might be transposed into a genome region which is not functional. This could lead to the inclusion of nonfunctional DNA into a protein sequence if an open reading frame exists. The resulting protein might take over novel functions in the respective organisms. An example for genes which might be derived from such a process are the antifreeze glykoprotein (AFGP) genes of
<italic>Dissostichus mawsoni</italic>
(an Antarctic teleost fish)
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
. In general, the frequency of such events would, however, to be considered low and it is not expected that such events substantially contribute to the evolution of genomes.</p>
<p id="Par20">Genomes do not only develop by the creation of new genes but one has to assume that genes can be lost. Otherwise the genome would continuously increase in size. The comparison of the number of genes expressed in the brain of
<italic>Drosophila</italic>
, the brain of the honey bee (
<italic>Apis</italic>
) and the human brain has shown that of the 3000 conserved genes found expressed in human and
<italic>Apis</italic>
brains 100 genes are not present in the
<italic>Drosophila</italic>
genome
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
. In other words, the
<italic>Drosophila</italic>
genome seems to have lost these 100 genes. If one accepts a linear extrapolation of this number to the entire genome, one would have to conclude that the
<italic>Drosophila</italic>
genome has in total lost some 500 genes, which were present in ancestors and which are still maintained in other phylogenetic groups up to man. One might derive that genomes in one phylogenetic group can discard sets of genes which in other phylogenetic groups remain conserved. The simultaneous inactivation of the genes of a regulatory gene networks - as have been discussed before in the context of the evolution of duplicated genes - would allow such processes. We can expect to obtain deeper insight into such processes from the comparisons of further complete genome sequences. This, however, still does not reveal any clues on the molecular mechanisms which might be responsible to discard genes or even sets of genes from a genome.</p>
</sec>
<sec id="Sec4">
<title>REGULATION OF THE GENONOME SIZE BY RNAi?</title>
<p id="Par21">A key to an answer of the question how genes or sets of genes can be eliminated from a genome may be found in the recent development of our knowledge on the transcriptome. Two important new insights on transcription emerged over the past few years, which appear be related to one another. First, the analysis of EST and cDNA databases assembling transcripts from the mouse genome shows that at least 60% of the mouse genome is represented in transcripts
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
. Since long it was known that a considerable proportion of newly synthesized RNA never leaves the nucleus and becomes rapidly degraded. However, the extent of transcription of the genome, even though these transcripts are accumulated from many different cell types, is unexpectedly high. Until now we do not have a clue as to the significance of this in biological terms.</p>
<p id="Par22">A second, most intriguing new information on transcription concerns the discovery that a mechanisms called RNA interference (RNAi) plays a general role, not only in the posttranscriptional regulation of RNA levels but also in chromatin assembly processes
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
,
<xref ref-type="bibr" rid="CR47">47</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
. RNAi involves the activity of small RNA molecules derived from larger transcripts by controlled degradation (siRNAs: small interfering RNAs) as well as small RNA molecules specifically synthesized with the aim of controlling mRNA levels (miRNA: micro-RNAs) (review:
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
</sup>
). Both types of RNA represent molecules of a length between 19 to 25 nucleotides, but they differ in their origin:</p>
<p id="Par23">
<bold>- miRNA</bold>
is synthesized from non-protein coding DNA and are metabolized from transcripts accommodating inverted repeats. The double-stranded RNA formed by foldback is processed by an RNAse III-like enzyme, highly conserved through evolution from yeast to man and higher plants, called Dicer in animals or Dicer-like in plants. The nuclease cleaves within the double-stranded RNA (dsRNA) region and releases dsRNAs of 22-25 nucleotide pairs
<sup>
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
. These molecules can interact with the 3'-UTRs of transcripts and inhibit translation.</p>
<p id="Par24">
<bold>- siRNA</bold>
is cleaved from larger RNA molecules, a process which also involves Dicer. The processing products associate into nucleoprotein complexes, including the RNA-induced silencing complex (RISC), and then binds to mRNA and cause its degradation. This process leads to a fine tuning of mRNA levels. siRNA is however not only formed from mRNAs but can also be formed from non-protein coding transcripts such as centromeric DNA transcripts and, in particular, from LTRs of transposons. In these cases siRNA becomes a constituent of chromatin. It is essential for chromatin packaging and - related to this - gene silencing processes as has recently been shown
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
for centromeric chromosome regions of
<italic>Schizosac-charomyces</italic>
.</p>
<p id="Par25">These experiments imply that siRNA is able to control the assembly of the chromatin. The molecular mechanism is still unknown. One could assume that it is based on a recognition of the centromeric DNA sequences corresponding to the siRNA sequence as siRNA generally acts sequence-specifically. Over the past years it has been established that transcriptionally inactive chromosomal regions, such as telomere regions, and silenced genes, such as the mating type locus, have a closely similar composition of proteins (summarized in
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
). Specific DNA signals are required to identify chromosome regions to be packaged in a way assuring gene inactivation. It is an obvious possibility that siRNA molecules identify by homology those chromosomal sites where packaging into inactive chromatin is required. These findings also shed a new light on the character of heterochromatin as a functional part of the genome.</p>
<p id="Par26">In general, RNAi mechanism has apparently developed because of the need to identify nucleic sequences for regulatory purposes. Initially there were probably defense mechanism again viral infections
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
. Such tasks may be closely related to another activity, ascribed to the multiple functions RNAi: the guided excision of genomic DNA sequences in ciliates. Ciliates are highly specialized single-cellular eukaryotes, distinguished by two nuclei - a generative diploid micronucleus and a vegetative, polyploid macronucleus. The peculiarity of the macronucleus is that only a minor part of the micronuclear genome is ploidized while the major part of the micronuclear genome becomes discarded
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
</sup>
. By Yao et al
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
it has been shown that the excision of DNA sequences from the genome is directed by small RNA molecules, synthesized in the micronucleus during conjugation and early macronuclear development. The exact mechanism is still unknown, but it is obvious that one can expect a close relationship of this mechanism with the DNA packaging events described earlier.</p>
<p id="Par27">The observations of Schramke and Allshire
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
and Yao et al
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
open a way to understand, what has been a puzzle to geneticists for a long time: How can a genome remove DNA in a directed way and limited to specified DNA sequences? The most commonly known case is that of satellite DNAs. The high degree of variability in satellite DNA sequences between closely related species has for a long time been a question of interest without answer: How can satellite DNA sequences be dislincted simultaneously and be quickly removed from a genome and replaced by a totally different sequence type (see, for example:
<sup>
<xref ref-type="bibr" rid="CR55">55</xref>
</sup>
)? The observations on ciliates, indicating that small RNAs are involved in sequence-directed DNA excisions. Now open a way to answer this question not only other cases of chromatin elimination, like those in
<italic>Ascaris</italic>
and in Crustaceans (see
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
), might make use of related mechanisms: The same mechanisms could be applied to the simultaneous removal of blocks of repetitive DNA sequences, especially from centromeres, in germ cells. The genome is widely transcribed during the meiotic prophase. This makes suitable transcripts available, which could be used to excise blocks of satellite DNAs or other repeated DNA sequences (see
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
). Such transcripts might also be important for the tight packaging of the DNA with basic proteins at the end of the primary spermatocyte stage as a means of inactivating of the genome, similar as described by Schramke and Allshire for centromeric DNA. Under special conditions these transcripts might induce or facilitate DNA excision events comparable to those during the macronucleus in ciliates.</p>
</sec>
<sec id="Sec5">
<title>CONCLUSIONS</title>
<p id="Par28">The developments in genome research during the past years have contributed fundamentally new insights in the structure and evolution of eukaryotic genomes. Even though we still do not have clear concepts for the details of the mechanisms controlling genome sizes, we at least can imagine how genome sizes can increase rapidly in evolution: gene duplication events and, in particular, ploidization are the prominent ways to enhance the amount of genomic DNA. This demands mechanisms for the controlled reduction of the genome size. RNAi mechanisms may provide means to decrease genome sizes by a sequence-specific removal of DNA sequences from the genome.</p>
<p id="Par29">One of the most intriguing new aspects of genome research is the unexpected conservation of genetic pathways and, in particular, of regulatory key genes throughout evolution. This has consequences at many different levels. Basically it implies that organisms are more close in their genetic properties than was expected earlier. The possibility of transgression of barriers between species appears easier under such conditions and they are - opposite to more conventional views - not distinguished by very fundamental genetic differences. Minor genetic changes might determine their sexual isolation from one another. Consequences of this might become important on an applied level, especially in considering medical aspects. For example, we do not know how endogenous viruses or transposable genetic elements behave in the case of transplantation of organs. Can viruses or transposons activated in a foreign environment? If so, can they invade other cells of the host with all the possible consequences of inserting in more or less random genomic positions? One might even see the potential for lateral gene transfer in such cases as mobilized viruses or transposons might carry donor DNA sequences into germ cells of the host. The recognition that animal viruses can easily invade humans, as it appears the case of the Severe Acute Respiratory Syndrome (SARS), requests for increased caution in food production and animal breeding.</p>
<p id="Par30">Consequences must also be drawn for bioethics: We can no further ignore that primates are genetically very similar. This will have implications for the use of primates as experimental subjects. On the other hands, in early days of gene technology it has been made a strong point from non-biologists that species are considered strictly separated in nature and that it is unethical to transgress natural barriers by transformation experiments. This argument is obviously not a convincing argument as the separation of species might be caused by minor genetic differences. Even if the separation of species should be more substantial it can be argued that the major genetic processes are similar enough to doubt the justification of such arguments against gene transfer.</p>
<p id="Par31">Considering the fast changes of our views on genome evolution during the past few years, we might still expect new and unforeseen insights within the next years when more data for comparative studies become available.</p>
</sec>
</body>
<back>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>A Draft Sequence of the Rice Genome (Oryza sativa L ssp. Indica)</article-title>
<source>Science</source>
<year>2002</year>
<volume>296</volume>
<fpage>79</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1126/science.1068037</pub-id>
<pub-id pub-id-type="pmid">11935017</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goff</surname>
<given-names>SA</given-names>
</name>
</person-group>
<article-title>A draft sequence of the rice genome (Oryza sativa L ssp. Japonica)</article-title>
<source>Science</source>
<year>2002</year>
<volume>296</volume>
<fpage>92</fpage>
<lpage>100</lpage>
<pub-id pub-id-type="doi">10.1126/science.1068275</pub-id>
<pub-id pub-id-type="pmid">11935018</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Binning</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Quate</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Gerber</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Atomic force microscope</article-title>
<source>Phys Rev Lett</source>
<year>1986</year>
<volume>56</volume>
<fpage>950</fpage>
<lpage>3</lpage>
</element-citation>
</ref>
<ref id="CR4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nüsslein-Volhard</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wieschaus</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Mutation affecting segment number and polarity in Drosophila</article-title>
<source>Nature</source>
<year>1980</year>
<volume>287</volume>
<fpage>795</fpage>
<lpage>80</lpage>
<pub-id pub-id-type="doi">10.1038/287795a0</pub-id>
<pub-id pub-id-type="pmid">6776413</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pourquie</surname>
<given-names>O</given-names>
</name>
</person-group>
<article-title>The segmentation clock: converting embryonic time into spatial pattern</article-title>
<source>Science</source>
<year>2003</year>
<volume>301</volume>
<fpage>328</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.1126/science.1085887</pub-id>
<pub-id pub-id-type="pmid">12869750</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Halder</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Callaerts</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Gehring</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila</article-title>
<source>Science</source>
<year>1995</year>
<volume>267</volume>
<fpage>1788</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="doi">10.1126/science.7892602</pub-id>
<pub-id pub-id-type="pmid">7892602</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gehring</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>The master control gene for morphogenesis and evolution of the eye</article-title>
<source>Genes-Cells</source>
<year>1997</year>
<volume>1</volume>
<fpage>11</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2443.1996.11011.x</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gibert</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>The evolution of engrailed genes after duplication and speciation events</article-title>
<source>Dev Genes Evol.</source>
<year>2002</year>
<volume>212</volume>
<fpage>307</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.1007/s00427-002-0243-2</pub-id>
<pub-id pub-id-type="pmid">12185484</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stuart</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Segal</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Koller</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>SK</given-names>
</name>
</person-group>
<article-title>A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules</article-title>
<source>Science</source>
<year>2003</year>
<volume>302</volume>
<fpage>249</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1126/science.1087447</pub-id>
<pub-id pub-id-type="pmid">12934013</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Drosophila spermatogenesis as a model system. Symposiums-Lecture Hilscher-Symposium, Neuss 1991</article-title>
<source>Andrologia</source>
<year>1992</year>
<volume>24</volume>
<fpage>21</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1111/j.1439-0272.1992.tb02603.x</pub-id>
<pub-id pub-id-type="pmid">1519772</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pagliarini</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Genetic Screen in Drosophila for Metastatic Behavior</article-title>
<source>Science</source>
<year>2003</year>
<volume>D0I</volume>
<fpage>10884741</fpage>
<lpage>50</lpage>
</element-citation>
</ref>
<ref id="CR12">
<label>12</label>
<mixed-citation publication-type="other">Cyranoski D, Abbott A . Virus detectives seek source of SARS in China's wild animals.
<italic>Nature</italic>
2003; 423–67.</mixed-citation>
</ref>
<ref id="CR13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Britten</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Kohne</surname>
<given-names>DE</given-names>
</name>
</person-group>
<article-title>Repeated sequences in the DNA</article-title>
<source>Science</source>
<year>1968</year>
<volume>161</volume>
<fpage>529</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1126/science.161.3841.529</pub-id>
<pub-id pub-id-type="pmid">4874239</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pardue</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Heterochromatin: Junk or Collectors Item</article-title>
<source>Chromosoma</source>
<year>1990</year>
<volume>100</volume>
<fpage>3</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1007/BF00337597</pub-id>
<pub-id pub-id-type="pmid">2101349</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohno</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wolf</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Atkin</surname>
<given-names>NB</given-names>
</name>
</person-group>
<article-title>Evolution from fish to mammals by gene duplication</article-title>
<source>Hereditas</source>
<year>1968</year>
<volume>59</volume>
<fpage>169</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="doi">10.1111/j.1601-5223.1968.tb02169.x</pub-id>
<pub-id pub-id-type="pmid">5662632</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lynch</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conery</surname>
<given-names>JS</given-names>
</name>
</person-group>
<article-title>The evolutionary fate and consequences of duplicate genes</article-title>
<source>Science</source>
<year>2000</year>
<volume>290</volume>
<fpage>1151</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1126/science.290.5494.1151</pub-id>
<pub-id pub-id-type="pmid">11073452</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17</label>
<mixed-citation publication-type="other">Dayhoff MO . Atlas of protein sequence and structure. Vol.
<bold>5</bold>
. 2000; National Biomed Res Foundation, Washington</mixed-citation>
</ref>
<ref id="CR18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Efstratiatis</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Posakony</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Manitis</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The structure and evolution of the human ß-globin family</article-title>
<source>Cell</source>
<year>1980</year>
<volume>21</volume>
<fpage>653</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(80)90429-8</pub-id>
<pub-id pub-id-type="pmid">6985477</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Prince</surname>
<given-names>VE</given-names>
</name>
<name>
<surname>Pickett</surname>
<given-names>FB</given-names>
</name>
</person-group>
<article-title>Splitting pairs: the diverging fates of duplicated genes</article-title>
<source>Nat Rev Genet</source>
<year>2002</year>
<volume>3</volume>
<fpage>827</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1038/nrg928</pub-id>
<pub-id pub-id-type="pmid">12415313</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piatigorsky</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wistom</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>The recruitment of crystallins: new functions precede gene duplication</article-title>
<source>Science</source>
<year>1991</year>
<volume>252</volume>
<fpage>1076</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1126/science.252.5009.1078</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eichler</surname>
<given-names>EE</given-names>
</name>
<name>
<surname>Sankoff</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Structural dynamics of eukaryotic chromosome evolution</article-title>
<source>Science.</source>
<year>2003</year>
<volume>301</volume>
<fpage>793</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1126/science.1086132</pub-id>
<pub-id pub-id-type="pmid">12907789</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohta</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins</article-title>
<source>Genetica</source>
<year>2003</year>
<volume>118</volume>
<fpage>209</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1023/A:1024130431575</pub-id>
<pub-id pub-id-type="pmid">12868610</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Britten</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>EH</given-names>
</name>
</person-group>
<article-title>Gene regulation for higher cells: A theory</article-title>
<source>Science</source>
<year>1968</year>
<volume>165</volume>
<fpage>349</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="doi">10.1126/science.165.3891.349</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wolfe</surname>
<given-names>KH</given-names>
</name>
</person-group>
<article-title>Yesterday's polyploids and the mystery of diploidization</article-title>
<source>Nature Rev Genet</source>
<year>2001</year>
<volume>2</volume>
<fpage>333</fpage>
<lpage>41</lpage>
<pub-id pub-id-type="doi">10.1038/35072009</pub-id>
<pub-id pub-id-type="pmid">11331899</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McLysaght</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hokamp</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wolfe</surname>
<given-names>KH</given-names>
</name>
</person-group>
<article-title>Extensive genome duplication during early chordate evolution</article-title>
<source>Nat Genet</source>
<year>2002</year>
<volume>31</volume>
<fpage>200</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1038/ng884</pub-id>
<pub-id pub-id-type="pmid">12032567</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comai</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotretraploids</article-title>
<source>Plant Cell</source>
<year>2000</year>
<volume>12</volume>
<fpage>1551</fpage>
<lpage>68</lpage>
<pub-id pub-id-type="doi">10.1105/tpc.12.9.1551</pub-id>
<pub-id pub-id-type="pmid">11006331</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>ZJ</given-names>
</name>
</person-group>
<article-title>Protein-coding genes are epigenetically regulated in Arabidopsis polyploids</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2001</year>
<volume>98</volume>
<fpage>6753</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.121064698</pub-id>
<pub-id pub-id-type="pmid">11371624</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kashkush</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>AA</given-names>
</name>
</person-group>
<article-title>Gene loss, silencing and activation in a newly synthesized wheat allotetraploid</article-title>
<source>Genetics</source>
<year>2002</year>
<volume>160</volume>
<fpage>1651</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">11973318</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abi-Rached</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gilles</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shiina</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Pontarotti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Ionoko</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Evidence of en bloc duplicaton in vertebrate genomes</article-title>
<source>Nat Genet</source>
<year>2002</year>
<volume>31</volume>
<fpage>100</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1038/ng855</pub-id>
<pub-id pub-id-type="pmid">11967531</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kubo</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Harada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hirai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kadowaki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>A single nuclear transcript encoding mitochondrial RPS14 und SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1999</year>
<volume>96</volume>
<fpage>9207</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.96.16.9207</pub-id>
<pub-id pub-id-type="pmid">10430921</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Long</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Langley</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Natural selection and the origin of jungwei, a chimeric processed functional gene in Drosophila</article-title>
<source>Science</source>
<year>1993</year>
<volume>260</volume>
<fpage>91</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1126/science.7682012</pub-id>
<pub-id pub-id-type="pmid">7682012</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moran</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>DeBerardinis</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Kazazian</surname>
<given-names>HH</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Abstract Exon shuffling by L1 retrotransposition</article-title>
<source>Science</source>
<year>1999</year>
<volume>283</volume>
<fpage>1530</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1126/science.283.5407.1530</pub-id>
<pub-id pub-id-type="pmid">10066175</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Brunet</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Nevo</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Orogin of sphinx, a young chimeric RNA gene in Drosophila melanogaster</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2002</year>
<volume>99</volume>
<fpage>4448</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.072066399</pub-id>
<pub-id pub-id-type="pmid">11904380</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Rijk</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Bloemendal</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of exon shuffling: illegitimate recombination</article-title>
<source>Genetica</source>
<year>2003</year>
<volume>118</volume>
<fpage>245</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1023/A:1024138600624</pub-id>
<pub-id pub-id-type="pmid">12868613</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rubin</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Kidwell</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Bingham</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>The molecular basis of hybrid dysgenesis: The nature of induced mutations</article-title>
<source>Cell</source>
<year>1983</year>
<volume>29</volume>
<fpage>987</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(82)90462-7</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwarz-Sommer</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Leclercq</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Saedler</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Cin4, an insert altering the structure of the A1 gene in Zea mays, exhibits properties of nonviral retrotransposons</article-title>
<source>EMBO J</source>
<year>1987</year>
<volume>6</volume>
<fpage>3878</fpage>
<lpage>80</lpage>
</element-citation>
</ref>
<ref id="CR37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fedoroff</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Transposons and genome evolution in plants</article-title>
<source>Proc Natl Acad Sci U S A.</source>
<year>2000</year>
<volume>97</volume>
<fpage>7002</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.97.13.7002</pub-id>
<pub-id pub-id-type="pmid">10860963</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dewannieux</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Esnault</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Heidmann</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>LINE mediated retrotransposition of marked Alu sequences</article-title>
<source>Nature Genetics</source>
<year>2003</year>
<volume>35</volume>
<fpage>41</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1038/ng1223</pub-id>
<pub-id pub-id-type="pmid">12897783</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kashkush</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Feldman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Levy</surname>
<given-names>AA</given-names>
</name>
</person-group>
<article-title>Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat</article-title>
<source>Nature Genetics</source>
<year>2003</year>
<volume>33</volume>
<fpage>102</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1038/ng1063</pub-id>
<pub-id pub-id-type="pmid">12483211</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Loreto</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Valente</surname>
<given-names>VL</given-names>
</name>
<name>
<surname>Zaha</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Kidwell</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Drosophila mediopunctata P elements: a new example of horizontal transfer</article-title>
<source>J Hered.</source>
<year>2001</year>
<volume>92</volume>
<fpage>375</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1093/jhered/92.5.375</pub-id>
<pub-id pub-id-type="pmid">11773243</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dehal</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins</article-title>
<source>Science</source>
<year>2002</year>
<volume>298</volume>
<fpage>2157</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1126/science.1080049</pub-id>
<pub-id pub-id-type="pmid">12481130</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brown</surname>
<given-names>JR</given-names>
</name>
</person-group>
<article-title>Ancient horizontal gene transfer</article-title>
<source>Nature Rev Genet</source>
<year>2003</year>
<volume>4</volume>
<fpage>121</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1038/nrg1000</pub-id>
<pub-id pub-id-type="pmid">12560809</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>deVries</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antiartic notithenioid fish</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>1997</year>
<volume>94</volume>
<fpage>3811</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.94.8.3811</pub-id>
<pub-id pub-id-type="pmid">9108060</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whitfield</surname>
<given-names>CW</given-names>
</name>
<name>
<surname>Band</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Bonaldo</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Pardinas</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>HM</given-names>
</name>
<name>
<surname>Soares</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Robinson</surname>
<given-names>GE</given-names>
</name>
</person-group>
<article-title>Abstract Annotated expressed sequence tags and cDNA microarrays for studies of brain and behavior in the honey bee</article-title>
<source>Genome Res</source>
<year>2002</year>
<volume>12</volume>
<fpage>555</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1101/gr.5302</pub-id>
<pub-id pub-id-type="pmid">11932240</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Okazaki</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Furuno</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs</article-title>
<source>Nature</source>
<year>2002</year>
<volume>420</volume>
<fpage>563</fpage>
<lpage>73</lpage>
<pub-id pub-id-type="doi">10.1038/nature01266</pub-id>
<pub-id pub-id-type="pmid">12466851</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Feinbaum</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Ambros</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14</article-title>
<source>Cell</source>
<year>1993</year>
<volume>75</volume>
<fpage>843</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(93)90529-Y</pub-id>
<pub-id pub-id-type="pmid">8252621</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Ambros</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>An extensive class of small RNAs in Caenorhabditis elegans</article-title>
<source>Science</source>
<year>2001</year>
<volume>294</volume>
<fpage>862</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1126/science.1065329</pub-id>
<pub-id pub-id-type="pmid">11679672</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reinhart</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>Small RNAs correspond to centromere heterochromatic repeats</article-title>
<source>Science</source>
<year>2002</year>
<volume>297</volume>
<fpage>1831</fpage>
<pub-id pub-id-type="doi">10.1126/science.1077183</pub-id>
<pub-id pub-id-type="pmid">12193644</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carrington</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Ambros</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Role of micrRNAs in plant and animal development</article-title>
<source>Science</source>
<year>2003</year>
<volume>301</volume>
<fpage>336</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1126/science.1085242</pub-id>
<pub-id pub-id-type="pmid">12869753</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lau</surname>
<given-names>NC</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>Weinstein</surname>
<given-names>EG</given-names>
</name>
<name>
<surname>Bartel</surname>
<given-names>DP</given-names>
</name>
</person-group>
<article-title>An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans</article-title>
<source>Science</source>
<year>2001</year>
<volume>294</volume>
<fpage>858</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="doi">10.1126/science.1065062</pub-id>
<pub-id pub-id-type="pmid">11679671</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schramke</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Allshire</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing</article-title>
<source>Science</source>
<year>2003</year>
<volume>301</volume>
<fpage>1069</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1126/science.1086870</pub-id>
<pub-id pub-id-type="pmid">12869699</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Heterochromatin</article-title>
<source>Chromosoma</source>
<year>1999</year>
<volume>108</volume>
<fpage>1</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1007/s004120050346</pub-id>
<pub-id pub-id-type="pmid">10199951</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>MC</given-names>
</name>
<name>
<surname>Fuller</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Xi</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Programmed DNA deletion as an RNA-guided system of genome defense</article-title>
<source>Science</source>
<year>2003</year>
<volume>300</volume>
<fpage>1581</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1126/science.1084737</pub-id>
<pub-id pub-id-type="pmid">12791996</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ammermann</surname>
<given-names>SteinbrückG</given-names>
</name>
<name>
<surname>von Berger</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Differential replication during the macronucleus formation of the ciliated protozoan Stylonychia mytilus</article-title>
<source>Chromosoma</source>
<year>1974</year>
<volume>45</volume>
<fpage>401</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.1007/BF00283386</pub-id>
<pub-id pub-id-type="pmid">4209692</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Walker</surname>
<given-names>PMB</given-names>
</name>
</person-group>
<article-title>Variations an the DNA from two rodent families (Cricetidae and Muridae)</article-title>
<source>Nature</source>
<year>1970</year>
<volume>225</volume>
<fpage>915</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1038/225915a0</pub-id>
<pub-id pub-id-type="pmid">5415127</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lankenau</surname>
<given-names>DH</given-names>
</name>
<name>
<surname>Huijser</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Miedema</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Micropia: a retro-transposon of Drosophila combines structural features of DNA-viruses, retroviruses, and non viral transposable elements</article-title>
<source>J Mol Biol</source>
<year>1988</year>
<volume>204</volume>
<fpage>233</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/0022-2836(88)90572-4</pub-id>
<pub-id pub-id-type="pmid">2464689</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huijser</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Beckers</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Top</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Hermans</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sinke</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hennig</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Poly[d(C-A)]- poly[d(G-T)] is highly transcribed in testes of Drosophila hydei</article-title>
<source>Chromosoma</source>
<year>1990</year>
<volume>100</volume>
<fpage>48</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1007/BF00337602</pub-id>
<pub-id pub-id-type="pmid">2129287</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/CovidV2/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000374 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000374 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    CovidV2
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7091781
   |texte=   The revolution of the biology of the genome
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:15040884" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidV2 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Sat Mar 28 17:51:24 2020. Site generation: Sun Jan 31 15:35:48 2021